#Turki$hTweets: A Benchmark Dataset for Turkish Text Correction

Asiye Tuba Koksal, Ozge Bozal, Emre Yürekli, Gizem Gezici


Abstract
#Turki$hTweets is a benchmark dataset for the task of correcting the user misspellings, with the purpose of introducing the first public Turkish dataset in this area. #Turki$hTweets provides correct/incorrect word annotations with a detailed misspelling category formulation based on the real user data. We evaluated four state-of-the-art approaches on our dataset to present a preliminary analysis for the sake of reproducibility.
Anthology ID:
2020.findings-emnlp.374
Volume:
Findings of the Association for Computational Linguistics: EMNLP 2020
Month:
November
Year:
2020
Address:
Online
Editors:
Trevor Cohn, Yulan He, Yang Liu
Venue:
Findings
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
4190–4198
Language:
URL:
https://aclanthology.org/2020.findings-emnlp.374
DOI:
10.18653/v1/2020.findings-emnlp.374
Bibkey:
Cite (ACL):
Asiye Tuba Koksal, Ozge Bozal, Emre Yürekli, and Gizem Gezici. 2020. #Turki$hTweets: A Benchmark Dataset for Turkish Text Correction. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 4190–4198, Online. Association for Computational Linguistics.
Cite (Informal):
#Turki$hTweets: A Benchmark Dataset for Turkish Text Correction (Koksal et al., Findings 2020)
Copy Citation:
PDF:
https://aclanthology.org/2020.findings-emnlp.374.pdf
Optional supplementary material:
 2020.findings-emnlp.374.OptionalSupplementaryMaterial.zip
Video:
 https://slideslive.com/38940037
Code
 atubakoksal/annotated_tweets