@inproceedings{ben-david-etal-2020-semantically,
title = "Semantically Driven Sentence Fusion: Modeling and Evaluation",
author = "Ben-David, Eyal and
Keller, Orgad and
Malmi, Eric and
Szpektor, Idan and
Reichart, Roi",
editor = "Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.135",
doi = "10.18653/v1/2020.findings-emnlp.135",
pages = "1491--1505",
abstract = "Sentence fusion is the task of joining related sentences into coherent text. Current training and evaluation schemes for this task are based on single reference ground-truths and do not account for valid fusion variants. We show that this hinders models from robustly capturing the semantic relationship between input sentences. To alleviate this, we present an approach in which ground-truth solutions are automatically expanded into multiple references via curated equivalence classes of connective phrases. We apply this method to a large-scale dataset and use the augmented dataset for both model training and evaluation. To improve the learning of semantic representation using multiple references, we enrich the model with auxiliary discourse classification tasks under a multi-tasking framework. Our experiments highlight the improvements of our approach over state-of-the-art models.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ben-david-etal-2020-semantically">
<titleInfo>
<title>Semantically Driven Sentence Fusion: Modeling and Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Eyal</namePart>
<namePart type="family">Ben-David</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Orgad</namePart>
<namePart type="family">Keller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eric</namePart>
<namePart type="family">Malmi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Idan</namePart>
<namePart type="family">Szpektor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roi</namePart>
<namePart type="family">Reichart</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2020</title>
</titleInfo>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Sentence fusion is the task of joining related sentences into coherent text. Current training and evaluation schemes for this task are based on single reference ground-truths and do not account for valid fusion variants. We show that this hinders models from robustly capturing the semantic relationship between input sentences. To alleviate this, we present an approach in which ground-truth solutions are automatically expanded into multiple references via curated equivalence classes of connective phrases. We apply this method to a large-scale dataset and use the augmented dataset for both model training and evaluation. To improve the learning of semantic representation using multiple references, we enrich the model with auxiliary discourse classification tasks under a multi-tasking framework. Our experiments highlight the improvements of our approach over state-of-the-art models.</abstract>
<identifier type="citekey">ben-david-etal-2020-semantically</identifier>
<identifier type="doi">10.18653/v1/2020.findings-emnlp.135</identifier>
<location>
<url>https://aclanthology.org/2020.findings-emnlp.135</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>1491</start>
<end>1505</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Semantically Driven Sentence Fusion: Modeling and Evaluation
%A Ben-David, Eyal
%A Keller, Orgad
%A Malmi, Eric
%A Szpektor, Idan
%A Reichart, Roi
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Findings of the Association for Computational Linguistics: EMNLP 2020
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F ben-david-etal-2020-semantically
%X Sentence fusion is the task of joining related sentences into coherent text. Current training and evaluation schemes for this task are based on single reference ground-truths and do not account for valid fusion variants. We show that this hinders models from robustly capturing the semantic relationship between input sentences. To alleviate this, we present an approach in which ground-truth solutions are automatically expanded into multiple references via curated equivalence classes of connective phrases. We apply this method to a large-scale dataset and use the augmented dataset for both model training and evaluation. To improve the learning of semantic representation using multiple references, we enrich the model with auxiliary discourse classification tasks under a multi-tasking framework. Our experiments highlight the improvements of our approach over state-of-the-art models.
%R 10.18653/v1/2020.findings-emnlp.135
%U https://aclanthology.org/2020.findings-emnlp.135
%U https://doi.org/10.18653/v1/2020.findings-emnlp.135
%P 1491-1505
Markdown (Informal)
[Semantically Driven Sentence Fusion: Modeling and Evaluation](https://aclanthology.org/2020.findings-emnlp.135) (Ben-David et al., Findings 2020)
ACL