@inproceedings{chen-etal-2020-multilingual,
title = "Multilingual Knowledge Graph Completion via Ensemble Knowledge Transfer",
author = "Chen, Xuelu and
Chen, Muhao and
Fan, Changjun and
Uppunda, Ankith and
Sun, Yizhou and
Zaniolo, Carlo",
editor = "Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.290",
doi = "10.18653/v1/2020.findings-emnlp.290",
pages = "3227--3238",
abstract = "Predicting missing facts in a knowledge graph(KG) is a crucial task in knowledge base construction and reasoning, and it has been the subject of much research in recent works us-ing KG embeddings. While existing KG embedding approaches mainly learn and predict facts within a single KG, a more plausible solution would benefit from the knowledge in multiple language-specific KGs, considering that different KGs have their own strengths and limitations on data quality and coverage. This is quite challenging since the transfer of knowledge among multiple independently maintained KGs is often hindered by the insufficiency of alignment information and inconsistency of described facts. In this paper, we propose kens, a novel framework for embedding learning and ensemble knowledge transfer across a number of language-specific KGs.KEnS embeds all KGs in a shared embedding space, where the association of entities is captured based on self-learning. Then, KEnS performs ensemble inference to com-bine prediction results from multiple language-specific embeddings, for which multiple en-semble techniques are investigated. Experiments on the basis of five real-world language-specific KGs show that, by effectively identifying and leveraging complementary knowledge, KEnS consistently improves state-of-the-art methods on KG completion.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2020-multilingual">
<titleInfo>
<title>Multilingual Knowledge Graph Completion via Ensemble Knowledge Transfer</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xuelu</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Muhao</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Changjun</namePart>
<namePart type="family">Fan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ankith</namePart>
<namePart type="family">Uppunda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yizhou</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carlo</namePart>
<namePart type="family">Zaniolo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2020</title>
</titleInfo>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Predicting missing facts in a knowledge graph(KG) is a crucial task in knowledge base construction and reasoning, and it has been the subject of much research in recent works us-ing KG embeddings. While existing KG embedding approaches mainly learn and predict facts within a single KG, a more plausible solution would benefit from the knowledge in multiple language-specific KGs, considering that different KGs have their own strengths and limitations on data quality and coverage. This is quite challenging since the transfer of knowledge among multiple independently maintained KGs is often hindered by the insufficiency of alignment information and inconsistency of described facts. In this paper, we propose kens, a novel framework for embedding learning and ensemble knowledge transfer across a number of language-specific KGs.KEnS embeds all KGs in a shared embedding space, where the association of entities is captured based on self-learning. Then, KEnS performs ensemble inference to com-bine prediction results from multiple language-specific embeddings, for which multiple en-semble techniques are investigated. Experiments on the basis of five real-world language-specific KGs show that, by effectively identifying and leveraging complementary knowledge, KEnS consistently improves state-of-the-art methods on KG completion.</abstract>
<identifier type="citekey">chen-etal-2020-multilingual</identifier>
<identifier type="doi">10.18653/v1/2020.findings-emnlp.290</identifier>
<location>
<url>https://aclanthology.org/2020.findings-emnlp.290</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>3227</start>
<end>3238</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multilingual Knowledge Graph Completion via Ensemble Knowledge Transfer
%A Chen, Xuelu
%A Chen, Muhao
%A Fan, Changjun
%A Uppunda, Ankith
%A Sun, Yizhou
%A Zaniolo, Carlo
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Findings of the Association for Computational Linguistics: EMNLP 2020
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F chen-etal-2020-multilingual
%X Predicting missing facts in a knowledge graph(KG) is a crucial task in knowledge base construction and reasoning, and it has been the subject of much research in recent works us-ing KG embeddings. While existing KG embedding approaches mainly learn and predict facts within a single KG, a more plausible solution would benefit from the knowledge in multiple language-specific KGs, considering that different KGs have their own strengths and limitations on data quality and coverage. This is quite challenging since the transfer of knowledge among multiple independently maintained KGs is often hindered by the insufficiency of alignment information and inconsistency of described facts. In this paper, we propose kens, a novel framework for embedding learning and ensemble knowledge transfer across a number of language-specific KGs.KEnS embeds all KGs in a shared embedding space, where the association of entities is captured based on self-learning. Then, KEnS performs ensemble inference to com-bine prediction results from multiple language-specific embeddings, for which multiple en-semble techniques are investigated. Experiments on the basis of five real-world language-specific KGs show that, by effectively identifying and leveraging complementary knowledge, KEnS consistently improves state-of-the-art methods on KG completion.
%R 10.18653/v1/2020.findings-emnlp.290
%U https://aclanthology.org/2020.findings-emnlp.290
%U https://doi.org/10.18653/v1/2020.findings-emnlp.290
%P 3227-3238
Markdown (Informal)
[Multilingual Knowledge Graph Completion via Ensemble Knowledge Transfer](https://aclanthology.org/2020.findings-emnlp.290) (Chen et al., Findings 2020)
ACL