@inproceedings{murugan-etal-2020-determining,
title = "Determining Event Outcomes: The Case of {\#}fail",
author = "Murugan, Srikala and
Chinnappa, Dhivya and
Blanco, Eduardo",
editor = "Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.359",
doi = "10.18653/v1/2020.findings-emnlp.359",
pages = "4021--4033",
abstract = "This paper targets the task of determining event outcomes in social media. We work with tweets containing either {\#}cookingFail or {\#}bakingFail, and show that many of the events described in them resulted in something edible. Tweets that contain images are more likely to result in edible albeit imperfect outcomes. Experimental results show that edibility is easier to predict than outcome quality.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="murugan-etal-2020-determining">
<titleInfo>
<title>Determining Event Outcomes: The Case of #fail</title>
</titleInfo>
<name type="personal">
<namePart type="given">Srikala</namePart>
<namePart type="family">Murugan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dhivya</namePart>
<namePart type="family">Chinnappa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eduardo</namePart>
<namePart type="family">Blanco</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2020</title>
</titleInfo>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper targets the task of determining event outcomes in social media. We work with tweets containing either #cookingFail or #bakingFail, and show that many of the events described in them resulted in something edible. Tweets that contain images are more likely to result in edible albeit imperfect outcomes. Experimental results show that edibility is easier to predict than outcome quality.</abstract>
<identifier type="citekey">murugan-etal-2020-determining</identifier>
<identifier type="doi">10.18653/v1/2020.findings-emnlp.359</identifier>
<location>
<url>https://aclanthology.org/2020.findings-emnlp.359</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>4021</start>
<end>4033</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Determining Event Outcomes: The Case of #fail
%A Murugan, Srikala
%A Chinnappa, Dhivya
%A Blanco, Eduardo
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Findings of the Association for Computational Linguistics: EMNLP 2020
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F murugan-etal-2020-determining
%X This paper targets the task of determining event outcomes in social media. We work with tweets containing either #cookingFail or #bakingFail, and show that many of the events described in them resulted in something edible. Tweets that contain images are more likely to result in edible albeit imperfect outcomes. Experimental results show that edibility is easier to predict than outcome quality.
%R 10.18653/v1/2020.findings-emnlp.359
%U https://aclanthology.org/2020.findings-emnlp.359
%U https://doi.org/10.18653/v1/2020.findings-emnlp.359
%P 4021-4033
Markdown (Informal)
[Determining Event Outcomes: The Case of #fail](https://aclanthology.org/2020.findings-emnlp.359) (Murugan et al., Findings 2020)
ACL
- Srikala Murugan, Dhivya Chinnappa, and Eduardo Blanco. 2020. Determining Event Outcomes: The Case of #fail. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 4021–4033, Online. Association for Computational Linguistics.