@inproceedings{henry-etal-2020-query,
title = "Query-Key Normalization for Transformers",
author = "Henry, Alex and
Dachapally, Prudhvi Raj and
Pawar, Shubham Shantaram and
Chen, Yuxuan",
editor = "Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.379",
doi = "10.18653/v1/2020.findings-emnlp.379",
pages = "4246--4253",
abstract = "Low-resource language translation is a challenging but socially valuable NLP task. Building on recent work adapting the Transformer{'}s normalization to this setting, we propose QKNorm, a normalization technique that modifies the attention mechanism to make the softmax function less prone to arbitrary saturation without sacrificing expressivity. Specifically, we apply l2-normalization along the head dimension of each query and key matrix prior to multiplying them and then scale up by a learnable parameter instead of dividing by the square root of the embedding dimension. We show improvements averaging 0.928 BLEU over state-of-the-art bilingual benchmarks for 5 low-resource translation pairs from the TED Talks corpus and IWSLT{'}15.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="henry-etal-2020-query">
<titleInfo>
<title>Query-Key Normalization for Transformers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alex</namePart>
<namePart type="family">Henry</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Prudhvi</namePart>
<namePart type="given">Raj</namePart>
<namePart type="family">Dachapally</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shubham</namePart>
<namePart type="given">Shantaram</namePart>
<namePart type="family">Pawar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuxuan</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2020</title>
</titleInfo>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Low-resource language translation is a challenging but socially valuable NLP task. Building on recent work adapting the Transformer’s normalization to this setting, we propose QKNorm, a normalization technique that modifies the attention mechanism to make the softmax function less prone to arbitrary saturation without sacrificing expressivity. Specifically, we apply l2-normalization along the head dimension of each query and key matrix prior to multiplying them and then scale up by a learnable parameter instead of dividing by the square root of the embedding dimension. We show improvements averaging 0.928 BLEU over state-of-the-art bilingual benchmarks for 5 low-resource translation pairs from the TED Talks corpus and IWSLT’15.</abstract>
<identifier type="citekey">henry-etal-2020-query</identifier>
<identifier type="doi">10.18653/v1/2020.findings-emnlp.379</identifier>
<location>
<url>https://aclanthology.org/2020.findings-emnlp.379</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>4246</start>
<end>4253</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Query-Key Normalization for Transformers
%A Henry, Alex
%A Dachapally, Prudhvi Raj
%A Pawar, Shubham Shantaram
%A Chen, Yuxuan
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Findings of the Association for Computational Linguistics: EMNLP 2020
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F henry-etal-2020-query
%X Low-resource language translation is a challenging but socially valuable NLP task. Building on recent work adapting the Transformer’s normalization to this setting, we propose QKNorm, a normalization technique that modifies the attention mechanism to make the softmax function less prone to arbitrary saturation without sacrificing expressivity. Specifically, we apply l2-normalization along the head dimension of each query and key matrix prior to multiplying them and then scale up by a learnable parameter instead of dividing by the square root of the embedding dimension. We show improvements averaging 0.928 BLEU over state-of-the-art bilingual benchmarks for 5 low-resource translation pairs from the TED Talks corpus and IWSLT’15.
%R 10.18653/v1/2020.findings-emnlp.379
%U https://aclanthology.org/2020.findings-emnlp.379
%U https://doi.org/10.18653/v1/2020.findings-emnlp.379
%P 4246-4253
Markdown (Informal)
[Query-Key Normalization for Transformers](https://aclanthology.org/2020.findings-emnlp.379) (Henry et al., Findings 2020)
ACL
- Alex Henry, Prudhvi Raj Dachapally, Shubham Shantaram Pawar, and Yuxuan Chen. 2020. Query-Key Normalization for Transformers. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 4246–4253, Online. Association for Computational Linguistics.