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Abstract

Adversarial training (AT) has shown strong
regularization effects on deep learning algo-
rithms by introducing small input perturba-
tions to improve model robustness. In lan-
guage tasks, adversarial training brings word-
level robustness by adding input noise, which
is beneficial for text classification. However,
it lacks sufficient contextual information en-
hancement and thus is less useful for sequence
labelling tasks such as chunking and named
entity recognition (NER). To address this lim-
itation, we propose masked adversarial train-
ing (MAT) to improve robustness from contex-
tual information in sequence labelling. MAT
masks or replaces some words in the sen-
tence when computing adversarial loss from
perturbed inputs and consequently enhances
model robustness using more context-level in-
formation. In our experiments, our method
shows significant improvements on accuracy
and robustness of sequence labelling. By fur-
ther incorporating with ELMo embeddings,
our model achieves better or comparable re-
sults to state-of-the-art on CoNLL 2000 and
2003 benchmarks using much less parameters.

1 Introduction

Deep neural network (DNN) based methods have
shown great success in various natural language
processing (NLP) tasks, such as text classifica-
tion, sentiment analysis, machine translation, and
sequence labelling (Miyato et al., 2017; Ma and
Hovy, 2016; Peters et al., 2018). However, some
studies (Szegedy et al., 2014; Goodfellow et al.,
2015) have illustrated that usually DNN models
are not robust enough to input noise. Even adding
tiny perturbations to the input could lead to a large
increase in loss or mislabelling. To avoid such
kind of errors and improve model robustness, ad-
versarial training (AT) (Goodfellow et al., 2015)
was proposed to force models to give consistent

predictions even with perturbations.
Adversarial training is an approach to improve

the robustness and generalization of models, by
training models on original examples as well as
adversarial examples. Unlike adversarial attack,
which aims to find the weakness of models, the
objective of adversarial training is to improve the
model robustness. Consequently, adversarial at-
tack tends to find the worst adversarial examples,
while adversarial training favors adversarial exam-
ples which can improve the model robustness and
accuracy, not necessarily the worst ones.

Despite the success of adversarial training (AT)
on text tasks such as text classification (Miyato
et al., 2017) and part-of-speech (POS) tagging (Ya-
sunaga et al., 2018), its gains on other sequence
labelling tasks, such as named entity recognition
and chunking, are not significant (Yasunaga et al.,
2018). AT generates adversarial examples by in-
troducing small but worst-case perturbations to the
input embeddings. It is equivalent to replacing
words with their close neighbors in embedding
space. While this idea improves token-level ro-
bustness by ensuring small changes in embedding
space would not shift model predictions, replace-
ment by far-away or out-of-vocabulary words is
not recoverable by AT. Suppose “I went to Mas-
sachusetts by car” is one sentence in the training set
and “Massachusetts” is labelled as LOCATION. If
“Massachusetts” is replaced by “Connecticut”, AT
is likely to handle it since their embeddings should
be close. However, if it is replaced by “Kiyomizu-
Dera” (a temple in Kyoto, Japan), AT is unlikely to
correctly label this word, since their embeddings
might be far away due to lack of co-occurrence.
But in this sentence, a human is able to reason its
label to LOCATION easily by recognizing the con-
textual phrase “went to” or “by car”. Consequently,
contextual information is crucial to improve model
robustness in context level. Yet, robustness upon
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contextual information is not augmented in adver-
sarial training, and thus its gains to sequence la-
belling tasks are not that significant and can be
further improved.

To incorporate context-level robustness into ad-
versarial training, we propose a new approach,
named masked adversarial training (MAT). MAT
applies word masks or substitutions (details in
Method section) when computing loss from adver-
sarial examples, which forces the model to predict
the right labels with no word information or wrong
information. For example, if “Massachusetts” in
the sentence “I went to Massachusetts by car” is
masked or replaced by an irrelevant word such as
“pineapple”, in order to make the right prediction
with such noise, the model has to learn more con-
textual information from “went to” or “by car”.
Such approach would enhance model robustness
since it relies more about contextual information.

We evaluate MAT on two sequence labelling
tasks, named entity recognition (NER) and chunk-
ing, which did not exhibit great improvement by
using conventional adversarial training in previous
literature (Yasunaga et al., 2018). In the experi-
ments, we demonstrate that MAT significantly im-
proves performance on top of AT for those two
sequence labelling tasks, and can achieve compa-
rable or better performance than state-of-the-art.
Also further analysis indicates that MAT improves
generalization over unseen words and unseen pat-
terns.

