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Abstract

Aspect-based Sentiment Analysis (ABSA)
seeks to predict the sentiment polarity of a
sentence toward a specific aspect. Recently,
it has been shown that dependency trees can
be integrated into deep learning models to
produce the state-of-the-art performance for
ABSA. However, these models tend to com-
pute the hidden/representation vectors without
considering the aspect terms and fail to benefit
from the overall contextual importance scores
of the words that can be obtained from the de-
pendency tree for ABSA. In this work, we pro-
pose a novel graph-based deep learning model
to overcome these two issues of the prior work
on ABSA. In our model, gate vectors are gen-
erated from the representation vectors of the
aspect terms to customize the hidden vectors
of the graph-based models toward the aspect
terms. In addition, we propose a mechanism
to obtain the importance scores for each word
in the sentences based on the dependency trees
that are then injected into the model to improve
the representation vectors for ABSA. The pro-
posed model achieves the state-of-the-art per-
formance on three benchmark datasets.

1 Introduction

Aspect-based Sentiment Analysis (ABSA) is a fine-
grained version of sentiment analysis (SA) that
aims to find the sentiment polarity of the input sen-
tences toward a given aspect. We focus on the
term-based aspects for ABSA where the aspects
correspond to some terms (i.e., sequences of words)
in the input sentence. For instance, an ABSA sys-
tem should be able to return the negative sentiment
for input sentence “The staff were very polite, but
the quality of the food was terrible.” assuming
“food” as the aspect term.

Due to its important applications (e.g., for opin-
ion mining), ABSA has been studied extensively

∗Equal contribution.

in the literature. In these studies, deep learning
has been employed to produce the state-of-the-art
performance for this problem (Wagner et al., 2016;
Dehong et al., 2017). Recently, in order to further
improve the performance, the syntactic dependency
trees have been integrated into the deep learning
models (Huang and Carley, 2019; Zhang et al.,
2019) for ABSA (called the graph-based deep learn-
ing models). Among others, dependency trees help
to directly link the aspect term to the syntactically
related words in the sentence, thus facilitating the
graph convolutional neural networks (GCN) (Kipf
and Welling, 2017) to enrich the representation
vectors for the aspect terms.

However, there are at least two major issues in
these graph-based models that should be addressed
to boost the performance. First, the representa-
tion vectors for the words in different layers of the
current graph-based models for ABSA are not cus-
tomized for the aspect terms. This might lead to
suboptimal representation vectors where the irrele-
vant information for ABSA might be retained and
affect the model’s performance. Ideally, we expect
that the representation vectors in the deep learn-
ing models for ABSA should mainly involve the
related information for the aspect terms, the most
important words in the sentences. Consequently, in
this work, we propose to regulate the hidden vec-
tors of the graph-based models for ABSA using the
information from the aspect terms, thereby filtering
the irrelevant information for the terms and cus-
tomizing the representation vectors for ABSA. In
particular, we compute a gate vector for each layer
of the graph-based model for ABSA leveraging the
representation vectors of the aspect terms. This
layer-wise gate vector would be then applied over
the hidden vectors of the current layer to produce
customized hidden vectors for ABSA. In addition,
we propose a novel mechanism to explicitly in-
crease the contextual distinction among the gates
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to further improve the representation vectors.

The second limitation of the current graph-based
deep learning models is the failure to explicitly
exploit the overall importance of the words in the
sentences that can be estimated from the depen-
dency trees for the ABSA problem. In particular,
a motivation of the graph-based models for ABSA
is that the neighbor words of the aspect terms in
the dependency trees would be more important for
the sentiment of the terms than the other words
in the sentence. The current graph-based models
would then just focus on those syntactic neighbor
words to induce the representations for the aspect
terms. However, based on this idea of important
words, we can also assign a score for each word
in the sentences that explicitly quantify its impor-
tance/contribution for the sentiment prediction of
the aspect terms. In this work, we hypothesize
that these overall importance scores from the de-
pendency trees might also provide useful knowl-
edge to improve the representation vectors of the
graph-based models for ABSA. Consequently, we
propose to inject the knowledge from these syntax-
based importance scores into the graph-based mod-
els for ABSA via the consistency with the model-
based importance scores. In particular, using the
representation vectors from the graph-based mod-
els, we compute a second score for each word in
the sentences to reflect the model’s perspective on
the importance of the word for the sentiment of the
aspect terms. The syntax-based importance scores
are then employed to supervise the model-based im-
portance scores, serving as a method to introduce
the syntactic information into the model. In order
to compute the model-based importance scores, we
exploit the intuition that a word would be more
important for ABSA if it is more similar the overall
representation vector to predict the sentiment for
the sentence in the final step of the model. In the
experiments, we demonstrate the effectiveness of
the proposed model with the state-of-the-art perfor-
mance on three benchmark datasets for ABSA. In
summary, our contributions include:

