@inproceedings{hall-maudslay-etal-2020-metaphor,
title = "Metaphor Detection using Context and Concreteness",
author = "Maudslay, Rowan Hall and
Pimentel, Tiago and
Cotterell, Ryan and
Teufel, Simone",
booktitle = "Proceedings of the Second Workshop on Figurative Language Processing",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.figlang-1.30",
doi = "10.18653/v1/2020.figlang-1.30",
pages = "221--226",
abstract = "We report the results of our system on the Metaphor Detection Shared Task at the Second Workshop on Figurative Language Processing 2020. Our model is an ensemble, utilising contextualised and static distributional semantic representations, along with word-type concreteness ratings. Using these features, it predicts word metaphoricity with a deep multi-layer perceptron. We are able to best the state-of-the-art from the 2018 Shared Task by an average of 8.0{\%} F1, and finish fourth in both sub-tasks in which we participate.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hall-maudslay-etal-2020-metaphor">
<titleInfo>
<title>Metaphor Detection using Context and Concreteness</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rowan</namePart>
<namePart type="given">Hall</namePart>
<namePart type="family">Maudslay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tiago</namePart>
<namePart type="family">Pimentel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simone</namePart>
<namePart type="family">Teufel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Figurative Language Processing</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We report the results of our system on the Metaphor Detection Shared Task at the Second Workshop on Figurative Language Processing 2020. Our model is an ensemble, utilising contextualised and static distributional semantic representations, along with word-type concreteness ratings. Using these features, it predicts word metaphoricity with a deep multi-layer perceptron. We are able to best the state-of-the-art from the 2018 Shared Task by an average of 8.0% F1, and finish fourth in both sub-tasks in which we participate.</abstract>
<identifier type="citekey">hall-maudslay-etal-2020-metaphor</identifier>
<identifier type="doi">10.18653/v1/2020.figlang-1.30</identifier>
<location>
<url>https://aclanthology.org/2020.figlang-1.30</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>221</start>
<end>226</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Metaphor Detection using Context and Concreteness
%A Maudslay, Rowan Hall
%A Pimentel, Tiago
%A Cotterell, Ryan
%A Teufel, Simone
%S Proceedings of the Second Workshop on Figurative Language Processing
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F hall-maudslay-etal-2020-metaphor
%X We report the results of our system on the Metaphor Detection Shared Task at the Second Workshop on Figurative Language Processing 2020. Our model is an ensemble, utilising contextualised and static distributional semantic representations, along with word-type concreteness ratings. Using these features, it predicts word metaphoricity with a deep multi-layer perceptron. We are able to best the state-of-the-art from the 2018 Shared Task by an average of 8.0% F1, and finish fourth in both sub-tasks in which we participate.
%R 10.18653/v1/2020.figlang-1.30
%U https://aclanthology.org/2020.figlang-1.30
%U https://doi.org/10.18653/v1/2020.figlang-1.30
%P 221-226
Markdown (Informal)
[Metaphor Detection using Context and Concreteness](https://aclanthology.org/2020.figlang-1.30) (Maudslay et al., Fig-Lang 2020)
ACL
- Rowan Hall Maudslay, Tiago Pimentel, Ryan Cotterell, and Simone Teufel. 2020. Metaphor Detection using Context and Concreteness. In Proceedings of the Second Workshop on Figurative Language Processing, pages 221–226, Online. Association for Computational Linguistics.