
Findings of the Association for Computational Linguistics: EMNLP 2020, pages 4812–4826
November 16 - 20, 2020. c©2020 Association for Computational Linguistics

4812

Extremely Low Bit Transformer Quantization
for On-Device Neural Machine Translation

Insoo Chung∗ Byeongwook Kim∗ Yoonjung Choi Se Jung Kwon
Yongkweon Jeon Baeseong Park Sangha Kim Dongsoo Lee

Samsung Research, Seoul, Republic of Korea
{insooo.chung, byeonguk.kim, yj0807.choi, sejung0.kwon,

dragwon.jeon, bpbs.park, sangha01.kim, dongsoo3.lee}@samsung.com

Abstract

The deployment of widely used Transformer
architecture is challenging because of heavy
computation load and memory overhead dur-
ing inference, especially when the target de-
vice is limited in computational resources such
as mobile or edge devices. Quantization is an
effective technique to address such challenges.
Our analysis shows that for a given number of
quantization bits, each block of Transformer
contributes to translation quality and inference
computations in different manners. Moreover,
even inside an embedding block, each word
presents vastly different contributions. Cor-
respondingly, we propose a mixed precision
quantization strategy to represent Transformer
weights by an extremely low number of bits
(e.g., under 3 bits). For example, for each
word in an embedding block, we assign dif-
ferent quantization bits based on statistical
property. Our quantized Transformer model
achieves 11.8× smaller model size than the
baseline model, with less than -0.5 BLEU. We
achieve 8.3× reduction in run-time memory
footprints and 3.5× speed up (Galaxy N10+)
such that our proposed compression strategy
enables efficient implementation for on-device
NMT.

1 Introduction

Transformer (Vaswani et al., 2017) is one of the
state-of-the-art approaches for Neural Machine
Translation (NMT), and hence, being widely ac-
cepted. For example, in WMT19 machine trans-
lation tasks, it is reported that 80% of submitted
systems have adopted the Transformer architec-
ture (Barrault et al., 2019). Note that high transla-
tion quality of Transformer models entails a large
number of parameters. Moreover, the Transformer
model is inherently much slower than conventional

∗ Equal Contribution.

machine translation approaches (e.g., statistical ap-
proaches) mainly due to the auto-regressive infer-
ence scheme (Graves, 2013) incrementally gener-
ating each token. As a result, deploying the Trans-
former model to mobile devices with limited re-
sources involves numerous practical implementa-
tion issues.

To address such implementation challenges with
little degradation in translation quality, we study
a low-bit quantization strategy for Transformer
to accomplish high-performance on-device NMT.
We note that most previous studies to compress
Transformer models utilize uniform quantization
(e.g. INT8 or INT4). While uniform quantiza-
tion may be effective for memory footprint savings,
it would face various issues to improve inference
time and to maintain reasonable BLEU score. For
example, even integer arithmetic units for infer-
ence operations present limited speed up (Bhandare
et al., 2019) and resulting BLEU score of quan-
tized Transformer can be substantially degraded
with low-bit quantization such as INT4 (Prato et al.,
2019).

While determining the number of quantization
bits for Transformer, it is crucial to consider that
each component of Transformer may exhibit varied
sensitivity of quantization error toward degrada-
tion in translation quality (Wang and Zhang, 2020).
Accordingly, a mixed precision quantization can
be suggested as an effort to assign different num-
bers of quantization bits depending on how each
component after quantization is sensitive to the
loss function. In addition, as we illustrate later,
even assigning different quantization bits for each
row of an embedding block can further reduce the
overall number of quantization bits of the entire
Transformer model. Our proposed quantization
strategy, thus, provides a finer-grained mixed preci-
sion approach compared to previous methods, such
as (Dong et al., 2019; Wu et al., 2018; Zhou et al.,

4813

2017; Wang and Zhang, 2020) that consider layer-
wise or matrix-wise mixed precision.

Accommodating distinguished implementation
properties (e.g., latency and translation quality
drop) of each component in Transformer, we pro-
pose the following methodologies to decide preci-
sion of a block: 1) in the case of embedding block,
statistical importance of each word is taken into
account and 2) for encoder and decoder blocks,
sensitivity of each quantized sub-layer is consid-
ered. The main contributions of this paper are as
follows:

• We propose a mixed precision quantization
strategy while embedding block allows an-
other level of mixed precision in word level
according to statistical properties of natural
language.
• Our proposed quantization scheme allows the

number of quantization bits to be as low as
under 3 bits for the Transformer with little
BLEU score degradation (under -0.5 BLEU).
• We demonstrate that our quantization tech-

nique reduces a significant amount of run-time
memory and enhances inference speed so as
to enable fast on-device machine translation
by large Transformer models.

2 Background

2.1 Transformer

Transformer adopts an an encoder-decoder archi-
tecture (Cho et al., 2014) composed of three dif-
ferent blocks: encoder, decoder and embedding
that account for 31.0%, 41.4%, and 27.6%, respec-
tively, in terms of the number of parameters in a
Transformer base model. An embedding block is a
single weight matrix that serves multiple purposes
in the Transformer. For example, each row in the
embedding block represents a word in a bi-lingual
vocabulary. Another purpose of the embedding
block is to serve as a linear transformation layer
which converts decoder outputs to next token prob-
abilities as suggested in Press and Wolf (2017).
Encoder and decoder blocks are composed of mul-
tiple layers while each layer employs attention and
feed-forward sub-layers.

Due to auto-regressive operations during infer-
ence of Transformer (Graves, 2013), the correlation
between the number of operations and the num-
ber of parameters can be vastly different for each
component. Based on such different correlations,

Transformer’s inference scheme can be divided into
encoding steps of high parallelism and decoding
steps of low parallelism. As for encoding steps,
given a sequence in the source language, a single
forward propagation of the encoder produces a se-
quence of hidden representations for all words in a
given sequence. In each decoding step, decoder and
embedding blocks produce a probability distribu-
tion of possible words, one word at a time. Unlike
encoding steps, the computation of decoding steps
is not parallelizable because each decoding step
depends on outputs of all prior decoding steps.

Note that such lack of parallelism during de-
coding steps potentially induces the memory wall
problem in practice with commodity hardware; pa-
rameters of decoder and embedding blocks are re-
quired to be loaded to cache and unloaded from
the cache repeatedly throughout decoding steps.
Furthermore, an embedding block is usually rep-
resented by a significantly large matrix that also
incurs the memory wall problem (Jeon et al., 2020).

2.2 Non-uniform Quantization Based on
Binary-codes

Quantization approximates full precision parame-
ters in neural networks by using a small number
of bits (Gong et al., 2014; Rastegari et al., 2016;
Guo et al., 2017; Jacob et al., 2018). One of widely
adopted quantization methods is uniform quanti-
zation. Uniform quantization performs mapping
of full precision parameters into one of 2q values
ranging from 0 to 2q−1 that correspond to a range
between the minimum and the maximum full pre-
cision parameters, where q denotes the number
of quantization bits. Lower precision can reduce
the computation cost of arithmetic operation such
as multiplication and addition only if all inputs
to arithmetic operations (i.e., activations) are also
quantized (Jacob et al., 2018). Furthermore, high
quantization error may occur when a parameter
distribution involves extreme outliers (Zhao et al.,
2019).

