@inproceedings{mallinson-etal-2020-felix,
title = "{FELIX}: Flexible Text Editing Through Tagging and Insertion",
author = "Mallinson, Jonathan and
Severyn, Aliaksei and
Malmi, Eric and
Garrido, Guillermo",
editor = "Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.111/",
doi = "10.18653/v1/2020.findings-emnlp.111",
pages = "1244--1255",
abstract = "We present FELIX {--} a flexible text-editing approach for generation, designed to derive maximum benefit from the ideas of decoding with bi-directional contexts and self-supervised pretraining. In contrast to conventional sequenceto-sequence (seq2seq) models, FELIX is efficient in low-resource settings and fast at inference time, while being capable of modeling flexible input-output transformations. We achieve this by decomposing the text-editing task into two sub-tasks: tagging to decide on the subset of input tokens and their order in the output text and insertion to in-fill the missing tokens in the output not present in the input. The tagging model employs a novel Pointer mechanism, while the insertion model is based on a Masked Language Model (MLM). Both of these models are chosen to be non-autoregressive to guarantee faster inference. FELIX performs favourably when compared to recent text-editing methods and strong seq2seq baselines when evaluated on four NLG tasks: Sentence Fusion, Machine Translation Automatic Post-Editing, Summarization, and Text Simplification"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mallinson-etal-2020-felix">
<titleInfo>
<title>FELIX: Flexible Text Editing Through Tagging and Insertion</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Mallinson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aliaksei</namePart>
<namePart type="family">Severyn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eric</namePart>
<namePart type="family">Malmi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guillermo</namePart>
<namePart type="family">Garrido</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2020</title>
</titleInfo>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present FELIX – a flexible text-editing approach for generation, designed to derive maximum benefit from the ideas of decoding with bi-directional contexts and self-supervised pretraining. In contrast to conventional sequenceto-sequence (seq2seq) models, FELIX is efficient in low-resource settings and fast at inference time, while being capable of modeling flexible input-output transformations. We achieve this by decomposing the text-editing task into two sub-tasks: tagging to decide on the subset of input tokens and their order in the output text and insertion to in-fill the missing tokens in the output not present in the input. The tagging model employs a novel Pointer mechanism, while the insertion model is based on a Masked Language Model (MLM). Both of these models are chosen to be non-autoregressive to guarantee faster inference. FELIX performs favourably when compared to recent text-editing methods and strong seq2seq baselines when evaluated on four NLG tasks: Sentence Fusion, Machine Translation Automatic Post-Editing, Summarization, and Text Simplification</abstract>
<identifier type="citekey">mallinson-etal-2020-felix</identifier>
<identifier type="doi">10.18653/v1/2020.findings-emnlp.111</identifier>
<location>
<url>https://aclanthology.org/2020.findings-emnlp.111/</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>1244</start>
<end>1255</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T FELIX: Flexible Text Editing Through Tagging and Insertion
%A Mallinson, Jonathan
%A Severyn, Aliaksei
%A Malmi, Eric
%A Garrido, Guillermo
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Findings of the Association for Computational Linguistics: EMNLP 2020
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F mallinson-etal-2020-felix
%X We present FELIX – a flexible text-editing approach for generation, designed to derive maximum benefit from the ideas of decoding with bi-directional contexts and self-supervised pretraining. In contrast to conventional sequenceto-sequence (seq2seq) models, FELIX is efficient in low-resource settings and fast at inference time, while being capable of modeling flexible input-output transformations. We achieve this by decomposing the text-editing task into two sub-tasks: tagging to decide on the subset of input tokens and their order in the output text and insertion to in-fill the missing tokens in the output not present in the input. The tagging model employs a novel Pointer mechanism, while the insertion model is based on a Masked Language Model (MLM). Both of these models are chosen to be non-autoregressive to guarantee faster inference. FELIX performs favourably when compared to recent text-editing methods and strong seq2seq baselines when evaluated on four NLG tasks: Sentence Fusion, Machine Translation Automatic Post-Editing, Summarization, and Text Simplification
%R 10.18653/v1/2020.findings-emnlp.111
%U https://aclanthology.org/2020.findings-emnlp.111/
%U https://doi.org/10.18653/v1/2020.findings-emnlp.111
%P 1244-1255
Markdown (Informal)
[FELIX: Flexible Text Editing Through Tagging and Insertion](https://aclanthology.org/2020.findings-emnlp.111/) (Mallinson et al., Findings 2020)
ACL