@inproceedings{sherborne-etal-2020-bootstrapping,
title = "Bootstrapping a Crosslingual Semantic Parser",
author = "Sherborne, Tom and
Xu, Yumo and
Lapata, Mirella",
editor = "Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.45",
doi = "10.18653/v1/2020.findings-emnlp.45",
pages = "499--517",
abstract = "Recent progress in semantic parsing scarcely considers languages other than English but professional translation can be prohibitively expensive. We adapt a semantic parser trained on a single language, such as English, to new languages and multiple domains with minimal annotation. We query if machine translation is an adequate substitute for training data, and extend this to investigate bootstrapping using joint training with English, paraphrasing, and multilingual pre-trained models. We develop a Transformer-based parser combining paraphrases by ensembling attention over multiple encoders and present new versions of ATIS and Overnight in German and Chinese for evaluation. Experimental results indicate that MT can approximate training data in a new language for accurate parsing when augmented with paraphrasing through multiple MT engines. Considering when MT is inadequate, we also find that using our approach achieves parsing accuracy within 2{\%} of complete translation using only 50{\%} of training data.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sherborne-etal-2020-bootstrapping">
<titleInfo>
<title>Bootstrapping a Crosslingual Semantic Parser</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Sherborne</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yumo</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2020</title>
</titleInfo>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recent progress in semantic parsing scarcely considers languages other than English but professional translation can be prohibitively expensive. We adapt a semantic parser trained on a single language, such as English, to new languages and multiple domains with minimal annotation. We query if machine translation is an adequate substitute for training data, and extend this to investigate bootstrapping using joint training with English, paraphrasing, and multilingual pre-trained models. We develop a Transformer-based parser combining paraphrases by ensembling attention over multiple encoders and present new versions of ATIS and Overnight in German and Chinese for evaluation. Experimental results indicate that MT can approximate training data in a new language for accurate parsing when augmented with paraphrasing through multiple MT engines. Considering when MT is inadequate, we also find that using our approach achieves parsing accuracy within 2% of complete translation using only 50% of training data.</abstract>
<identifier type="citekey">sherborne-etal-2020-bootstrapping</identifier>
<identifier type="doi">10.18653/v1/2020.findings-emnlp.45</identifier>
<location>
<url>https://aclanthology.org/2020.findings-emnlp.45</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>499</start>
<end>517</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Bootstrapping a Crosslingual Semantic Parser
%A Sherborne, Tom
%A Xu, Yumo
%A Lapata, Mirella
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Findings of the Association for Computational Linguistics: EMNLP 2020
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F sherborne-etal-2020-bootstrapping
%X Recent progress in semantic parsing scarcely considers languages other than English but professional translation can be prohibitively expensive. We adapt a semantic parser trained on a single language, such as English, to new languages and multiple domains with minimal annotation. We query if machine translation is an adequate substitute for training data, and extend this to investigate bootstrapping using joint training with English, paraphrasing, and multilingual pre-trained models. We develop a Transformer-based parser combining paraphrases by ensembling attention over multiple encoders and present new versions of ATIS and Overnight in German and Chinese for evaluation. Experimental results indicate that MT can approximate training data in a new language for accurate parsing when augmented with paraphrasing through multiple MT engines. Considering when MT is inadequate, we also find that using our approach achieves parsing accuracy within 2% of complete translation using only 50% of training data.
%R 10.18653/v1/2020.findings-emnlp.45
%U https://aclanthology.org/2020.findings-emnlp.45
%U https://doi.org/10.18653/v1/2020.findings-emnlp.45
%P 499-517
Markdown (Informal)
[Bootstrapping a Crosslingual Semantic Parser](https://aclanthology.org/2020.findings-emnlp.45) (Sherborne et al., Findings 2020)
ACL
- Tom Sherborne, Yumo Xu, and Mirella Lapata. 2020. Bootstrapping a Crosslingual Semantic Parser. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 499–517, Online. Association for Computational Linguistics.