As such, non-uniform quantization methods are
being actively studied to better preserve expected
value of parameters which is critical to maintain-
ing model accuracy (Courbariaux et al., 2015).
By large, non-uniform quantization methods in-
clude codebook-based quantization and binary-
code based quantization. Even though codebook-
based quantization reduces off-chip memory foot-
print, computational complexity is not reduced

4814

+1 -1 ... -1

 -1 +1 ... +1

 +1 -1 ... -1

...

0.15

0.28

0.11

+1 -1 ... +1

 -1 -1 ... -1

 -1 -1 ... +1

...

0.07

0.10

0.03

+

0.02

-0.15

 0.20

...

...

...

Figure 1: In 2-bit binary-code based quantization, each
row of W is approximated to 2 sets of binary code
weights ({B1, B2}) and 2 vectors of full precision
scales ({α1,α2}).

at all because of mandatory dequantization pro-
cedure during inference (Stock et al., 2020; Guo,
2018). On the other hand, quantization based on
binary-code (∈{−1,+1}) can achieve both high
compression ratio and efficient computation (Raste-
gari et al., 2016; Guo et al., 2017; Xu et al., 2018;
Jeon et al., 2020).

In this paper, we adopt non-uniform binary-code
based quantization as our method of quantization.
Non-uniform quantization based on binary-code
maps a full precision vector w∈Rp to a scaling
factor αi∈R, and a binary vector bi∈{−1,+1}p,
where (1≤i≤q). Note that p is the length of a vec-
tor and q denotes the number of quantization bits.
Then, w is approximated as

∑q
i=1 αibi. Scaling

factors and binary vectors are obtained as follows:

arg min
αi,bi

∥∥∥∥∥w −
q∑
i=1

αibi

∥∥∥∥∥
2

(1)

To minimize the quantization error formulated
in Eq. 1, heuristic approaches have been proposed
(Guo et al., 2017; Xu et al., 2018).

For matrix quantization, the binary-code based
quantization can be simply applied to each row or
column of a matrix. With a matrix quantized into
binary matrices {B1, B2, ..., Bq} and scaling factor
vectors {α1,α2, ...,αq}, the matrix multiplication
with full precision vector x produces an output
vector y as follows:

y =

q∑
i=1

(αi ◦ (Bi · x)), (2)

where the operation ◦ denotes element-wise mul-
tiplication. Figure 1 is an illustration of Eq. 2.
Intermediate results of Bi · x can be pre-computed
for further compute-efficiency (Jeon et al., 2020).
This allows the efficient matrix multiplication of
quantized Transformer weights and full precision
activation.

Figure 2: The distributions of word frequency in train-
sets. Word indices range from 1 to 32768 where words
are sorted in descending order of frequency.

3 Quantization Strategy for Transformer

For Transformer, we suggest the following two
techniques to decide the number of quantization
bits for each block: 1) in the case of embedding
block, frequency of each word is taken into account
and 2) for encoder and decoder blocks, we find the
minimum number of quantization bits for each type
of sub-layers that allows reasonable degradation in
BLEU score after quantization.

3.1 Embedding

It has been reported that the word frequency dis-
tribution can be approximated as power-law distri-
bution (Chen et al., 2018). Such power-law distri-
bution is illustrated in Figure 2 that presents word
frequency distribution in WMT14 datasets. Note
that 1% of word vectors account for around 95%
of word frequency for both En2Fr and En2De. In-
tuitively, if word vectors are compressed by the
same compression ratio, then word vectors with
high frequency in a corpus would result in higher
training loss after compression, compared to word
vectors with low frequency. Chen et al. (2018) uti-
lizes frequency to provide different compression
ratios in different groups of words using low-rank
approximation. To the best of our knowledge, word
frequency has not yet been considered for Trans-
former quantization.

We assume that highly skewed word frequency
distribution would lead to a wide distribution of the
number of quantization bits per word. In such a
case, an embedding block may require a substan-
tially high number of quantization bits that would
be the maximum in the distribution of the number
of quantization bits per word. For example, even

4815

though Wang and Zhang (2020) successfully quan-
tized the parameters in attention and feed-forward
sub-layers of the BERT architecture (Devlin et al.,
2018) into 2-4 bits, 8 bits or higher number of bits
were used to represent a parameter in the embed-
ding block.

Algorithm 1: Embedding quantization
Input :Embedding matrix E of shape

[v, dmodel]; number of clusters b;
the ratio factor r;

Output :Quantized representation Ê
1 Sort E in descending order of word

frequency ;
2 idx = 0 ;
3 for i = 0...b− 1 do
4 Compute number of word-vectors in i-th

cluster, cisize =
v∑b−1

k=0 r
k
· ri ;

5 Compute target bit-precision for i-th
cluster, cibit = b− i ;

6 for j = 0...cisize do
7 Initialize widx = idx-th row of E ;
8 Quantize word vector w to cibit bit,

ŵidx = quantize(w, cibit) ;
9 Increment idx by 1 ;

10 end for
11 end for
12 Output: Ê = {ŵ0, ŵ1, ..., ŵv−1}

The underlying principle to quantize embedding
blocks is that the number of quantization bits for
each word vector is proportional to the frequency
in a corpus. To assign a low number of quantization
bits to most of the words under such a principle,
first, we group word vectors into clusters according
to word frequency. r acts as an exponential factor in
deciding the number of word vectors in each cluster
as in line 4 of Algorithm 1. b denotes the number
of clusters and acts as a variable for quantization
bits such as line 5 of Algorithm 1. For example,
with b=4 and r=2, word vectors are clustered into
clusters of ratio r0:r1:r2:r3=1:2:4:8, then assigned
bits as much as {b, b−1, b−2, b−3} = {4, 3, 2, 1}.
We empirically set b=4 for all of our embedding
quantization experiments.

Figure 3 shows our experimental results with
r∈{2, 4, 8}. For r=2 , the average number of quan-
tization bits in the embedding block is 1.73, and
for r=4, it becomes 1.32. With our embedding
quantization method, higher translation quality in

1.0 1.14 1.32 1.73 2.0
Average # of Quantization Bits

0

5

10

15

20

25

30

B
L
E

U

1.22

18.15
15.7

18.02
20.31

Conventional Method

Our Method

Figure 3: Detokenized-BLEU (beam=4) on new-
stest2013 after quantizing the embedding block with-
out retraining.

terms of BLEU score can be achieved with lower
number of quantization bits as compared to the
conventional quantization methods that assign the
same number of quantization bits to all word vec-
tors. For example, the Transformer model with
1.73-bit quantized embedding produces more accu-
rate translations than the model with conventional
(fixed) 2-bit quantized embedding block.

