@inproceedings{yu-etal-2020-synet,
title = "{S}yn{ET}: Synonym Expansion using Transitivity",
author = "Yu, Jiale and
Shen, Yongliang and
Ma, Xinyin and
Jia, Chenghao and
Chen, Chen and
Lu, Weiming",
editor = "Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.177",
doi = "10.18653/v1/2020.findings-emnlp.177",
pages = "1961--1970",
abstract = "In this paper, we study a new task of synonym expansion using transitivity, and propose a novel approach named SynET, which considers both the contexts of two given synonym pairs. It introduces an auxiliary task to reduce the impact of noisy sentences, and proposes a Multi-Perspective Entity Matching Network to match entities from multiple perspectives. Extensive experiments on a real-world dataset show the effectiveness of our approach.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yu-etal-2020-synet">
<titleInfo>
<title>SynET: Synonym Expansion using Transitivity</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jiale</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yongliang</namePart>
<namePart type="family">Shen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xinyin</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenghao</namePart>
<namePart type="family">Jia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chen</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weiming</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2020</title>
</titleInfo>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we study a new task of synonym expansion using transitivity, and propose a novel approach named SynET, which considers both the contexts of two given synonym pairs. It introduces an auxiliary task to reduce the impact of noisy sentences, and proposes a Multi-Perspective Entity Matching Network to match entities from multiple perspectives. Extensive experiments on a real-world dataset show the effectiveness of our approach.</abstract>
<identifier type="citekey">yu-etal-2020-synet</identifier>
<identifier type="doi">10.18653/v1/2020.findings-emnlp.177</identifier>
<location>
<url>https://aclanthology.org/2020.findings-emnlp.177</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>1961</start>
<end>1970</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SynET: Synonym Expansion using Transitivity
%A Yu, Jiale
%A Shen, Yongliang
%A Ma, Xinyin
%A Jia, Chenghao
%A Chen, Chen
%A Lu, Weiming
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Findings of the Association for Computational Linguistics: EMNLP 2020
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F yu-etal-2020-synet
%X In this paper, we study a new task of synonym expansion using transitivity, and propose a novel approach named SynET, which considers both the contexts of two given synonym pairs. It introduces an auxiliary task to reduce the impact of noisy sentences, and proposes a Multi-Perspective Entity Matching Network to match entities from multiple perspectives. Extensive experiments on a real-world dataset show the effectiveness of our approach.
%R 10.18653/v1/2020.findings-emnlp.177
%U https://aclanthology.org/2020.findings-emnlp.177
%U https://doi.org/10.18653/v1/2020.findings-emnlp.177
%P 1961-1970
Markdown (Informal)
[SynET: Synonym Expansion using Transitivity](https://aclanthology.org/2020.findings-emnlp.177) (Yu et al., Findings 2020)
ACL
- Jiale Yu, Yongliang Shen, Xinyin Ma, Chenghao Jia, Chen Chen, and Weiming Lu. 2020. SynET: Synonym Expansion using Transitivity. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 1961–1970, Online. Association for Computational Linguistics.