@inproceedings{jiang-etal-2020-long,
title = "Long Document Ranking with Query-Directed Sparse Transformer",
author = "Jiang, Jyun-Yu and
Xiong, Chenyan and
Lee, Chia-Jung and
Wang, Wei",
editor = "Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.412",
doi = "10.18653/v1/2020.findings-emnlp.412",
pages = "4594--4605",
abstract = "The computing cost of transformer self-attention often necessitates breaking long documents to fit in pretrained models in document ranking tasks. In this paper, we design Query-Directed Sparse attention that induces IR-axiomatic structures in transformer self-attention. Our model, QDS-Transformer, enforces the principle properties desired in ranking: local contextualization, hierarchical representation, and query-oriented proximity matching, while it also enjoys efficiency from sparsity. Experiments on four fully supervised and few-shot TREC document ranking benchmarks demonstrate the consistent and robust advantage of QDS-Transformer over previous approaches, as they either retrofit long documents into BERT or use sparse attention without emphasizing IR principles. We further quantify the computing complexity and demonstrates that our sparse attention with TVM implementation is twice more efficient that the fully-connected self-attention. All source codes, trained model, and predictions of this work are available at \url{https://github.com/hallogameboy/QDS-Transformer}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jiang-etal-2020-long">
<titleInfo>
<title>Long Document Ranking with Query-Directed Sparse Transformer</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jyun-Yu</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenyan</namePart>
<namePart type="family">Xiong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chia-Jung</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2020</title>
</titleInfo>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The computing cost of transformer self-attention often necessitates breaking long documents to fit in pretrained models in document ranking tasks. In this paper, we design Query-Directed Sparse attention that induces IR-axiomatic structures in transformer self-attention. Our model, QDS-Transformer, enforces the principle properties desired in ranking: local contextualization, hierarchical representation, and query-oriented proximity matching, while it also enjoys efficiency from sparsity. Experiments on four fully supervised and few-shot TREC document ranking benchmarks demonstrate the consistent and robust advantage of QDS-Transformer over previous approaches, as they either retrofit long documents into BERT or use sparse attention without emphasizing IR principles. We further quantify the computing complexity and demonstrates that our sparse attention with TVM implementation is twice more efficient that the fully-connected self-attention. All source codes, trained model, and predictions of this work are available at https://github.com/hallogameboy/QDS-Transformer.</abstract>
<identifier type="citekey">jiang-etal-2020-long</identifier>
<identifier type="doi">10.18653/v1/2020.findings-emnlp.412</identifier>
<location>
<url>https://aclanthology.org/2020.findings-emnlp.412</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>4594</start>
<end>4605</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Long Document Ranking with Query-Directed Sparse Transformer
%A Jiang, Jyun-Yu
%A Xiong, Chenyan
%A Lee, Chia-Jung
%A Wang, Wei
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Findings of the Association for Computational Linguistics: EMNLP 2020
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F jiang-etal-2020-long
%X The computing cost of transformer self-attention often necessitates breaking long documents to fit in pretrained models in document ranking tasks. In this paper, we design Query-Directed Sparse attention that induces IR-axiomatic structures in transformer self-attention. Our model, QDS-Transformer, enforces the principle properties desired in ranking: local contextualization, hierarchical representation, and query-oriented proximity matching, while it also enjoys efficiency from sparsity. Experiments on four fully supervised and few-shot TREC document ranking benchmarks demonstrate the consistent and robust advantage of QDS-Transformer over previous approaches, as they either retrofit long documents into BERT or use sparse attention without emphasizing IR principles. We further quantify the computing complexity and demonstrates that our sparse attention with TVM implementation is twice more efficient that the fully-connected self-attention. All source codes, trained model, and predictions of this work are available at https://github.com/hallogameboy/QDS-Transformer.
%R 10.18653/v1/2020.findings-emnlp.412
%U https://aclanthology.org/2020.findings-emnlp.412
%U https://doi.org/10.18653/v1/2020.findings-emnlp.412
%P 4594-4605
Markdown (Informal)
[Long Document Ranking with Query-Directed Sparse Transformer](https://aclanthology.org/2020.findings-emnlp.412) (Jiang et al., Findings 2020)
ACL