Algorithm 1 assigns 1-bit to the largest cluster.
For example, using b=4 and r=8, 87.5% of word
vectors in the embedding block are quantized to
1-bit. We benefit from 1-bit word vectors in terms
of inference speed because memory overhead at
matrix multiplications of embedding blocks is po-
tentially minimized. One concern is that 1-bit word
vectors may degrade translation performance in a
way that is not shown with BLEU score. We ad-
dress such concerns in Section 4.4 and demonstrate
that 1-bit word vectors do not limit the quantized
model’s abilities to predict the subsequent tokens.

3.2 Encoder and Decoder
Each type of sub-layers in the Transformer yields a
wide range of sensitivity to quantization error, and
thus, to translation quality drop. Table 1 lists mea-
sured BLEU scores with various types of sub-layers
quantized into different numbers of quantization
bits1. For each type of sub-layers, we carefully
select the number of quantization bits such that the
model with quantized sub-layers is able to report
reasonable degradation in the BLEU score com-
pared to the baseline.

1Emb, Enc, and Dec denote the embedding block, the
encoder block, and the decoder block, respectively. ee, ed,
and dd denote the encoder-encoder(encoder self), encoder-
decoder, and decoder-decoder(decoder self) attention, respec-
tively. ffn denotes the feed forward sub-layer.

4816

Layer
of bits Avg.

Deg.4 3 2 1

Emb 22.9 22.4 19.0 1.0 -9.1

Enc 24.6 24.0 20.6 1.3 -7.8
Encee 25.3 24.8 23.7 13.6 -3.6
Encffn 24.9 24.8 23.1 4.3 -6.2

Dec 24.7 23.6 11.1 0.1 -10.6
Decdd 25.2 25.1 24.8 17.8 -2.2
Deced 25.1 24.7 20.6 2.0 -7.3
Decffn 25.0 24.9 24.4 17.6 -2.5

Table 1: BLEU measurements from applying quantiza-
tion to each block and to a type of sub-layers in En2De
base model (25.4 BLEU in full precision) without re-
training. Avg. Deg. denotes the average BLEU degra-
dation from quantizing each block or a type of sub-
layers to 4, 3, 2 and 1 bit. Reported scores are measured
in detokenized-BLEU (beam=1, newstest2013, sacre-
bleu) setting explained in Section 4.2.

Within the decoder block, Deced sub-layers are
more sensitive by quantization than the other sub-
layers, which is aligned with reports of Michel
et al. (2019). It is interesting that even though
the number of parameters in Decffn sub-layers is
2× that of Deced sub-layers, BLEU score degra-
dation is greater when Deced sub-layers are quan-
tized. Among the sub-layers in the encoder block,
Encffn sub-layers are more sensitive by quanti-
zation than Encee sub-layers. Based on such sen-
sitivity analysis, we assign a proper number of
quantization bits to each sub-layer in the encoder
and decoder blocks.

Another vital aspect to consider is the inference
efficiency of quantized Transformer models. As
mentioned in Section 2, the auto-regressive nature
of the Transformer’s inference limits the amount of
parallelism in the decoder forward propagation and
induces a memory wall problem during inference.
Therefore, in order to enable fast on-device NMT,
we assign a lower number of bits to the decoder
block compared to the encoder block.

4 Experiments

4.1 Quantization Details

Before we present our compression results, we de-
scribe our quantization method and retraining algo-
rithm in detail.

Methodology To quantize weights in the Trans-
former with high performance during retraining,
we adopt the Greedy approximation algorithm in-
troduced in (Guo et al., 2017) due to its computa-
tional simplicity. In our experiments, we first train
the base configuration of the Transformer. Next,
we retrain the full precision parameters2 while pe-
riodically quantizing model parameters to retain
the translation quality. For retraining, we adopt
Non-Regularization period (pNR) as a way to con-
trol regularization strength while the best period
is empirically obtained (Lee et al., 2020). Vari-
able pNR is investigated for our retraining, which
denotes the number of mini-batch updates before
the quantization is performed. For example for
pNR=1000, we first apply quantization to target
Transformer weights, and perform 1000 steps of
retraining before quantizing the weights again (i.e,
the quantization procedure is periodically executed
in an interval of 1000 steps during retraining.). The
advantage of adopting pNR is reduced retraining
time, as computation overheads induced by quanti-
zation are divided by pNR.

Retraining Details Our quantization baselines
are retrained warm-starting from our full precision
baseline. Note that during the retraining, quanti-
zation is applied to all layers of the Transformer
model every pNR steps where pNR=2000. Quan-
tization baselines are retrained for 400k steps by
using 4×V100 GPUs taking around 1.7 days. Our
quantized models are retrained over 3 phases in the
order of embedding, decoder, and encoder block;
each phase warm-starts from the previous phase.
Note that in each phase, compressed blocks of pre-
vious phases are also targeted for quantization. For
each phase, we use pNR=1000. We train our
quantized models for 300k steps/phase and full
retraining time is around 3.8 days with 4×V100
GPUs. The reasoning behind the choices of the
pNR values and the number of retraining steps is
further supported in Appendix A.4

Quantized Parameters Our quantization strat-
egy targets weight matrices that incur heavy matrix
multiplications. Targeted weight matrices account
for 99.9% of the number of parameters in the Trans-
former architecture and 99.3% of on-device infer-
ence latency (Table 4). We quantize each row of
W as in Figure 1, assuming matrix multiplication

2In our experiments, full precision parameters are repre-
sented by the standard IEEE 32-bit floating-point data format.

4817

Average # of Bits BLEU(beam=1) BLEU(beam=4) Model
Emb, Dec, Enc Model2 En2De En2Fr En2Jp En2De En2Fr En2Jp Size(MB)

FP baseline 32.0 26.7 39.1 25.1 27.5 39.5 26.3 237.8(1.0×)
3-bit baseline 3.0 26.0 38.0 25.3 26.9 38.6 25.9 23.7(10.0×)
2-bit baseline 2.0 23.9 35.4 22.8 24.4 36.1 23.7 15.9(15.0×)

2-bit Emb. baseline 23.7 26.0 N/A N/A 26.8 N/A N/A 176.1

2.51, FP, FP 23.9 26.7 39.1 25.2 27.6 39.5 25.7 177.7
1.31, FP, FP 23.5 26.4 38.7 24.5 27.0 39.3 24.9 175.2
1.11, FP, FP 23.5 25.7 38.8 24.7 26.9 39.4 25.3 174.8

2.5, 1.8, FP 11.3 25.9 38.4 24.9 27.0 38.8 25.4 85.1
1.3, 1.8, FP 11.0 25.6 38.1 24.5 26.8 38.8 25.1 82.5
1.1, 1.8, FP 11.0 25.1 37.5 24.6 26.3 38.6 24.8 82.2

2.5, 1.8, 3.73 2.6 26.2 38.6 25.3 27.1 39.2 26.1 20.2(11.8×)
1.3, 1.8, 3.73 2.2 25.6 38.3 24.7 25.9 38.9 25.5 17.6(13.5×)
1.1, 1.8, 3.73 2.2 25.3 38.3 24.6 26.0 39.0 25.3 17.2(13.8×)

1 For 2.5, 1.3 and 1.1-bit embeddings, Algorithm 1 with b=4, r=1, 4, 8 is applied respectively.
2 Model column lists the average number of bits in each model.
3 Average scores over 3 retraining runs are reported for the last retraining phases.

