@inproceedings{hossain-etal-2020-non,
title = "It{'}s not a Non-Issue: Negation as a Source of Error in Machine Translation",
author = "Hossain, Md Mosharaf and
Anastasopoulos, Antonios and
Blanco, Eduardo and
Palmer, Alexis",
editor = "Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.345",
doi = "10.18653/v1/2020.findings-emnlp.345",
pages = "3869--3885",
abstract = "As machine translation (MT) systems progress at a rapid pace, questions of their adequacy linger. In this study we focus on negation, a universal, core property of human language that significantly affects the semantics of an utterance. We investigate whether translating negation is an issue for modern MT systems using 17 translation directions as test bed. Through thorough analysis, we find that indeed the presence of negation can significantly impact downstream quality, in some cases resulting in quality reductions of more than 60{\%}. We also provide a linguistically motivated analysis that directly explains the majority of our findings. We release our annotations and code to replicate our analysis here: \url{https://github.com/mosharafhossain/negation-mt}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hossain-etal-2020-non">
<titleInfo>
<title>It’s not a Non-Issue: Negation as a Source of Error in Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Md</namePart>
<namePart type="given">Mosharaf</namePart>
<namePart type="family">Hossain</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antonios</namePart>
<namePart type="family">Anastasopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eduardo</namePart>
<namePart type="family">Blanco</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2020</title>
</titleInfo>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>As machine translation (MT) systems progress at a rapid pace, questions of their adequacy linger. In this study we focus on negation, a universal, core property of human language that significantly affects the semantics of an utterance. We investigate whether translating negation is an issue for modern MT systems using 17 translation directions as test bed. Through thorough analysis, we find that indeed the presence of negation can significantly impact downstream quality, in some cases resulting in quality reductions of more than 60%. We also provide a linguistically motivated analysis that directly explains the majority of our findings. We release our annotations and code to replicate our analysis here: https://github.com/mosharafhossain/negation-mt.</abstract>
<identifier type="citekey">hossain-etal-2020-non</identifier>
<identifier type="doi">10.18653/v1/2020.findings-emnlp.345</identifier>
<location>
<url>https://aclanthology.org/2020.findings-emnlp.345</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>3869</start>
<end>3885</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T It’s not a Non-Issue: Negation as a Source of Error in Machine Translation
%A Hossain, Md Mosharaf
%A Anastasopoulos, Antonios
%A Blanco, Eduardo
%A Palmer, Alexis
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Findings of the Association for Computational Linguistics: EMNLP 2020
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F hossain-etal-2020-non
%X As machine translation (MT) systems progress at a rapid pace, questions of their adequacy linger. In this study we focus on negation, a universal, core property of human language that significantly affects the semantics of an utterance. We investigate whether translating negation is an issue for modern MT systems using 17 translation directions as test bed. Through thorough analysis, we find that indeed the presence of negation can significantly impact downstream quality, in some cases resulting in quality reductions of more than 60%. We also provide a linguistically motivated analysis that directly explains the majority of our findings. We release our annotations and code to replicate our analysis here: https://github.com/mosharafhossain/negation-mt.
%R 10.18653/v1/2020.findings-emnlp.345
%U https://aclanthology.org/2020.findings-emnlp.345
%U https://doi.org/10.18653/v1/2020.findings-emnlp.345
%P 3869-3885
Markdown (Informal)
[It’s not a Non-Issue: Negation as a Source of Error in Machine Translation](https://aclanthology.org/2020.findings-emnlp.345) (Hossain et al., Findings 2020)
ACL