• A novel method to regulate the GCN-based
representation vectors of the words using the given
aspect term for ABSA.

• A novel method to encourage the consistency
between the syntax-based and model-based impor-
tance scores of the words based on the given aspect
term.

• Extensive experiments on three benchmark

datasets for ABSA, resulting in new state-of-the-
art performance for all the datasets.

2 Related Work

Sentiment analysis has been studied under differ-
ent settings in the literature (e.g., sentence-level,
aspect-level, cross-domain) (Wang et al., 2019;
Zhang and Zhang, 2019; Sun et al., 2019; Chauhan
et al., 2019; Hu et al., 2019). For ABSA, the early
works have performed feature engineering to pro-
duce useful features for the statistical classification
models (e.g., SVM) (Wagner et al., 2014). Re-
cently, deep learning models have superseded the
feature based models due to their ability to auto-
matically learn effective features from data (Wag-
ner et al., 2016; Johnson and Zhang, 2015; Tang
et al., 2016). The typical network architectures for
ABSA in the literature involve convolutional neural
networks (CNN) (Johnson and Zhang, 2015), recur-
rent neural networks (RNN) (Wagner et al., 2016),
memory networks (Tang et al., 2016), attention (Lu-
ong et al., 2015) and gating mechanisms (He et al.,
2018). The current state-of-the-art deep learning
models for ABSA feature the graph-based models
where the dependency trees are leveraged to im-
prove the performance. (Huang and Carley, 2019;
Zhang et al., 2019; Hou et al., 2019). However, to
the best of our knowledge, none of these works has
used the information from the aspect term to filter
the graph-based hidden vectors and exploited im-
portance scores for words from dependency trees
as we do in this work.

3 Model

The task of ABSA can be formalized as follows:
Given a sentence X = [x1, x2, . . . , xn] of n
words/tokens and the index t (1 ≤ t ≤ n) for
the aspect term xt, the goal is to predict the senti-
ment polarity y∗ toward the aspect term xt for X .
Our model for ABSA in this work consists of three
major components: (i) Representation Learning,
(ii) Graph Convolution and Regulation, and (iii)
Syntax and Model Consistency.

(i) Representation Learning: Following the re-
cent work in ABSA (Huang and Carley, 2019; Song
et al., 2019), we first utilize the contextualized word
embeddings BERT (Devlin et al., 2019) to obtain
the representation vectors for the words in X . In
particular, we first generate a sequence of words of
the form X̂ = [CLS]+X+[SEP ]+xt +[SEP ]
where [CLS] and [SEP ] are the special tokens
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in BERT. This word sequence is then fed into
the pre-trained BERT model to obtain the hidden
vectors in the last layer. Afterwards, we obtain
the embedding vector ei for each word xi ∈ X
by averaging the hidden vectors of xi’s sub-word
units (i.e., wordpiece). As the result, the input sen-
tence X will be represented by the vector sequence
E = e1, e2, . . . , en in our model. Finally, we also
employ the hidden vector s for the special token
[CLS] in X̂ from BERT to encode the overall input
sentence X and its aspect term xt.