Table 2: Tokenized-BLEU (beam∈{1, 4}, newstest2014, multi-bleu) and compression ratio of baseline models
and quantized models using proposed quantization strategy. We report BLEU and model size for each retraining
phase. All model parameters are included in the reported model size and compression ratio.

is implemented as W · x where W is a weight ma-
trix of model. We do not quantize bias vectors and
layer normalization parameters. These parameters
account for only a tiny fraction in terms of the total
number of parameters and computation overhead,
but it is important to retain these parameters in
high precision. It is commonly acknowledged that
quantization error in a bias vector will act as an
overall bias (Jacob et al., 2018). Also Bhandare
et al. (2019) points out that layer normalization op-
erations will result in high error with low precision
parameters as it includes calculations like division,
square and square root.

4.2 Experimental Settings

Dataset We test our quantization strategy in 3
different translation directions: English-to-German
(En2De), English-to-French (En2Fr), and English-
to-Japanese (En2Jp). For En2De and En2Fr, we
utilize all of the trainset of WMT2014 and use
newstest2013 as devset and newstest2014 as testset
(Bojar et al., 2014). For En2Jp, we use KFTT
(Neubig, 2011), JESC (Pryzant et al., 2018), and
WIT3 (Cettolo et al., 2012) corpus. We combine
the respective trainsets and devsets. We utilize
KFTT testset as our testset. All En2Jp data are
detokenized as suggested by Michel and Neubig

(2018). sentencepiece 0.1.85 (Kudo and
Richardson, 2018) is utilized to learn a bi-lingual
vocabulary set of size 32768 for each translation
direction. For data statistics and download links,
refer to Appendix A.1.

Baseline Model We train the base configuration
of the Transformer to be utilized as our full pre-
cision reference as well as an initial set of model
parameters for our quantization experiments. Train-
ing hyper-parameters are listed in Appendix A.3.

BLEU We report both tokenized-BLEU and
detokenized-BLEU scores. We report detokenized-
BLEU on devsets using sacrebleu (Post, 2018).
While no tokenization is applied to En2De and
En2Fr results and devsets, for En2Jp, mecab
(Kudo, 2005) tokenized results and devsets are
utilized. Simple sacrebleu command with-
out additional signatures is used to measure
detokenized-BLEU. For testsets, tokenized-BLEU
scores are reported. Tokenizers employed are
moses (Koehn et al., 2007) tokenizer3 for En2De
and En2Fr and mecab (Kudo, 2005) tokenizer
for En2Jp. On the tokenized results and testsets,
multi-bleu.perl script in moses is used to

3https://github.com/moses-smt/
mosesdecoder

https://github.com/moses-smt/mosesdecoder
https://github.com/moses-smt/mosesdecoder

4818

Average # of Bits Peak Avg
Emb, Dec, Enc MEM.(MB) Lat.(ms)

FP baseline 247.7 708.9
3-bit baseline 34.5 301.0
2-bit baseline 24.5 235.9

2.5, FP, FP 188.3 464.3
2.5, 1.8, FP 94.5 201.4
2.5, 1.8, 3.7 29.8 200.7

Table 3: Inference latency of our quantized En2De
model on a Galaxy N10+. Avg. Lat denotes average
latency for translation of an input sequence. All mea-
surements are averaged over 3 runs of translating first
300 sequences in newstest2013. Refer to Appendix A
for measurement and implementation details.

measure the tokenized-BLEU score. Note that in
each experiment, we report testset’s BLEU score
using the model parameters that describe the high-
est BLEU score on devset.

4.3 Results

We compare our quantization strategy to our full
precision (FP) baseline and quantization baselines
in terms of translation quality and inference effi-
ciency. Note that for the 2-bit baselines and 3-bit
baselines, we respectively assign quantization bits
of 2 and 3 to all Transformer parameters, and as
for the 2-bit Emb. baseline, we assign 2 quantiza-
tion bits to all word vectors in embedding block.
Our quantized models are notated as (average #
bits in an embedding parameter, average # bits in
a decoder parameter, average # bits in an encoder
parameter).

Translation Quality In Table 2, we present
translation quality in terms of BLEU scores mea-
sured at each phase of the proposed quantization
strategy. First, we experiment our embedding quan-
tization method with retraining. Experimental re-
sults show that Transformer model with 1.1-bit
embedding (1.1, FP, FP) exhibits comparable per-
formance as much as 2-bit Emb. baseline. Fur-
thermore, our experiments with 1.3-bit embedding
(1.3, FP, FP) and 1.1-bit embedding verify that a
substantially large number of word vectors can be
quantized into 1-bit within reasonable BLEU score
degradation.

We further quantize Transformer by applying
quantization to the decoder block. We study how
sensitive each sub-layer is by quantization toward

Block FLOPs Latency(ms)

Encoder 0.52G(20.8%) 36.4(4.4%)
Decoder 1.49G(59.2%) 411.1(49.8%)

Embedding 0.50G(20.0%) 372.4(45.1%)
Total 2.52G 825.1

Table 4: FLOPs and on-device latency required for
translation. Decoder-side activation caching is used.
Latency is averaged over 100 translation runs on a
Galaxy N10+. A translation run denotes an example
translation with 30 words input and output sequences.
Note that 300 sequences of newstest2013 consist of
27.6 words in average.

translation quality, and we assign the number of bits
for each sub-layer accordingly. Each type of sub-
layers in the decoder block are assigned 2, 3, and
1 bits to Decdd, Deced, and Decffn respectively.
In this case, the average of quantization bits for
the decoder block is 1.8. For (2.5, 1.8, FP) model,
considering that we quantize the embedding and
decoder blocks, which account for large number
of parameters (69.0%), into the average of under
3-bit, BLEU score degradation is moderate (within
-1 BLEU from the FP baseline).

As we mentioned in Section 2.1, computations
for encoder can be easily parallelizable, and thus,
we assign slightly higher number of bits to the en-
coder block. We can improve quantization result
of encoder block to be 3.7-bits per weight by as-
signing 3 bits to Encee sub-layers and 4 bits to
more sensitive Encffn sub-layers. It is interest-
ing that (2.5, 1.8, 3.7) models in various directions
show higher BLEU score than (2.5, 1.8, FP) mod-
els which are of previous retraining phases with
higher number of bits to represent the models. Our
2.6-bit Transformer models (2.5, 1.8, 3.7) attain
11.8× model compression ratio with reasonable
-0.5 BLEU or less in 3 different translation direc-
tions. Our quantized models outperform the 3-bit
baselines in both BLEU score and model compres-
sion ratio.

