@inproceedings{chen-etal-2020-enhance,
title = "Enhance Robustness of Sequence Labelling with Masked Adversarial Training",
author = "Chen, Luoxin and
Liu, Xinyue and
Ruan, Weitong and
Lu, Jianhua",
editor = "Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.28",
doi = "10.18653/v1/2020.findings-emnlp.28",
pages = "297--302",
abstract = "Adversarial training (AT) has shown strong regularization effects on deep learning algorithms by introducing small input perturbations to improve model robustness. In language tasks, adversarial training brings word-level robustness by adding input noise, which is beneficial for text classification. However, it lacks sufficient contextual information enhancement and thus is less useful for sequence labelling tasks such as chunking and named entity recognition (NER). To address this limitation, we propose masked adversarial training (MAT) to improve robustness from contextual information in sequence labelling. MAT masks or replaces some words in the sentence when computing adversarial loss from perturbed inputs and consequently enhances model robustness using more context-level information. In our experiments, our method shows significant improvements on accuracy and robustness of sequence labelling. By further incorporating with ELMo embeddings, our model achieves better or comparable results to state-of-the-art on CoNLL 2000 and 2003 benchmarks using much less parameters.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2020-enhance">
<titleInfo>
<title>Enhance Robustness of Sequence Labelling with Masked Adversarial Training</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luoxin</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xinyue</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weitong</namePart>
<namePart type="family">Ruan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jianhua</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2020</title>
</titleInfo>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Adversarial training (AT) has shown strong regularization effects on deep learning algorithms by introducing small input perturbations to improve model robustness. In language tasks, adversarial training brings word-level robustness by adding input noise, which is beneficial for text classification. However, it lacks sufficient contextual information enhancement and thus is less useful for sequence labelling tasks such as chunking and named entity recognition (NER). To address this limitation, we propose masked adversarial training (MAT) to improve robustness from contextual information in sequence labelling. MAT masks or replaces some words in the sentence when computing adversarial loss from perturbed inputs and consequently enhances model robustness using more context-level information. In our experiments, our method shows significant improvements on accuracy and robustness of sequence labelling. By further incorporating with ELMo embeddings, our model achieves better or comparable results to state-of-the-art on CoNLL 2000 and 2003 benchmarks using much less parameters.</abstract>
<identifier type="citekey">chen-etal-2020-enhance</identifier>
<identifier type="doi">10.18653/v1/2020.findings-emnlp.28</identifier>
<location>
<url>https://aclanthology.org/2020.findings-emnlp.28</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>297</start>
<end>302</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Enhance Robustness of Sequence Labelling with Masked Adversarial Training
%A Chen, Luoxin
%A Liu, Xinyue
%A Ruan, Weitong
%A Lu, Jianhua
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Findings of the Association for Computational Linguistics: EMNLP 2020
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F chen-etal-2020-enhance
%X Adversarial training (AT) has shown strong regularization effects on deep learning algorithms by introducing small input perturbations to improve model robustness. In language tasks, adversarial training brings word-level robustness by adding input noise, which is beneficial for text classification. However, it lacks sufficient contextual information enhancement and thus is less useful for sequence labelling tasks such as chunking and named entity recognition (NER). To address this limitation, we propose masked adversarial training (MAT) to improve robustness from contextual information in sequence labelling. MAT masks or replaces some words in the sentence when computing adversarial loss from perturbed inputs and consequently enhances model robustness using more context-level information. In our experiments, our method shows significant improvements on accuracy and robustness of sequence labelling. By further incorporating with ELMo embeddings, our model achieves better or comparable results to state-of-the-art on CoNLL 2000 and 2003 benchmarks using much less parameters.
%R 10.18653/v1/2020.findings-emnlp.28
%U https://aclanthology.org/2020.findings-emnlp.28
%U https://doi.org/10.18653/v1/2020.findings-emnlp.28
%P 297-302
Markdown (Informal)
[Enhance Robustness of Sequence Labelling with Masked Adversarial Training](https://aclanthology.org/2020.findings-emnlp.28) (Chen et al., Findings 2020)
ACL