@inproceedings{kumar-callan-2020-making,
title = "Making Information Seeking Easier: An Improved Pipeline for Conversational Search",
author = "Kumar, Vaibhav and
Callan, Jamie",
editor = "Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.354",
doi = "10.18653/v1/2020.findings-emnlp.354",
pages = "3971--3980",
abstract = "This paper presents a highly effective pipeline for passage retrieval in a conversational search setting. The pipeline comprises of two components: Conversational Term Selection (CTS) and Multi-View Reranking (MVR). CTS is responsible for performing the first-stage of passage retrieval. Given an input question, it uses a BERT-based classifier (trained with weak supervision) to de-contextualize the input by selecting relevant terms from the dialog history. Using the question and the selected terms, it issues a query to a search engine to perform the first-stage of passage retrieval. On the other hand, MVR is responsible for contextualized passage reranking. It first constructs multiple views of the information need embedded within an input question. The views are based on the dialog history and the top documents obtained in the first-stage of retrieval. It then uses each view to rerank passages using BERT (fine-tuned for passage ranking). Finally, MVR performs a fusion over the rankings produced by the individual views. Experiments show that the above combination improves first-state retrieval as well as the overall accuracy in a reranking pipeline. On the key metric of NDCG@3, the proposed combination achieves a relative performance improvement of 14.8{\%} over the state-of-the-art baseline and is also able to surpass the Oracle.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kumar-callan-2020-making">
<titleInfo>
<title>Making Information Seeking Easier: An Improved Pipeline for Conversational Search</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vaibhav</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jamie</namePart>
<namePart type="family">Callan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2020</title>
</titleInfo>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents a highly effective pipeline for passage retrieval in a conversational search setting. The pipeline comprises of two components: Conversational Term Selection (CTS) and Multi-View Reranking (MVR). CTS is responsible for performing the first-stage of passage retrieval. Given an input question, it uses a BERT-based classifier (trained with weak supervision) to de-contextualize the input by selecting relevant terms from the dialog history. Using the question and the selected terms, it issues a query to a search engine to perform the first-stage of passage retrieval. On the other hand, MVR is responsible for contextualized passage reranking. It first constructs multiple views of the information need embedded within an input question. The views are based on the dialog history and the top documents obtained in the first-stage of retrieval. It then uses each view to rerank passages using BERT (fine-tuned for passage ranking). Finally, MVR performs a fusion over the rankings produced by the individual views. Experiments show that the above combination improves first-state retrieval as well as the overall accuracy in a reranking pipeline. On the key metric of NDCG@3, the proposed combination achieves a relative performance improvement of 14.8% over the state-of-the-art baseline and is also able to surpass the Oracle.</abstract>
<identifier type="citekey">kumar-callan-2020-making</identifier>
<identifier type="doi">10.18653/v1/2020.findings-emnlp.354</identifier>
<location>
<url>https://aclanthology.org/2020.findings-emnlp.354</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>3971</start>
<end>3980</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Making Information Seeking Easier: An Improved Pipeline for Conversational Search
%A Kumar, Vaibhav
%A Callan, Jamie
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Findings of the Association for Computational Linguistics: EMNLP 2020
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F kumar-callan-2020-making
%X This paper presents a highly effective pipeline for passage retrieval in a conversational search setting. The pipeline comprises of two components: Conversational Term Selection (CTS) and Multi-View Reranking (MVR). CTS is responsible for performing the first-stage of passage retrieval. Given an input question, it uses a BERT-based classifier (trained with weak supervision) to de-contextualize the input by selecting relevant terms from the dialog history. Using the question and the selected terms, it issues a query to a search engine to perform the first-stage of passage retrieval. On the other hand, MVR is responsible for contextualized passage reranking. It first constructs multiple views of the information need embedded within an input question. The views are based on the dialog history and the top documents obtained in the first-stage of retrieval. It then uses each view to rerank passages using BERT (fine-tuned for passage ranking). Finally, MVR performs a fusion over the rankings produced by the individual views. Experiments show that the above combination improves first-state retrieval as well as the overall accuracy in a reranking pipeline. On the key metric of NDCG@3, the proposed combination achieves a relative performance improvement of 14.8% over the state-of-the-art baseline and is also able to surpass the Oracle.
%R 10.18653/v1/2020.findings-emnlp.354
%U https://aclanthology.org/2020.findings-emnlp.354
%U https://doi.org/10.18653/v1/2020.findings-emnlp.354
%P 3971-3980
Markdown (Informal)
[Making Information Seeking Easier: An Improved Pipeline for Conversational Search](https://aclanthology.org/2020.findings-emnlp.354) (Kumar & Callan, Findings 2020)
ACL