(ii) Graph Convolution and Regulation: In or-
der to employ the dependency trees for ABSA,
we apply the GCN model (Nguyen and Grishman,
2018; Veyseh et al., 2019) to perform L abstrac-
tion layers over the word representation vector se-
quence E. A hidden vector for a word xi in the
current layer of GCN is obtained by aggregating
the hidden vectors of the dependency-based neigh-
bor words of xi in the previous layer. Formally, let
hli (0 ≤ l ≤ L, 1 ≤ i ≤ n) be the hidden vector
of the word xi at the l-th layer of GCN. At the
beginning, the GCN hidden vector h0i at the zero
layer will be set to the word representation vector
ei. Afterwards, hli (l > 0) will be computed by:
hli = ReLU(Wlĥ

l
i), ĥli = Σj∈N(i)h

l−1
j /|N(i)|

where N(i) is the set of the neighbor words of
xi in the dependency tree. We omit the biases in
the equations for simplicity.

One problem with the GCN hidden vectors hli
GCN is that they are computed without being aware
of the aspect term xt. This might retain irrelevant or
confusing information in the representation vectors
(e.g., a sentence might have two aspect terms with
different sentiment polarity). In order to explicitly
regulate the hidden vectors in GCN to focus on the
provided aspect term xi, our proposal is to compute
a gate gl for each layer l of GCN using the represen-
tation vector et of the aspect term: gl = σ(W g

l et).
This gate is then applied over the hidden vectors hli
of the l-th layer via the element-wise multiplication
◦, generating the regulated hidden vector h̄li for hli:
h̄li = gl ◦ hli.

Ideally, we expect that the hidden vectors of
GCN at different layers would capture different
levels of contextual information in the sentence.
The gate vectors gt for these layer should thus also
exhibit some difference level for contextual infor-
mation to match those in the GCN hidden vectors.
In order to explicitly enforce the gate diversity in
the model, our intuition is to ensure that the regu-

lated GCN hidden vectors, once obtained by apply-
ing different gates to the same GCN hidden vectors,
should be distinctive. This allows us to exploit
the contextual information in the hidden vectors of
GCN to ground the information in the gate vectors
for the explicit gate diversity promotion.

In particular, given the l-th layer of GCN, we first
obtain an overall representation vector h̄l for the
regulated hidden vectors at the l-th layer using the
max-pooled vector: h̄l = max pool(h̄l1, . . . , h̄

l
n).

Afterwards, we apply the gate vectors gl
′

from
the other layers (l′ 6= l) to the GCN hidden vec-
tors hli at the l-th layer, resulting in the regu-
lated hidden vectors h̄l,l

′

i = gl
′ ◦ hli. For each

of these other layers l′, we also compute an over-
all representation vector h̄l,l

′
with max-pooling:

h̄l,l
′

= max pool(h̄l,l
′

1 , . . . , h̄l,l
′

n ). Finally, we pro-
mote the diversity between the gate vectors gl by
enforcing the distinction between h̄l and h̄l,l

′
for

l′ 6= l. This can be done by minimizing the cosine
similarity between these vectors, leading to the fol-
lowing regularization term Ldiv to be added to the
loss function of the model:

Ldiv =
1

L(L− 1)
ΣL
l=1Σ

L
l′=1,l′ 6=lh̄

l · h̄l,l′

.
(iii) Syntax and Model Consistency: As pre-

sented in the introduction, we would like to obtain
the importance scores of the words based on the
dependency tree of X , and then inject these syntax-
based scores into the graph-based deep learning
model for ABSA to improve the quality of the rep-
resentation vectors. Motivated by the contextual
importance of the neighbor words of the aspect
terms for ABSA, we use the negative of the length
of the path from xi to xt in the dependency tree to
represent the syntax-based importance score syni
for xi ∈ X . For convenience, we also normalize
the scores syni with the softmax function.

In order to incorporate syntax-based scores syni
into the model, we first leverage the hidden vec-
tors in GCN to compute a model-based impor-
tance score modi for each word xi ∈ X (also
normalized with softmax). Afterwards, we seek
to minimize the KL divergence between the syntax-
based scores syn1, . . . , synn and the model-based
scores mod1, . . . ,modn by introducing the fol-
lowing term Lconst into the overall loss function:
Lconst = −syni log syni

modi
. The rationale is to pro-

mote the consistency between the syntax-based and
model-based importance scores to facilitate the in-
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jection of the knowledge in the syntax-based scores
into the representation vectors of the model.

