@inproceedings{zhang-etal-2020-shot,
title = "Few-Shot Multi-Hop Relation Reasoning over Knowledge Bases",
author = "Zhang, Chuxu and
Yu, Lu and
Saebi, Mandana and
Jiang, Meng and
Chawla, Nitesh",
editor = "Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.51",
doi = "10.18653/v1/2020.findings-emnlp.51",
pages = "580--585",
abstract = "Multi-hop relation reasoning over knowledge base is to generate effective and interpretable relation prediction through reasoning paths. The current methods usually require sufficient training data (fact triples) for each query relation, impairing their performances over few-shot relations (with limited triples) which are common in knowledge base. To this end, we propose FIRE, a novel few-shot multi-hop relation learning model. FIRE applies reinforcement learning to model the sequential steps of multi-hop reasoning, besides performs heterogeneous structure encoding and knowledge-aware search space pruning. The meta-learning technique is employed to optimize model parameters that could quickly adapt to few-shot relations. Empirical study on two datasets demonstrate that FIRE outperforms state-of-the-art methods.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2020-shot">
<titleInfo>
<title>Few-Shot Multi-Hop Relation Reasoning over Knowledge Bases</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chuxu</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mandana</namePart>
<namePart type="family">Saebi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Meng</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nitesh</namePart>
<namePart type="family">Chawla</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2020</title>
</titleInfo>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Multi-hop relation reasoning over knowledge base is to generate effective and interpretable relation prediction through reasoning paths. The current methods usually require sufficient training data (fact triples) for each query relation, impairing their performances over few-shot relations (with limited triples) which are common in knowledge base. To this end, we propose FIRE, a novel few-shot multi-hop relation learning model. FIRE applies reinforcement learning to model the sequential steps of multi-hop reasoning, besides performs heterogeneous structure encoding and knowledge-aware search space pruning. The meta-learning technique is employed to optimize model parameters that could quickly adapt to few-shot relations. Empirical study on two datasets demonstrate that FIRE outperforms state-of-the-art methods.</abstract>
<identifier type="citekey">zhang-etal-2020-shot</identifier>
<identifier type="doi">10.18653/v1/2020.findings-emnlp.51</identifier>
<location>
<url>https://aclanthology.org/2020.findings-emnlp.51</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>580</start>
<end>585</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Few-Shot Multi-Hop Relation Reasoning over Knowledge Bases
%A Zhang, Chuxu
%A Yu, Lu
%A Saebi, Mandana
%A Jiang, Meng
%A Chawla, Nitesh
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Findings of the Association for Computational Linguistics: EMNLP 2020
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F zhang-etal-2020-shot
%X Multi-hop relation reasoning over knowledge base is to generate effective and interpretable relation prediction through reasoning paths. The current methods usually require sufficient training data (fact triples) for each query relation, impairing their performances over few-shot relations (with limited triples) which are common in knowledge base. To this end, we propose FIRE, a novel few-shot multi-hop relation learning model. FIRE applies reinforcement learning to model the sequential steps of multi-hop reasoning, besides performs heterogeneous structure encoding and knowledge-aware search space pruning. The meta-learning technique is employed to optimize model parameters that could quickly adapt to few-shot relations. Empirical study on two datasets demonstrate that FIRE outperforms state-of-the-art methods.
%R 10.18653/v1/2020.findings-emnlp.51
%U https://aclanthology.org/2020.findings-emnlp.51
%U https://doi.org/10.18653/v1/2020.findings-emnlp.51
%P 580-585
Markdown (Informal)
[Few-Shot Multi-Hop Relation Reasoning over Knowledge Bases](https://aclanthology.org/2020.findings-emnlp.51) (Zhang et al., Findings 2020)
ACL