@inproceedings{sadeq-etal-2020-improving,
title = "Improving End-to-End {B}angla Speech Recognition with Semi-supervised Training",
author = "Sadeq, Nafis and
Chowdhury, Nafis Tahmid and
Utshaw, Farhan Tanvir and
Ahmed, Shafayat and
Adnan, Muhammad Abdullah",
editor = "Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.169",
doi = "10.18653/v1/2020.findings-emnlp.169",
pages = "1875--1883",
abstract = "Automatic speech recognition systems usually require large annotated speech corpus for training. The manual annotation of a large corpus is very difficult. It can be very helpful to use unsupervised and semi-supervised learning methods in addition to supervised learning. In this work, we focus on using a semi-supervised training approach for Bangla Speech Recognition that can exploit large unpaired audio and text data. We encode speech and text data in an intermediate domain and propose a novel loss function based on the global encoding distance between encoded data to guide the semi-supervised training. Our proposed method reduces the Word Error Rate (WER) of the system from 37{\%} to 31.9{\%}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sadeq-etal-2020-improving">
<titleInfo>
<title>Improving End-to-End Bangla Speech Recognition with Semi-supervised Training</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nafis</namePart>
<namePart type="family">Sadeq</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nafis</namePart>
<namePart type="given">Tahmid</namePart>
<namePart type="family">Chowdhury</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Farhan</namePart>
<namePart type="given">Tanvir</namePart>
<namePart type="family">Utshaw</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shafayat</namePart>
<namePart type="family">Ahmed</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Muhammad</namePart>
<namePart type="given">Abdullah</namePart>
<namePart type="family">Adnan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2020</title>
</titleInfo>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Automatic speech recognition systems usually require large annotated speech corpus for training. The manual annotation of a large corpus is very difficult. It can be very helpful to use unsupervised and semi-supervised learning methods in addition to supervised learning. In this work, we focus on using a semi-supervised training approach for Bangla Speech Recognition that can exploit large unpaired audio and text data. We encode speech and text data in an intermediate domain and propose a novel loss function based on the global encoding distance between encoded data to guide the semi-supervised training. Our proposed method reduces the Word Error Rate (WER) of the system from 37% to 31.9%.</abstract>
<identifier type="citekey">sadeq-etal-2020-improving</identifier>
<identifier type="doi">10.18653/v1/2020.findings-emnlp.169</identifier>
<location>
<url>https://aclanthology.org/2020.findings-emnlp.169</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>1875</start>
<end>1883</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving End-to-End Bangla Speech Recognition with Semi-supervised Training
%A Sadeq, Nafis
%A Chowdhury, Nafis Tahmid
%A Utshaw, Farhan Tanvir
%A Ahmed, Shafayat
%A Adnan, Muhammad Abdullah
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Findings of the Association for Computational Linguistics: EMNLP 2020
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F sadeq-etal-2020-improving
%X Automatic speech recognition systems usually require large annotated speech corpus for training. The manual annotation of a large corpus is very difficult. It can be very helpful to use unsupervised and semi-supervised learning methods in addition to supervised learning. In this work, we focus on using a semi-supervised training approach for Bangla Speech Recognition that can exploit large unpaired audio and text data. We encode speech and text data in an intermediate domain and propose a novel loss function based on the global encoding distance between encoded data to guide the semi-supervised training. Our proposed method reduces the Word Error Rate (WER) of the system from 37% to 31.9%.
%R 10.18653/v1/2020.findings-emnlp.169
%U https://aclanthology.org/2020.findings-emnlp.169
%U https://doi.org/10.18653/v1/2020.findings-emnlp.169
%P 1875-1883
Markdown (Informal)
[Improving End-to-End Bangla Speech Recognition with Semi-supervised Training](https://aclanthology.org/2020.findings-emnlp.169) (Sadeq et al., Findings 2020)
ACL