2 Related Work

Some previous work investigated various ap-
proaches to improve contextual robustness during
training, such as word dropout (Gal and Ghahra-
mani, 2016), cross-view training (Clark et al., 2018)
and masked language model for BERT (Devlin
et al., 2018). Word dropout (Gal and Ghahramani,
2016) directly drops some words from input and
forces the model to make the same predictions,
which simulates that situation where model has not
seen some words in training. Cross-view training
(Clark et al., 2018) takes auxiliary predictions from
neighbor LSTM neurons for each direction and
forces them to predict the same label as the current
neuron. Hence, cross-view training is equivalent to
a stricter word dropout which drops all words be-
fore/after the current word. Such dropouts could be
treated as augmenting the training data with pieces
of input. But in most cases, pieces of input are

not valid natural language and thus would create
a discrepancy between training and test. Masked
language model (Devlin et al., 2018) smooths this
inconsistency by applying replacement of tokens
for some data while masking the rest (equivalent
to word dropout). However, the replacement in
masked language model is randomly chosen from
the full vocabulary, but the substitution in real sce-
narios follows some distribution (e.g. replacing
“Massachusetts” with a location name is more likely
than an animal name), which is not considered in
masked language model. Hence, we propose a
mask mechanism which is similar to masked lan-
guage model but has a new substitute selection
pipeline to address the concern about substitution
probability. We apply it on adversarial examples to
force the model to learn more contextual informa-
tion when optimizing the adversarial loss. Our new
approach combines word-level and context-level
robustness and achieves superior performance in
our experiments.

3 Method

3.1 Model Architecture

Our sequence labelling model adapts CNN-LSTM-
CRF architecture, which is used across several best
sequence labelling models (Ma and Hovy, 2016;
Akbik et al., 2018; Peters et al., 2018; Chen et al.,
2020), as shown in Figure 1. We apply a CNN layer
to extract character embeddings, concatenate its
output with word embeddings and optional ELMo
embeddings (Peters et al., 2018) as input features,
feed the input features into LSTM layers, and de-
code with a CRF layer.

3.2 Masked Adversarial Training

3.2.1 Adversarial Examples Generation
In this paper, adversarial perturbations are added
to word and character embeddings respectively. To
prevent vanishing effects of adversarial perturba-
tions, embeddings are normalized as suggested in
(Miyato et al., 2017). Denote w and c as normal-
ized word and character embeddings of the input, η
is the rest of the input with no intentional perturba-
tions (ELMo in this paper), θ is the parameters of
the model, y is a vector of labels for all tokens in
the sequence, and Loss is the loss function. Given
bounded norms δw and δc respectively, the worst
case perturbations dw and dc for w and c are:

dw = arg max
ε,||ε||2≤δw

Loss(y;w + ε, c, η, θ̂) (1)
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Figure 1: Sequence Labelling Model Architecture

dc = arg max
τ,||τ ||2≤δc

Loss(y;w, c+ τ, η, θ̂) (2)

Note, w, c and η here are input embeddings for the
whole sequence, rather than a single word. Thus,
dw and dc also represent the sets of worst pertur-
bations for the full sequence, which means we
compute the adversarial perturbations for all input
words. In addition, θ̂ is current estimation of θ. The
purpose of using constant value θ̂ instead of θ is to
emphasize that the gradient should not propagate
during generation of adversarial examples.

Yet, using equation (1) and (2) to compute exact
value of those perturbations with maximization is
intractable for complex DNN models. As proposed
by Goodfellow et al.(2015), first order approxima-
tion is applied to approximate the value of dw and
dc. With this approximation, dw and dc can be
calculated by:

dw =
gw
||gw||2

δw, gw = ∇wLoss(y;w, c, η, θ̂) (3)

dc =
gc
||gc||2

δc, gc = ∇cLoss(y;w, c, η, θ̂) (4)

Then, the adversarial loss Ladv is formed by:

Ladv = Loss(y;w + dw, c+ dc, η, θ̂) (5)

3.2.2 Adversarial Examples Masking
The masking process contains three steps. First,
some sentences are randomly sampled out, with
a rate ρ. Second, one word within each sentence
sampled out in previous step will be randomly se-
lected as the candidate for masking or substitution.
Finally, candidates will be masked by the word
<Mask> at a rate of α, or replaced at a rate of
(1− α).

Here, replacing with similar words is more likely
to produce valid natural language sentences and
thus they should have higher probability during
replacement. Consequently, instead of getting a
random replacement word from the full vocabulary,
a word similarity based replacement is proposed
and applied here.

To achieve this, we apply euclidean distance on
the un-normalized word embeddings v to measure
the word similarity. Then replace the words based
on the similarity. Here, we do not want to fre-
quently replace words with their close neighbors
since it will have similar effects as AT. In addi-
tion, frequent substitution with extremely different
words is not ideal either since it is not likely to
produce reasonable sentences. As a result, we want
to make the probability distribution of sampling
substitutes to focus more on the words which share
some similarities with the original words but not
far-away. For this purpose, we assign a Gaussian
function with mean µ and variance Ω2 to formulate
the probability distribution of sampling substitutes
based on similarity score. Suppose si,j is the simi-
larity score between i-th and j-th words, the post
score posti,j is:

posti,j = Gaussianµ,Ω2(si,j) (6)

Then, we normalize the scores by a softmax and
get the probability distribution of replacing words.