Inference Speed Up Let us discuss implementa-
tion issues regarding Transformer inference oper-
ations for on-device deployment. Measurements
of the inference latency and the peak memory size
on a mobile device is presented in Table 3. Our
2.6-bit quantized model (with (2.5, 1.8, 3.7) con-
figuration) achieves 3.5× speed up compared to
the FP baseline. Interestingly, our (2.5, 1.8, FP)
model with the average of 11.3-bit outperforms the

4819

Source
Linda Gray, die die Rolle seiner Ehefrau in der Original- und Folgeserie spielte, war bei Hagman, als er
im Krankenhaus von Dallas starb, sagte ihr Publizist Jeffrey Lane.
Reference
Linda Gray, who played his wife in the original series and the sequel, was with Hagman when he died
in a hospital in Dallas, said her publicist, Jeffrey Lane.
Generated (full-precision model, beam=4)
Linda Gray, who played the role of his wife in the original and subsequent series, was with Hagman
when he died at Dallas hospital, said her journalist Jeffrey Lane.
Generated (model with embedding quantized to 1.1 bit, beam=4)
Linda Gray, who played the role of his wife in the original and subsequent series, was with Hagman
when he died in Dallas hospital, said her publicist Jeffrey Lane.

Table 5: A De2En translation sample from a FP model and a (1.1, FP, FP) model. Detokenized-BLEU (beam=1,
newstest2013, sacrebleu) for each of the models are 30.5 and 30.4. Words with 1-bit quantization are in bold
letters. One word with 1-bit quantization is followed by an underlined word. For both full-precision model and
quantized model, underlined words are identical.

Method
BLEU

Comp.
En2De En2Fr

Vaswani et al. 27.3 38.1 1.0×
Bhandare et al. - 8bit 27.3 - ≤4.0×

Prato et al. - 8bit 27.6 39.9 3.9×
Prato et al. - 4bit 18.3 1.6 7.7×

Ours - 2.6 bit 27.1 38.0 11.8×

Table 6: Comparison of our quantization strategy with
other quantization methods. Comp. denotes compres-
sion ratio in terms of model size.

2-bit baseline in terms of inference speed. In other
words, as for inference speed up, addressing mem-
ory wall problems may be of higher priority rather
than attaining a low number of quantization bits.

For each block, Table 4 shows the number of
FLOPs and on-device inference latency. The de-
coder block demands higher FLOPs than the en-
coder block (3×), and therefore, employs even
higher ratio of on-device inference latency than
the encoder block (11×). Note that while the em-
bedding block requires an amount of FLOPs to be
comparable to that of the encoder block, it causes
11× more inference time than the encoder block.
This experiment shows that it is essential to address
memory inefficiency for fast on-device deployment
of the Transformer.

Comparison Finally, in Table 6, we compare our
quantization strategy to previous Transformer quan-
tization methods. All listed methods show results
on quantized models based on Transformer base

configuration with WMT14 trainsets and report
tokenized-BLEU on newstest2014 with exception
of Bhandare et al. (2019) lacking specific BLEU
scoring method. Our work outperforms previous
quantization studies in terms of compression ratio
and achieves reasonable translation quality in terms
of BLEU as compared to reported BLEU of full
precision models. Bhandare et al. (2019) reports
speed up but it is not directly comparable because
of the difference in inference settings (e.g. device
used, decoding method, etc.) and other studies do
not mention speed up.

4.4 Qualitative Analysis

In our strategy, after a large portion of word vec-
tors are quantized by using 1 bit, translation qual-
ity degradation may occur even if BLEU does not
capture such degradation. Correspondingly, as an
attempt to empirically assess the quality of gener-
ated translation results with 1-bit quantized word
vectors, we investigate how a decoder block pre-
dicts the next word. In Table 5, we present transla-
tion examples generated by models with full pre-
cision embedding block or with quantized embed-
ding block. Comparing full precision model and
quantized model, we observe that for each word
with 1-bit quantization, a decoder block generates
the same next word (underlined in Table 5). We
present more examples in Appendix C. As such,
qualitative analysis suggests that our quantization
would not noticeably degrade the prediction capa-
bility of a decoder even when an input vector is
1-bit quantized.

4820

5 Related Work

Previous researches proposed various model com-
pression techniques to reduce the size of Trans-
former models. Gale et al. (2019) apply pruning
(Han et al., 2015) to eliminate redundant weights
of Transformer and report that higher pruning rates
lead to greater BLEU score degradation. As for
pruning, achieving inference speed up is more chal-
lenging because unstructured pruning method is
associated with irregular data formats, and hence,
low parallelism (Kwon et al., 2019).

Uniform quantization for Transformer is ex-
plored within reasonable degradation in BLEU
score at INT8, while BLEU score can be severely
damaged at low bit-precision such as INT4 (Prato
et al., 2019). In order to exploit efficient integer
arithmetic units with uniformly quantized models,
activations need to be quantized as well (Jacob
et al., 2018). Furthermore, probability mapping
operations in Transformer, such as layer norm. and
softmax, could exhibit significant amount of error
in computational results with low precision data
type (Bhandare et al., 2019).

6 Conclusion

In this work, we analyze each block and sub-layer
of the Transformer and propose an extremely low-
bit quantization strategy for Transformer architec-
ture. Our 2.6-bit quantized Transformer model
achieves 11.8× model compression ratio with rea-
sonable -0.5 BLEU. We also achieve the compres-
sion ratio of 8.3× in memory footprints and 3.5×
speed up on a mobile device (Galaxy N10+).

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefow-
icz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Fernanda Viégas, Oriol Vinyals, Pete Warden, Mar-
tin Wattenberg, Martin Wicke, Yuan Yu, and Xiao-
qiang Zheng. 2015. TensorFlow: Large-scale ma-
chine learning on heterogeneous systems. Software
available from tensorflow.org.

Loı̈c Barrault, Ondřej Bojar, Marta R. Costa-jussà,
Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Philipp Koehn,

Shervin Malmasi, Christof Monz, Mathias Müller,
Santanu Pal, Matt Post, and Marcos Zampieri. 2019.
Findings of the 2019 conference on machine transla-
tion (WMT19). In Proceedings of the Fourth Con-
ference on Machine Translation (Volume 2: Shared
Task Papers, Day 1), pages 1–61, Florence, Italy. As-
sociation for Computational Linguistics.

Aishwarya Bhandare, Vamsi Sripathi, Deepthi
Karkada, Vivek Menon, Sun Choi, Kushal Datta,
and Vikram Saletore. 2019. Efficient 8-bit quan-
tization of transformer neural machine language
translation model. CoRR, abs/1906.00532.

Ondřej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Christof Monz, Matt
Post, and Lucia Specia, editors. 2014. Proceedings
of the Ninth Workshop on Statistical Machine Trans-
lation. Association for Computational Linguistics,
Baltimore, Maryland, USA.

