@inproceedings{cao-etal-2020-will,
title = "Will This Idea Spread Beyond Academia? Understanding Knowledge Transfer of Scientific Concepts across Text Corpora",
author = "Cao, Hancheng and
Cheng, Mengjie and
Cen, Zhepeng and
McFarland, Daniel and
Ren, Xiang",
editor = "Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.158",
doi = "10.18653/v1/2020.findings-emnlp.158",
pages = "1746--1757",
abstract = "What kind of basic research ideas are more likely to get applied in practice? There is a long line of research investigating patterns of knowledge transfer, but it generally focuses on documents as the unit of analysis and follow their transfer into practice for a specific scientific domain. Here we study translational research at the level of scientific concepts for all scientific fields. We do this through text mining and predictive modeling using three corpora: 38.6 million paper abstracts, 4 million patent documents, and 0.28 million clinical trials. We extract scientific concepts (i.e., phrases) from corpora as instantiations of {``}research ideas{''}, create concept-level features as motivated by literature, and then follow the trajectories of over 450,000 new concepts (emerged from 1995-2014) to identify factors that lead only a small proportion of these ideas to be used in inventions and drug trials. Results from our analysis suggest several mechanisms that distinguish which scientific concept will be adopted in practice, and which will not. We also demonstrate that our derived features can be used to explain and predict knowledge transfer with high accuracy. Our work provides greater understanding of knowledge transfer for researchers, practitioners, and government agencies interested in encouraging translational research.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cao-etal-2020-will">
<titleInfo>
<title>Will This Idea Spread Beyond Academia? Understanding Knowledge Transfer of Scientific Concepts across Text Corpora</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hancheng</namePart>
<namePart type="family">Cao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mengjie</namePart>
<namePart type="family">Cheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhepeng</namePart>
<namePart type="family">Cen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">McFarland</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiang</namePart>
<namePart type="family">Ren</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2020</title>
</titleInfo>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>What kind of basic research ideas are more likely to get applied in practice? There is a long line of research investigating patterns of knowledge transfer, but it generally focuses on documents as the unit of analysis and follow their transfer into practice for a specific scientific domain. Here we study translational research at the level of scientific concepts for all scientific fields. We do this through text mining and predictive modeling using three corpora: 38.6 million paper abstracts, 4 million patent documents, and 0.28 million clinical trials. We extract scientific concepts (i.e., phrases) from corpora as instantiations of “research ideas”, create concept-level features as motivated by literature, and then follow the trajectories of over 450,000 new concepts (emerged from 1995-2014) to identify factors that lead only a small proportion of these ideas to be used in inventions and drug trials. Results from our analysis suggest several mechanisms that distinguish which scientific concept will be adopted in practice, and which will not. We also demonstrate that our derived features can be used to explain and predict knowledge transfer with high accuracy. Our work provides greater understanding of knowledge transfer for researchers, practitioners, and government agencies interested in encouraging translational research.</abstract>
<identifier type="citekey">cao-etal-2020-will</identifier>
<identifier type="doi">10.18653/v1/2020.findings-emnlp.158</identifier>
<location>
<url>https://aclanthology.org/2020.findings-emnlp.158</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>1746</start>
<end>1757</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Will This Idea Spread Beyond Academia? Understanding Knowledge Transfer of Scientific Concepts across Text Corpora
%A Cao, Hancheng
%A Cheng, Mengjie
%A Cen, Zhepeng
%A McFarland, Daniel
%A Ren, Xiang
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Findings of the Association for Computational Linguistics: EMNLP 2020
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F cao-etal-2020-will
%X What kind of basic research ideas are more likely to get applied in practice? There is a long line of research investigating patterns of knowledge transfer, but it generally focuses on documents as the unit of analysis and follow their transfer into practice for a specific scientific domain. Here we study translational research at the level of scientific concepts for all scientific fields. We do this through text mining and predictive modeling using three corpora: 38.6 million paper abstracts, 4 million patent documents, and 0.28 million clinical trials. We extract scientific concepts (i.e., phrases) from corpora as instantiations of “research ideas”, create concept-level features as motivated by literature, and then follow the trajectories of over 450,000 new concepts (emerged from 1995-2014) to identify factors that lead only a small proportion of these ideas to be used in inventions and drug trials. Results from our analysis suggest several mechanisms that distinguish which scientific concept will be adopted in practice, and which will not. We also demonstrate that our derived features can be used to explain and predict knowledge transfer with high accuracy. Our work provides greater understanding of knowledge transfer for researchers, practitioners, and government agencies interested in encouraging translational research.
%R 10.18653/v1/2020.findings-emnlp.158
%U https://aclanthology.org/2020.findings-emnlp.158
%U https://doi.org/10.18653/v1/2020.findings-emnlp.158
%P 1746-1757
Markdown (Informal)
[Will This Idea Spread Beyond Academia? Understanding Knowledge Transfer of Scientific Concepts across Text Corpora](https://aclanthology.org/2020.findings-emnlp.158) (Cao et al., Findings 2020)
ACL