@inproceedings{long-etal-2020-hierarchical,
title = "Hierarchical Region Learning for Nested Named Entity Recognition",
author = "Long, Xinwei and
Niu, Shuzi and
Li, Yucheng",
editor = "Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.430",
doi = "10.18653/v1/2020.findings-emnlp.430",
pages = "4788--4793",
abstract = "Named Entity Recognition (NER) is deeply explored and widely used in various tasks. Usually, some entity mentions are nested in other entities, which leads to the nested NER problem. Leading region based models face both the efficiency and effectiveness challenge due to the high subsequence enumeration complexity. To tackle these challenges, we propose a hierarchical region learning framework to automatically generate a tree hierarchy of candidate regions with nearly linear complexity and incorporate structure information into the region representation for better classification. Experiments on benchmark datasets ACE-2005, GENIA and JNLPBA demonstrate competitive or better results than state-of-the-art baselines.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="long-etal-2020-hierarchical">
<titleInfo>
<title>Hierarchical Region Learning for Nested Named Entity Recognition</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xinwei</namePart>
<namePart type="family">Long</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shuzi</namePart>
<namePart type="family">Niu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yucheng</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2020</title>
</titleInfo>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Named Entity Recognition (NER) is deeply explored and widely used in various tasks. Usually, some entity mentions are nested in other entities, which leads to the nested NER problem. Leading region based models face both the efficiency and effectiveness challenge due to the high subsequence enumeration complexity. To tackle these challenges, we propose a hierarchical region learning framework to automatically generate a tree hierarchy of candidate regions with nearly linear complexity and incorporate structure information into the region representation for better classification. Experiments on benchmark datasets ACE-2005, GENIA and JNLPBA demonstrate competitive or better results than state-of-the-art baselines.</abstract>
<identifier type="citekey">long-etal-2020-hierarchical</identifier>
<identifier type="doi">10.18653/v1/2020.findings-emnlp.430</identifier>
<location>
<url>https://aclanthology.org/2020.findings-emnlp.430</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>4788</start>
<end>4793</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Hierarchical Region Learning for Nested Named Entity Recognition
%A Long, Xinwei
%A Niu, Shuzi
%A Li, Yucheng
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Findings of the Association for Computational Linguistics: EMNLP 2020
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F long-etal-2020-hierarchical
%X Named Entity Recognition (NER) is deeply explored and widely used in various tasks. Usually, some entity mentions are nested in other entities, which leads to the nested NER problem. Leading region based models face both the efficiency and effectiveness challenge due to the high subsequence enumeration complexity. To tackle these challenges, we propose a hierarchical region learning framework to automatically generate a tree hierarchy of candidate regions with nearly linear complexity and incorporate structure information into the region representation for better classification. Experiments on benchmark datasets ACE-2005, GENIA and JNLPBA demonstrate competitive or better results than state-of-the-art baselines.
%R 10.18653/v1/2020.findings-emnlp.430
%U https://aclanthology.org/2020.findings-emnlp.430
%U https://doi.org/10.18653/v1/2020.findings-emnlp.430
%P 4788-4793
Markdown (Informal)
[Hierarchical Region Learning for Nested Named Entity Recognition](https://aclanthology.org/2020.findings-emnlp.430) (Long et al., Findings 2020)
ACL