Mauro Cettolo, Christian Girardi, and Marcello Fed-
erico. 2012. Wit3: Web inventory of transcribed and
translated talks. In Proceedings of the 16th Confer-
ence of the European Association for Machine Trans-
lation (EAMT), pages 261–268, Trento, Italy.

Patrick Chen, Si Si, Yang Li, Ciprian Chelba, and
Cho-Jui Hsieh. 2018. Groupreduce: Block-wise
low-rank approximation for neural language model
shrinking. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, ed-
itors, Advances in Neural Information Processing
Systems 31, pages 10988–10998. Curran Associates,
Inc.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre
David. 2015. BinaryConnect: training deep neu-
ral networks with binary weights during propaga-
tions. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in
Neural Information Processing Systems 28, pages
3123–3131. Curran Associates, Inc.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Zhen Dong, Zhewei Yao, Amir Gholami, Michael Ma-
honey, and Kurt Keutzer. 2019. HAWQ: hessian
aware quantization of neural networks with mixed-
precision. 2019 IEEE/CVF International Confer-
ence on Computer Vision (ICCV).

https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.18653/v1/W19-5301
https://doi.org/10.18653/v1/W19-5301
http://arxiv.org/abs/1906.00532
http://arxiv.org/abs/1906.00532
http://arxiv.org/abs/1906.00532
https://doi.org/10.3115/v1/W14-33
https://doi.org/10.3115/v1/W14-33
https://doi.org/10.3115/v1/W14-33
http://papers.nips.cc/paper/8295-groupreduce-block-wise-low-rank-approximation-for-neural-language-model-shrinking.pdf
http://papers.nips.cc/paper/8295-groupreduce-block-wise-low-rank-approximation-for-neural-language-model-shrinking.pdf
http://papers.nips.cc/paper/8295-groupreduce-block-wise-low-rank-approximation-for-neural-language-model-shrinking.pdf
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
http://papers.nips.cc/paper/5647-binaryconnect-training-deep-neural-networks-with-binary-weights-during-propagations.pdf
http://papers.nips.cc/paper/5647-binaryconnect-training-deep-neural-networks-with-binary-weights-during-propagations.pdf
http://papers.nips.cc/paper/5647-binaryconnect-training-deep-neural-networks-with-binary-weights-during-propagations.pdf
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.1109/iccv.2019.00038
https://doi.org/10.1109/iccv.2019.00038
https://doi.org/10.1109/iccv.2019.00038

4821

Andreas Eisele and Yu Chen. 2010. MultiUN: A
multilingual corpus from united nation documents.
In Proceedings of the Seventh International Con-
ference on Language Resources and Evaluation
(LREC’10), Valletta, Malta. European Language Re-
sources Association (ELRA).

Trevor Gale, Erich Elsen, and Sara Hooker. 2019. The
state of sparsity in deep neural networks.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir
Bourdev. 2014. Compressing deep convolutional
networks using vector quantization.

Alex Graves. 2013. Generating sequences with recur-
rent neural networks.

Gaël Guennebaud, Benoı̂t Jacob, et al. 2010. Eigen v3.
http://eigen.tuxfamily.org.

Yiwen Guo, Anbang Yao, Hao Zhao, and Yurong Chen.
2017. Network sketching: Exploiting binary struc-
ture in deep cnns. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR).

Yunhui Guo. 2018. A survey on methods and theories
of quantized neural networks.

Song Han, Jeff Pool, John Tran, and William Dally.
2015. Learning both weights and connections for
efficient neural network. In Advances in neural in-
formation processing systems, pages 1135–1143.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Meng-
long Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. 2018. Quanti-
zation and training of neural networks for efficient
integer-arithmetic-only inference. In Proceedings of
the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR).

Yongkweon Jeon, Baeseong Park, Se Jung Kwon,
Byeongwook Kim, Jeongin Yun, and Dongsoo
Lee. 2020. BiQGEMM: Matrix multiplication
with lookup table for binary-coding-based quantized
dnns.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. International
Conference on Learning Representations.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In MT summit, vol-
ume 5, pages 79–86. Citeseer.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Ses-
sions, pages 177–180, Prague, Czech Republic. As-
sociation for Computational Linguistics.

Taku Kudo. 2005. Mecab : Yet another part-of-speech
and morphological analyzer.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Se Jung Kwon, Dongsoo Lee, Byeongwook Kim,
Parichay Kapoor, Baeseong Park, and Gu-Yeon Wei.
2019. Structured compression by weight encryption
for unstructured pruning and quantization.

Dongsoo Lee, Se Jung Kwon, Byeongwook Kim,
Yongkweon Jeon, Baeseong Park, Jeongin Yun, and
Gu-Yeon Wei. 2020. Decoupling weight regulariza-
tion from batch size for model compression.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In Ad-
vances in Neural Information Processing Systems,
pages 14014–14024.

Paul Michel and Graham Neubig. 2018. MTNT: A
testbed for machine translation of noisy text. CoRR,
abs/1809.00388.

Graham Neubig. 2011. The Kyoto free translation task.
http://www.phontron.com/kftt.

Matt Post. 2018. A call for clarity in reporting bleu
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191.

Gabriele Prato, Ella Charlaix, and Mehdi Reza-
gholizadeh. 2019. Fully quantized transformer for
machine translation.

Ofir Press and Lior Wolf. 2017. Using the output em-
bedding to improve language models. Proceedings
of the 15th Conference of the European Chapter of
the Association for Computational Linguistics: Vol-
ume 2, Short Papers.

R. Pryzant, Y. Chung, D. Jurafsky, and D. Britz. 2018.
JESC: Japanese-English Subtitle Corpus. Language
Resources and Evaluation Conference (LREC).

Mohammad Rastegari, Vicente Ordonez, Joseph Red-
mon, and Ali Farhadi. 2016. Xnor-net: Imagenet
classification using binary convolutional neural net-
works. Lecture Notes in Computer Science, page
525–542.

Pierre Stock, Armand Joulin, Rémi Gribonval, Ben-
jamin Graham, and Hervé Jégou. 2020. And the
bit goes down: Revisiting the quantization of neural
networks. In International Conference on Learning
Representations.

http://www.lrec-conf.org/proceedings/lrec2010/pdf/686_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/686_Paper.pdf
http://arxiv.org/abs/1902.09574
http://arxiv.org/abs/1902.09574
http://arxiv.org/abs/1412.6115
http://arxiv.org/abs/1412.6115
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1808.04752
http://arxiv.org/abs/1808.04752
https://openaccess.thecvf.com/content_cvpr_2018/papers/Jacob_Quantization_and_Training_CVPR_2018_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2018/papers/Jacob_Quantization_and_Training_CVPR_2018_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2018/papers/Jacob_Quantization_and_Training_CVPR_2018_paper.pdf
http://arxiv.org/abs/2005.09904
http://arxiv.org/abs/2005.09904
http://arxiv.org/abs/2005.09904
https://www.aclweb.org/anthology/P07-2045
https://www.aclweb.org/anthology/P07-2045
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
http://arxiv.org/abs/1905.10138
http://arxiv.org/abs/1905.10138
https://openreview.net/forum?id=BJlaG0VFDH
https://openreview.net/forum?id=BJlaG0VFDH
http://arxiv.org/abs/1809.00388
http://arxiv.org/abs/1809.00388
http://arxiv.org/abs/1910.10485
http://arxiv.org/abs/1910.10485
https://doi.org/10.18653/v1/e17-2025
https://doi.org/10.18653/v1/e17-2025
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1007/978-3-319-46493-0_32
https://openreview.net/forum?id=rJehVyrKwH
https://openreview.net/forum?id=rJehVyrKwH
https://openreview.net/forum?id=rJehVyrKwH

