Sparse and Decorrelated Representations for Stable Zero-shot NMT

Bokyung Son, Sungwon Lyu


Abstract
Using a single encoder and decoder for all directions and training with English-centric data is a popular scheme for multilingual NMT. However, zero-shot translation under this scheme is vulnerable to changes in training conditions, as the model degenerates by decoding non-English texts into English regardless of the target specifier token. We present that enforcing both sparsity and decorrelation on encoder intermediate representations with the SLNI regularizer (Aljundi et al., 2019) efficiently mitigates this problem, without performance loss in supervised directions. Notably, effects of SLNI turns out to be irrelevant to promoting language-invariance in encoder representations.
Anthology ID:
2020.findings-emnlp.205
Volume:
Findings of the Association for Computational Linguistics: EMNLP 2020
Month:
November
Year:
2020
Address:
Online
Editors:
Trevor Cohn, Yulan He, Yang Liu
Venue:
Findings
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
2260–2266
Language:
URL:
https://aclanthology.org/2020.findings-emnlp.205
DOI:
10.18653/v1/2020.findings-emnlp.205
Bibkey:
Cite (ACL):
Bokyung Son and Sungwon Lyu. 2020. Sparse and Decorrelated Representations for Stable Zero-shot NMT. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 2260–2266, Online. Association for Computational Linguistics.
Cite (Informal):
Sparse and Decorrelated Representations for Stable Zero-shot NMT (Son & Lyu, Findings 2020)
Copy Citation:
PDF:
https://aclanthology.org/2020.findings-emnlp.205.pdf