@inproceedings{yang-etal-2020-using,
title = "Using Visual Feature Space as a Pivot Across Languages",
author = "Yang, Ziyan and
Pinto-Alva, Leticia and
Dernoncourt, Franck and
Ordonez, Vicente",
editor = "Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.328",
doi = "10.18653/v1/2020.findings-emnlp.328",
pages = "3673--3678",
abstract = "Our work aims to leverage visual feature space to pass information across languages. We show that models trained to generate textual captions in more than one language conditioned on an input image can leverage their jointly trained feature space during inference to pivot across languages. We particularly demonstrate improved quality on a caption generated from an input image, by leveraging a caption in a second language. More importantly, we demonstrate that even without conditioning on any visual input, the model demonstrates to have learned implicitly to perform to some extent machine translation from one language to another in their shared visual feature space. We show results in German-English, and Japanese-English language pairs that pave the way for using the visual world to learn a common representation for language.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yang-etal-2020-using">
<titleInfo>
<title>Using Visual Feature Space as a Pivot Across Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ziyan</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leticia</namePart>
<namePart type="family">Pinto-Alva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Franck</namePart>
<namePart type="family">Dernoncourt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vicente</namePart>
<namePart type="family">Ordonez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2020</title>
</titleInfo>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Our work aims to leverage visual feature space to pass information across languages. We show that models trained to generate textual captions in more than one language conditioned on an input image can leverage their jointly trained feature space during inference to pivot across languages. We particularly demonstrate improved quality on a caption generated from an input image, by leveraging a caption in a second language. More importantly, we demonstrate that even without conditioning on any visual input, the model demonstrates to have learned implicitly to perform to some extent machine translation from one language to another in their shared visual feature space. We show results in German-English, and Japanese-English language pairs that pave the way for using the visual world to learn a common representation for language.</abstract>
<identifier type="citekey">yang-etal-2020-using</identifier>
<identifier type="doi">10.18653/v1/2020.findings-emnlp.328</identifier>
<location>
<url>https://aclanthology.org/2020.findings-emnlp.328</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>3673</start>
<end>3678</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Using Visual Feature Space as a Pivot Across Languages
%A Yang, Ziyan
%A Pinto-Alva, Leticia
%A Dernoncourt, Franck
%A Ordonez, Vicente
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Findings of the Association for Computational Linguistics: EMNLP 2020
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F yang-etal-2020-using
%X Our work aims to leverage visual feature space to pass information across languages. We show that models trained to generate textual captions in more than one language conditioned on an input image can leverage their jointly trained feature space during inference to pivot across languages. We particularly demonstrate improved quality on a caption generated from an input image, by leveraging a caption in a second language. More importantly, we demonstrate that even without conditioning on any visual input, the model demonstrates to have learned implicitly to perform to some extent machine translation from one language to another in their shared visual feature space. We show results in German-English, and Japanese-English language pairs that pave the way for using the visual world to learn a common representation for language.
%R 10.18653/v1/2020.findings-emnlp.328
%U https://aclanthology.org/2020.findings-emnlp.328
%U https://doi.org/10.18653/v1/2020.findings-emnlp.328
%P 3673-3678
Markdown (Informal)
[Using Visual Feature Space as a Pivot Across Languages](https://aclanthology.org/2020.findings-emnlp.328) (Yang et al., Findings 2020)
ACL
- Ziyan Yang, Leticia Pinto-Alva, Franck Dernoncourt, and Vicente Ordonez. 2020. Using Visual Feature Space as a Pivot Across Languages. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 3673–3678, Online. Association for Computational Linguistics.