@inproceedings{lin-yang-2020-shared,
title = "A Shared-Private Representation Model with Coarse-to-Fine Extraction for Target Sentiment Analysis",
author = "Lin, Peiqin and
Yang, Meng",
editor = "Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.382",
doi = "10.18653/v1/2020.findings-emnlp.382",
pages = "4280--4289",
abstract = "Target sentiment analysis aims to detect opinion targets along with recognizing their sentiment polarities from a sentence. Some models with span-based labeling have achieved promising results in this task. However, the relation between the target extraction task and the target classification task has not been well exploited. Besides, the span-based target extraction algorithm has a poor performance on target phrases due to the maximum target length setting or length penalty factor. To address these problems, we propose a novel framework of Shared-Private Representation Model (SPRM) with a coarse-to-fine extraction algorithm. For jointly learning target extraction and classification, we design a Shared-Private Network, which encodes not only shared information for both tasks but also private information for each task. To avoid missing correct target phrases, we also propose a heuristic coarse-to-fine extraction algorithm that first gets the approximate interval of the targets by matching the nearest predicted start and end indexes and then extracts the targets by adopting an extending strategy. Experimental results show that our model achieves state-of-the-art performance.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lin-yang-2020-shared">
<titleInfo>
<title>A Shared-Private Representation Model with Coarse-to-Fine Extraction for Target Sentiment Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Peiqin</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Meng</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2020</title>
</titleInfo>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Target sentiment analysis aims to detect opinion targets along with recognizing their sentiment polarities from a sentence. Some models with span-based labeling have achieved promising results in this task. However, the relation between the target extraction task and the target classification task has not been well exploited. Besides, the span-based target extraction algorithm has a poor performance on target phrases due to the maximum target length setting or length penalty factor. To address these problems, we propose a novel framework of Shared-Private Representation Model (SPRM) with a coarse-to-fine extraction algorithm. For jointly learning target extraction and classification, we design a Shared-Private Network, which encodes not only shared information for both tasks but also private information for each task. To avoid missing correct target phrases, we also propose a heuristic coarse-to-fine extraction algorithm that first gets the approximate interval of the targets by matching the nearest predicted start and end indexes and then extracts the targets by adopting an extending strategy. Experimental results show that our model achieves state-of-the-art performance.</abstract>
<identifier type="citekey">lin-yang-2020-shared</identifier>
<identifier type="doi">10.18653/v1/2020.findings-emnlp.382</identifier>
<location>
<url>https://aclanthology.org/2020.findings-emnlp.382</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>4280</start>
<end>4289</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Shared-Private Representation Model with Coarse-to-Fine Extraction for Target Sentiment Analysis
%A Lin, Peiqin
%A Yang, Meng
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Findings of the Association for Computational Linguistics: EMNLP 2020
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F lin-yang-2020-shared
%X Target sentiment analysis aims to detect opinion targets along with recognizing their sentiment polarities from a sentence. Some models with span-based labeling have achieved promising results in this task. However, the relation between the target extraction task and the target classification task has not been well exploited. Besides, the span-based target extraction algorithm has a poor performance on target phrases due to the maximum target length setting or length penalty factor. To address these problems, we propose a novel framework of Shared-Private Representation Model (SPRM) with a coarse-to-fine extraction algorithm. For jointly learning target extraction and classification, we design a Shared-Private Network, which encodes not only shared information for both tasks but also private information for each task. To avoid missing correct target phrases, we also propose a heuristic coarse-to-fine extraction algorithm that first gets the approximate interval of the targets by matching the nearest predicted start and end indexes and then extracts the targets by adopting an extending strategy. Experimental results show that our model achieves state-of-the-art performance.
%R 10.18653/v1/2020.findings-emnlp.382
%U https://aclanthology.org/2020.findings-emnlp.382
%U https://doi.org/10.18653/v1/2020.findings-emnlp.382
%P 4280-4289
Markdown (Informal)
[A Shared-Private Representation Model with Coarse-to-Fine Extraction for Target Sentiment Analysis](https://aclanthology.org/2020.findings-emnlp.382) (Lin & Yang, Findings 2020)
ACL