4822

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in OPUS. In Proceedings of the Eighth In-
ternational Conference on Language Resources and
Evaluation (LREC’12), pages 2214–2218, Istanbul,
Turkey. European Language Resources Association
(ELRA).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Chunpei Wang and Xiaowang Zhang. 2020. Q-bert: A
bert-based framework for computing sparql similar-
ity in natural language. In Companion Proceedings
of the Web Conference 2020, pages 65–66.

Bichen Wu, Yanghan Wang, Peizhao Zhang, Yuandong
Tian, Peter Vajda, and Kurt Keutzer. 2018. Mixed
precision quantization of convnets via differentiable
neural architecture search.

Chen Xu, Jianqiang Yao, Zhouchen Lin, Wenwu Ou,
Yuanbin Cao, Zhirong Wang, and Hongbin Zha.
2018. Alternating multi-bit quantization for recur-
rent neural networks. In International Conference
on Learning Representations.

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa,
and Zhiru Zhang. 2019. Improving neural network
quantization without retraining using outlier channel
splitting. In International Conference on Machine
Learning, pages 7543–7552.

Yiren Zhou, Seyed-Mohsen Moosavi-Dezfooli, Ngai-
Man Cheung, and Pascal Frossard. 2017. Adaptive
quantization for deep neural network.

http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://arxiv.org/abs/1812.00090
http://arxiv.org/abs/1812.00090
http://arxiv.org/abs/1812.00090
https://openreview.net/forum?id=S19dR9x0b
https://openreview.net/forum?id=S19dR9x0b
http://arxiv.org/abs/1712.01048
http://arxiv.org/abs/1712.01048

4823

A Experiment Details

A.1 Data
Of data we use, WMT2014 data (Bojar et al.,
2014) includes: Europarl v7 (Koehn, 2005),
Multi-UN corpus (Eisele and Chen, 2010), News
commentary corpus Giga French-English corpus
provided by OPUS (Tiedemann, 2012), and data
provided by CommonCrawl foundation4. Statistics
of data is represented in Table 7. Data used for
En2De and En2Fr can be found at https://www.
statmt.org/wmt14/translation-task.html.
Data used for En2Jp can be found at: KFTT
(http://www.phontron.com/kftt/), WIT3

(https://wit3.fbk.eu/mt.php?release=
2017-01-trnted), and JESC (https:
//nlp.stanford.edu/projects/jesc/).

Translate # of Sequences

Direction Train Dev Test

En2De 4.5M 3000 3003
En2Fr 40.8M 3000 3003
En2Jp 3.9M 4451 1160

Table 7: Statistics of data used for each translation di-
rection.

A.2 Model
All models follow the base configuration of Trans-
former architecture composed of 60.9 million pa-
rameters (Vaswani et al., 2017).

A.3 Training
Our training and retraining implementation is based
on tensor2tensor 1.12’s implementation of
Transformer and utilizes tensorflow 1.14
(Abadi et al., 2015) modules. All training hyper-
parameters exactly follow transformer base
configuration of the code. We use 4×V100 GPUs
for all training and retraining, and for each training
step, a mini-batch of approximately 8,000 input
words and 8,000 target words is used per GPU.
Training of a full precision baseline model takes
around 1.7 days. Adam optimizer (Kingma and
Ba, 2014) with β1 = 0.9, β2 = 0.999, ε = 10−9

is used and we adopt Noam learning rate scheme
of Vaswani et al. (2017) using same suggested hy-
perparameters. Baseline models are trained for
400,000 training steps and we select models that

4https://commoncrawl.org/

have the highest BLEU score on devset to report as
our full precision baseline and to warm start from
in our retraining for quantization.

A.4 Retraining

For retraining, we experiment with pNR ∈
{1, 10, 100, 500, 1000, 2000, 4000}. With pNR ∈
{1, 10, 100}, our retraining experiments resulted in
divergence. We find that for a retraining phase
where we quantize all blocks of Transformer,
pNR = 2000 is the most effective in attaining a
higher BLEU score with quantized model. And for
a retraining phase in 3-phase retraining, where we
quantize a block in Transformer, pNR = 1000 is
the most effective. Hence, we set pNR = 2000 for
retraining of quantization baselines, and for experi-
ments where we quantize and retrain each block in
Transformer at a time, we set pNR = 1000. While
the choice for the value of pNR is made in em-
pirical manner, it should be noted that in our tests,
regardless of the number of quantization bits or
other design choices, the choice of pNR value be-
tween 1000 and 2000 did not result in high variance
on translation quality.

Our learning rate (lr) schedule is similar to the
Noam schedule suggested in (Vaswani et al., 2017),
but replaced the warm-up stage with a constant lr
stage as in Eq. 3:

lr = clr · d0.5model ·min(step−0.5, steps−0.5
peak) (3)

step is incremented by 1 with each mini-batch
update and reset to 0 at each retraining phase. We
use clr = 3 for all retraining. This scheme re-
sults in higher overall learning rate than what we
use in our full precision baseline training, which
follows the heuristics that large enough learning
rate is required to find the best local minima with
quantization constraint applied.

For single-phase retraining, we train up to
400,000 steps. Based on BLEU score on devset,
single-phase retraining seems to reach convergence
at around 300,000 steps. As for 3-phase retrain-
ing, we train for 300,000 steps respectively. We
found 300,000 steps ample for a retraining phase
to reach convergence judging from the reported
BLEU scores on the validation set. In the 3-phase
retraining, we first retrain and quantize embedding
then embedding + decoder and finally all blocks of
Transformer. For each phase of retraining, we take
a model that reports the highest detokenized-BLEU
score on devset. Retraining hyperparameters that

https://www.statmt.org/wmt14/translation-task.html
https://www.statmt.org/wmt14/translation-task.html
http://www.phontron.com/kftt/
https://wit3.fbk.eu/mt.php?release=2017-01-trnted
https://wit3.fbk.eu/mt.php?release=2017-01-trnted
https://nlp.stanford.edu/projects/jesc/
https://nlp.stanford.edu/projects/jesc/
https://commoncrawl.org/

4824

are not stated follow corresponding hyperparame-
ters of full precision model training Additionally,
we attempt another variant of 3-phase retraining
where we target only a single Transformer block
at each phase and stop gradients on previously tar-
geted Transformer blocks. However, this method
of retraining results mostly in moderately lower
BLEU score compared to our current 3-phase re-
training method.