For the model-based importance scores, we first
obtain an overall representation vector V for the
input sentence X to predict the sentiment for xt.
In this work, we compute V using the sentence
representation vector s from BERT and the reg-
ulated hidden vectors in the last layer of GCN:
V = [s,max pool(ĥL1 , . . . , ĥ

L
n)]. Based on this

overall representation vector V , we consider a word
xi to be more contextually important for ABSA
than the others if its regulated GCN hidden vec-
tor ĥLi in the last GCN layer is more similar to V
than those for the other words. The intuition is
the GCN hidden vector of a contextually impor-
tant word for ABSA should be able capture the
necessary information to predict the sentiment for
xt, thereby being similar to V that is supposed to
encode the overall relevant context information of
X to perform sentiment classification. In order to
implement this idea, we use the dot product of the
transformed vectors for V and ĥLi to determine the
model-based importance score for xi in the model:
modi = σ(WV V ) · σ(WH ĥ

L
i ).

Finally, we feed V into a feed-forward neural net-
work with softmax in the end to estimate the prob-
ability distribution P (.|X,xt) over the sentiments
for X and xt. The negative log-likelihood Lpred =
− logP (y∗|X,xt) is then used as the prediction
loss in this work. The overall loss to train the pro-
posed model is then: L = Ldiv+αLconst+βLpred
where α and β are trade-off parameters.

4 Experiments

Datasets and Parameters: We employ three
datasets to evaluate the models in this work. Two
datasets, Restaurant and Laptop, are adopted from
the SemEval 2014 Task 4 (Pontiki et al., 2014)
while the third dataset, MAMS, is introduced in
(Jiang et al., 2019). All the three datasets involve
three sentiment categories, i.e., positive, neural,
and negative. The numbers of examples for dif-
ferent portions of the three datasets are shown in
Table 1.

As only the MAMS dataset provides the de-
velopment data, we fine-tune the model’s hyper-
parameters on the development data of MAMS
and use the same hyper-parameters for the other
datasets. The following hyper-parameters are sug-
gested for the proposed model by the fine-tuning
process: 200 dimensions for the hidden vectors of

Dataset Pos. Neu. Neg.
Restaurant-Train 2164 637 807
Restaurant-Test 728 196 196
Laptop-Train 994 464 870
Laptop-Test 341 169 128
MAMS-Train 3380 5042 2764
MAMS-Dev 403 604 325
MAMS-Test 400 607 329

Table 1: Statistics of the datasets

the feed forward networks and GCN layers, 2 hid-
den layers in GCN, the size 32 for the mini-batches,
the learning rate of 0.001 for the Adam optimizer,
and 1.0 for the trade-off parameters α and β. Fi-
nally, we use the cased BERTbase model with 768
hidden dimensions in this work.

Results: To demonstrate the effectiveness of the
proposed method, we compare it with the following
baselines: (1) the feature-based model that applies
feature engineering and the SVM model (Wagner
et al., 2014), (2) the deep learning models based
on the sequential order of the words in the sen-
tences, including CNN, LSTM, attention and the
gating mechanism (Wagner et al., 2016; Wang et al.,
2016; Tang et al., 2016; Huang et al., 2018; Jiang
et al., 2019), and (3) the graph-based models that
exploit dependency trees to improve the deep learn-
ing models for ABSA (Huang and Carley, 2019;
Zhang et al., 2019; Hou et al., 2019; Sun et al.,
2019; Wang et al., 2020).

Table 2 presents the performance of the models
on the test sets of the three benchmark datasets.
This table shows that the proposed model outper-
forms all the baselines over different benchmark
datasets. The performance gaps are significant with
p < 0.01, thereby demonstrating the effectiveness
of the proposed model for ABSA.