3.2.3 Training with Masked Adversarial Loss
Suppose w′, c′ are embeddings after masking and
substitution, the masked adversarial loss L′

adv is:

L′
adv = Loss(y;w′ + dw, c

′ + dc, η, θ̂) (7)

Here, the conventional perturbations dw and dc
are still applied to keep the AT effects for words
which are not selected for masking/substitution.
Also, the size of perturbations is small com-
pared to embeddings. Introducing perturbations
to masked/substituted words would not smooth the
significant noise from the masking mechanism.

At each training step, the sequence labelling loss
is computed as:

Llabel = Loss(y;w, c, η, θ̂) (8)

To balance the model accuracy and robustness,
a weight λ is introduced to masked adversarial loss
L′
adv:

Ltotal = Llabel + λL′
adv (9)



300

Method NER Chunking
Baseline 91.20 ± 0.08 95.18 ± 0.03
Masking (R) 91.30 ± 0.08 95.21 ± 0.04
Masking (S) 91.35 ± 0.06 95.24 ± 0.01
AT 91.63 ± 0.07 95.30 ± 0.06
MAT (R) 92.04 ± 0.10 95.42 ± 0.02
MAT (S) 92.12 ± 0.07 95.47 ± 0.03

Table 1: Test results on different replacement mechanism.
(R) stands for random replacement while (S) represents simi-
larity based replacement.

This objective function is optimized with respect
to θ.

4 Experiments

4.1 Dataset

Our model with masked adversarial training is eval-
uated on two sequence labelling tasks: named
entity recognition and chunking. For named en-
tity recognition, all approaches are evaluated on
CoNLL 2003 shared task (Sang and Meulder,
2003). In addition, chunking task is evaluated on
the dataset for CoNLL 2000 shared task (Sang and
Buchholz, 2000).

4.2 Experiment Settings

While all model parameters are randomly initial-
ized, all the hyper-parameters including initial
ELMo weights are chosen by grid search on the
development set. ELMo weights are initialized to
(1

3 ,
1
3 ,

1
3) for NER and (1

5 ,
3
5 ,

1
5) for chunking. Vari-

ational dropout (Blum et al., 2015) with rate 0.2 is
applied to the input and output of each LSTM layer.
The selection rate ρ for masked adversarial training
is 0.06 and the mask rate α is 0.9. The perturbation
sizes for word and character embeddings, δw and
δc, are 0.4 and 0.2 respectively. The weight for
masked adversarial loss (i.e. λ) is set to 0.6.

The sequence labelling model is optimized by
Adam optimizer (Kingma and Ba, 2015) with batch
size 64, learning rate 0.0006 and decay rate 0.992.
Early stopping is applied based on model perfor-
mance on the development set.

5 Evaluation

Two sequence labelling tasks are evaluated with
“slot-F1” metric, the same as evaluation metrics in
CoNLL 2000 and CoNLL 2003 shared tasks (Sang
and Buchholz, 2000; Sang and Meulder, 2003).
Considering the relatively small size of the test
sets, mean and standard deviation across 5 runs

over different random seeds are reported for com-
parisons.

5.1 Ablation Study
An ablation study on masking and replacement are
conducted, and the results are shown in Table 1.
For both tasks, word similarity based replacement
outperforms random replacement in conditions of
baseline and MAT. Considering this consistent ben-
efits of word similarity based replacement, all the
experiment results containing MAT are using this
replacement mechanism.

5.2 Results
Test results on CoNLL 2000 and 2003 shared task
are shown in Table 2. Note that ELMo-fixed
models consistently perform better than those with
trainable ELMo weights in our experiments. So,
only baseline models are trained with both fixed
and trainable ELMo weights for comparison.

From section 5, 6 and 7, MAT shows signifi-
cant improvements over AT across all settings. In
comparison to previous works, our model outper-
forms almost all benchmark models in fair com-
parison setting (with/without additional resources,
with/without multi-task training and with/without
using development set for training). Only Baevski
et al. (2019) reported higher F1-score (93.5 vs
93.48) using a pre-trained CNN model. However,
their best model has much more parameters than
ours (330M vs 15M). It is valuable to have a much
cheaper model with almost same accuracy as state-
of-the-art.