A.5 On-Device Inference
On-device inference is implemented with Eigen
3.7 (Guennebaud et al., 2010) for full precision
computation and BiQGEMM (Jeon et al., 2020)
for computation with quantized weights. With
BiQGEMM, the value of redundant intermediate
computation that occurs in matrix multiplication
of quantized weights is pre-computed and stored
to be reused, which is promising in reduction of
memory overhead. Each B value is represented
with a single bit in memory where 0 denotes -1 and
1 denotes +1, and in our implementation bits are
packed into 32-bit integer which is directly used at
inference. We follow BiQGEMM in our implemen-
tation of quantized inference. In our implementa-
tion, we implement decoder-side activation caching
following tensor2tensor’s implementation of
Transformer. We measure on-device latency with
a <chrono> implementation of C++14 and mem-
ory usage with adb5. Unless otherwise specified,
both latency and memory usage are measured while
translating the first 300 sequences of En2De testset
over 3 translation runs. Additional statistics regard-
ing inference latency and memory of quantized
models are available in Table 8.

B Validation Score

We report the validation scores (detokenized-BLEU
scores on devset) of experimented models in Table
9.

C Sequences Generated with 1-bit Words

In Table 10, we present actual translation results
from full precision embedding block and quantized
embedding block. In the first example, 2 out of
2 words that follow 1-bit words are equal to their
positional equivalents in the output sequence gen-
erated with the full precision model. In the second
example, 19 out of 21 matches.

5https://developer.android.com/studio/
command-line/adb

https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb

4825

Average # of Bits Latency contribution(%) Avg. Peak Avg. # of Words

Emb, Enc, Dec Emb Enc Dec Other Lat(ms) MEM(MB) Input Output

FP baseline 44.4% 4.9% 50.1% 0.6% 708.0 247.7 27.6 27.9
3-bit baseline 51.3% 8.7% 38.3% 1.8% 301.0 34.5 27.6 28.0
2-bit baseline 45.9% 9.5% 42.2% 2.3% 235.9 24.5 27.6 28.0

2.5, FP, FP 14.4% 7.0% 77.3% 1.2% 464.3 188.3 27.6 28.4
2.5, 1.8, FP 34.6% 16.3% 46.2% 2.8% 201.4 94.5 27.6 28.4
2.5, 1.8, 3.7 34.4% 16.5% 46.5% 2.7% 200.7 29.8 27.6 27.7

Table 8: Additional statistics regarding reported measurements of Table 3.

Average # of Bits Validation BLEU(beam=1)

Emb, Dec, Enc Model En2De En2Fr En2Jp

FP baseline 32.0 25.4 31.4 18.7
3-bit baseline 3.0 25.3 30.1 18.0
2-bit baseline 2.0 23.9 28.6 16.8

2-bit baseline(Emb) 23.7 25.1 N/A N/A

2.5, FP, FP 23.9 25.6 31.2 18.5
1.3, FP, FP 23.5 25.3 31.0 17.5
1.1, FP, FP 23.5 25.2 31.0 17.9

2.5, 1.8, FP 11.3 25.2 30.6 18.1
1.3, 1.8, FP 11.0 24.6 30.4 17.7
1.3, 1.8, FP 11.0 24.4 30.4 17.2

2.5, 1.8, 3.7 2.6 25.1 30.9 18.4
1.3, 1.8, 3.7 2.2 24.9 30.6 17.7
1.1, 1.8, 3.7 2.2 24.4 30.5 17.6

Table 9: BLEU score on devset of baseline models and quantized models. We report detokenized-BLEU (beam=1,
newstest2013, sacrebleu) for En2De, En2Fr as suggested in in Section 4.2. For En2Jp, outputs and references are
tokenized with mecab then measured with sacrebleu.

4826

Source 1
Im vergangenen Jahr gingen beim CTMO mehr als 1,4 Millionen Anträge auf Markenschutz ein, fast
ein Drittel mehr als 2010.

Reference 1
In the past year, more than 1.4 million applications for trademark protection were submitted to the
CTMO, almost one third more than in 2010.

Generated 1 (full-precision model, beam=4)
Last year, more than 1.4 million applications for trademark protection were received at the CTMO,
almost one third more than in 2010.

Generated 1 (model with embedding quantized to 1.1 bit, beam=4)
Last year CTMO received more than 1.4 million trademark protection applications, almost a third
more than in 2010.

Source 2
Der derzeitige Premierminister Israels, der Falke Netanjahu, ist ein typisches Beispiel eines faschis-
musanfälligen, den internationalen Bankern loyal ergebenen Politikers, der alles dafür tut, um einen
Krieg mit dem Iran zu entfachen, welcher sich angesichts der Mitgliedschaft Irans in der Schanghaier
Organisation für Zusammenarbeit (China, Indien, Russland, Pakistan...), rasch zu einem globalen
Konflikt ausweiten könnte, und bei dem es wegen der Kontrolle Irans über die nur 2 Meilen breite
Straße von Hormus, über die 20% der weltweiten Erdöllieferungen laufen, zu einer Zerstörung der
Weltwirtschaft kommen könnte.

Reference 2
Israel’s current prime minister, Netanyahu ’the hawk’, is a typical example of a fascist politician, loyal
to the international bankers, who does everything to instigate war with Iran, which would, due to its
membership in the Shanghai Cooperation Organisation (China, India, Russia, Pakistan, ...) lead to a
greater threat of global conflict, and through its control of the Hormuz Strait, where 20% of the world’s
oil must sail (the channel is only 2 miles wide), to the destruction of the world’s economy.

Generated 2 (full-precision model, beam=4)
The current Prime Minister of Israel, the Falk Netanyahu, is a typical example of a fascism-prone
politician loyal to international bankers who is doing everything possible to spark a war with Iran,
which, given Iran’s membership of the Shanghai Cooperation Organisation (China, India, Russia,
Pakistan...), could rapidly spread to a global conflict, and could lead to the destruction of the world
economy because of Iran’s control of the only 2-mile-wide Strait of Hormus, which accounts for 20%
of world oil supplies.

Generated 2 (model with embedding quantized to 1.1 bit, beam=4)
Israel’s current prime minister, Falke Netanyahu, is a typical example of a fascism-prone politician
loyal to international bankers who is doing all he can to trigger a war with Iran, which, with Iran’s
membership of the Shanghai Cooperation Organisation (China, India, Russia, Pakistan...), could
rapidly develop into a global conflict and could lead to the destruction of the world economy because
of Iran’s control of the only 2 mile-wide Strait of Hormus, which accounts for 20% of world oil
supplies.

Table 10: De2En translation samples from full-precision model and model with embedding block quantized to
1.1-bit (b = 4, r = 8) with Algorithm 1 (1.1, FP, FP). Same models as Table 5 is utilized.