Ablation Study: There are three major compo-
nents in the proposed model: (1) the gate vectors
gl to regulate the hidden vectors of GCN (called
Gate), (2) the gate diversity component Ldiv to
promote the distinction between the gates (called
Div.), and (3) the syntax and model consistency
component Lconst to introduce the knowledge from
the syntax-based importance scores (called Con.).
Table 3 reports the performance on the MAMS
development set for the ablation study when the
components mentioned in each row are removed
from the proposed model. Note that the exclusion
of Gate would also remove Div. due to their de-
pendency. It is clear from the table that all three
components are necessary for the proposed model
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Model Rest. Laptop MAMS
Acc. F1 Acc. F1 Acc. F1

SVM (2014) 80.2 - 70.5 - - -
TD-LSTM (2016) 78.0 66.7 68.8 68.4 74.6 -
AT-LSTM (2016) 76.2 - 68.9 - 77.6 -
MemNet (2016) 79.6 69.6 70.6 65.1 64.6 -
AOA-LSTM (2018) 79.9 70.4 72.6 67.5 77.3 -
CapsNet (2019) 80.7 - - - 79.8 -
ASGCN (2019) 80.8 72.1 75.5 69.2 - -
GAT (2019) 81.2 - 74.0 - - -
CDT (2019) 82.3 74.02 77.1 72.9 - -
R-GAT (2020) 83.3 76.0 77.4 73.7 - -
BERT* (2019) 84.4 - 77.1 - 82.2 -
GAT* (2019) 83.0 - 80.1 - - -
AEN-BERT* (2019) 84.4 76.9 79.9 76.3 - -
SA-GCN* (2019) 85.8 79.7 81.7 78.8 - -
CapsNet* (2019) 85.9 - - - 83.4 -
R-GAT* (2020) 86.6 81.3 78.2 74.0 - -
The proposed model 87.2 82.5 82.8 80.2 88.2 57.1

Table 2: Accuracy and F1 scores of the models on the
test sets. * indicates the models with BERT.

as removing any of them would hurt the model’s
performance.

Model Acc. F1
The proposed model (full) 87.98 57.2
-Div. 87.33 56.6
-Con. 86.82 56.2
-Div -Con. 86.52 56.1
-Gate 86.25 55.8
-Gate -Con. 86.02 54.3

Table 3: Ablation study on MAMS dev set

Gate Diversity Analysis: In order to enforce
the diversity of the gate vectors gt for different
layers of GCN, the proposed model indirectly mini-
mizes the cosine similarities between the regulated
hidden vectors of GCN at different layers (i.e., in
Ldiv). The regulated hidden vectors are obtained
by applying the gate vectors to the hidden vec-
tors of GCN, serving as a method to ground the
information in the gates with the contextual infor-
mation in the input sentences (i.e., via the hidden
vectors of GCN) for diversity promotion. In or-
der to demonstrate the effectiveness of such gate-
context grounding mechanism for the diversity of
the gates, we evaluate a more straightforward base-
line where the gate diversity is achieved by directly
minimizing the cosine similarities between the gate
vectors gt for different GCN layers. In particular,
the diversity loss term Ldiv in this baseline would
be: Ldiv = 1

L(L−1)Σ
L
l=1Σ

L
l′=1,l′ 6=lgl · gl′ . We call

this baseline GateDiv. for convenience. Table 4 re-
port the performance of GateDiv. and the proposed
model on the development dataset of MAMS. As
can be seen, the proposed model is significantly

better than GateDiv., thereby testifying to the effec-
tiveness of the proposed gate diversity component
with information-grounding in this work. We at-
tribute this superiority to the fact that the regulated
hidden vectors of GCN provide richer contextual
information for the diversity term Ldiv than those
with the gate vectors. This offers better grounds
to support the gate similarity comparison in Ldiv,
leading to the improved performance for the pro-
posed model.

Model Acc.
The proposed model 87.98
GateDiv. 86.13

Table 4: Model performance on the MAMS develop-
ment set when the diversity term Ldiv is directly com-
puted from the gate vectors.

5 Conclusion

We introduce a new model for ABSA that addresses
two limitations of the prior work. It employs the
given aspect terms to customize the hidden vectors.
It also benefits from the overall dependency-based
importance scores of the words. Our extensive ex-
periments on three benchmark datasets empirically
demonstrate the effectiveness of the proposed ap-
proach, leading to state-of-the-art results on these
datasets. The future work involves applying the
proposed model to the related tasks for ABSA, e.g.,
event detection (Nguyen and Grishman, 2015).
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