For chunking task, our best model (MAT+ELMo-
fixed+Multi-task) achieves a new state-of-the-art
result (97.04) in CoNLL 2000 benchmark. In ad-
dition, MAT consistently beats AT and all other
previous benchmark models in the same setting
(with/without external resources), even compared
to model with larger size (CVT large model has 4
times larger LSTM hidden size than ours).

To further understand the effects of AT and MAT,
an additional evaluation on unseen words is per-
formed. Note in this analysis, only models with-
out ELMo are evaluated to get rid of the benefits
from ELMo. Token based F1 score is used as the
metric for this comparison. As shown in Table
3, while AT improves accuracy on unseen words,
MAT gives additional improvement on top of AT
in both tasks, which indicates that MAT has bet-
ter effects on improving model generalization and
robustness compared to conventional AT.
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Model NER (F1 ± std) Chunking (F1 ± std)
AT (Yasunaga et al., 2018) 91.56 95.25
CVT (Clark et al., 2018)* 92.34 ± 0.06 96.58 ± 0.04
BERT-large (Devlin et al., 2018)* 92.8 -
ELMo + Multi-Task (Clark et al., 2018)*� 92.32 ± 0.12 96.83 ± 0.03
CVT+Multi-Task (Clark et al., 2018)*� 92.42 ± 0.08 96.85 ± 0.05
CVT+Multi-Task+Large (Clark et al., 2018)*� 92.61 ± 0.09 96.98 ± 0.05
Flair(Akbik et al., 2018)*† 93.09 ± 0.12 96.72 ± 0.05
ELMo+BERT+Flair (Straková et al., 2019)*† 93.38 -
CNN-large + Fine-tune (Baevski et al., 2019)*† 93.5 -
Baseline (CNN-LSTM-CRF) 91.20 ± 0.08 95.18 ± 0.03
AT (our implementation) 91.63 ± 0.07 95.30 ± 0.06
MAT 92.12 ± 0.07 95.47 ± 0.03
Baseline + ELMo* 92.24 ± 0.12 96.49 ± 0.04
Baseline + ELMo-fixed* 92.40 ± 0.10 96.52 ± 0.03
AT + ELMo-fixed* 92.75 ± 0.06 96.63 ± 0.03
MAT + ELMo-fixed* 92.98 ± 0.09 96.94 ± 0.04
MAT + ELMo-fixed + Multi-task*� 93.06 ± 0.06 97.04 ± 0.02
Baseline + ELMo-fixed + Dev*† 92.61 ± 0.11 -
AT + ELMo-fixed + Dev*† 93.16 ± 0.07 -
MAT + ELMo-fixed + Dev*† 93.42 ± 0.12 -
MAT + ELMo-fixed + Dev + Multi-task*† � 93.48 ± 0.09 -

Table 2: Test results on CoNLL 2000 and 2003 shared task. The last three sections are our proposed methods. * indicates
use of external resources such as pre-trained language model, � represents models jointly trained with other tasks, and † means
inclusion of development set into training for NER task. ELMo-fixed means using fixed initial weights for ELMo during
training, and Multi-task indicates that a joint model is trained for all tasks. The best score in each section is marked in bold.

Method NER Chunking
Baseline 94.29 95.67
AT 94.73 96.45
MAT 95.12 96.86

Table 3: F1 score on unseen words for two tasks.

Figure 2: Probability (confidence score) of correctly predict-
ing labels for the sentence “Radio Romania news headlines
:”. “Romania” only occurs as LOC in training set, so the base-
line model predicts “Romania” within “Radio Romania news
headlines :” as LOC. AT shows better chance to label it cor-
rectly but fails in the end. MAT gradually learn its contextual
information and correctly labels it as ORG.

5.3 Robustness Analysis

For the robustness analysis on unseen data, we con-
duct a case study on the phrase “Radio Romania”
whose label is ORG, within the sentence “Radio
Romania news headlines :”, from the CoNLL 2003
dataset. In the training set, “Radio” and “Roma-

nia” never show up in the same context. “Radio”
only has ORG label while “Romania” only has LOC
label. We draw curves of the probability (confi-
dence score) of correctly labelling this sentence for
different models, as shown in Figure 2. Baseline
and AT models mislabel it. The probability of cor-
rect prediction almost keeps decreasing after some
training steps. However, MAT gradually learn its
label from contextual information and the probabil-
ity of right prediction converges to a value larger
than 0.8. This case demonstrates the context-level
robustness enhancement effects of MAT.

6 Conclusion

In our experiments, we have shown that MAT sig-
nificantly improves model robustness and general-
ization on sequence labelling tasks, especially for
unseen words or patterns. For the two tasks used in
this paper, our approach achieves better or compa-
rable performance to current state-of-the-art with
much smaller models. This model architecture is
adaptable for all sequence labelling problems and
the contextual information brought by MAT has
potential benefits for other language tasks.
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