Multi-hop Question Generation with Graph Convolutional Network

Dan Su, Yan Xu, Wenliang Dai, Ziwei Ji, Tiezheng Yu, Pascale Fung


Abstract
Multi-hop Question Generation (QG) aims to generate answer-related questions by aggregating and reasoning over multiple scattered evidence from different paragraphs. It is a more challenging yet under-explored task compared to conventional single-hop QG, where the questions are generated from the sentence containing the answer or nearby sentences in the same paragraph without complex reasoning. To address the additional challenges in multi-hop QG, we propose Multi-Hop Encoding Fusion Network for Question Generation (MulQG), which does context encoding in multiple hops with Graph Convolutional Network and encoding fusion via an Encoder Reasoning Gate. To the best of our knowledge, we are the first to tackle the challenge of multi-hop reasoning over paragraphs without any sentence-level information. Empirical results on HotpotQA dataset demonstrate the effectiveness of our method, in comparison with baselines on automatic evaluation metrics. Moreover, from the human evaluation, our proposed model is able to generate fluent questions with high completeness and outperforms the strongest baseline by 20.8% in the multi-hop evaluation. on. The code is publicly availableat https://github.com/HLTCHKU
Anthology ID:
2020.findings-emnlp.416
Volume:
Findings of the Association for Computational Linguistics: EMNLP 2020
Month:
November
Year:
2020
Address:
Online
Editors:
Trevor Cohn, Yulan He, Yang Liu
Venue:
Findings
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
4636–4647
Language:
URL:
https://aclanthology.org/2020.findings-emnlp.416
DOI:
10.18653/v1/2020.findings-emnlp.416
Bibkey:
Cite (ACL):
Dan Su, Yan Xu, Wenliang Dai, Ziwei Ji, Tiezheng Yu, and Pascale Fung. 2020. Multi-hop Question Generation with Graph Convolutional Network. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 4636–4647, Online. Association for Computational Linguistics.
Cite (Informal):
Multi-hop Question Generation with Graph Convolutional Network (Su et al., Findings 2020)
Copy Citation:
PDF:
https://aclanthology.org/2020.findings-emnlp.416.pdf
Video:
 https://slideslive.com/38940120
Code
 HLTCHKUST/MulQG
Data
HotpotQA