@inproceedings{premi-etal-2020-amex,
title = "{AMEX}-{AI}-{LABS}: Investigating Transfer Learning for Title Detection in Table of Contents Generation",
author = "Premi, Dhruv and
Badugu, Amogh and
Sharad Bhatt, Himanshu",
editor = "El-Haj, Dr Mahmoud and
Athanasakou, Dr Vasiliki and
Ferradans, Dr Sira and
Salzedo, Dr Catherine and
Elhag, Dr Ans and
Bouamor, Dr Houda and
Litvak, Dr Marina and
Rayson, Dr Paul and
Giannakopoulos, Dr George and
Pittaras, Nikiforos",
booktitle = "Proceedings of the 1st Joint Workshop on Financial Narrative Processing and MultiLing Financial Summarisation",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "COLING",
url = "https://aclanthology.org/2020.fnp-1.26",
pages = "153--157",
abstract = "We present a transfer learning approach for Title Detection in FinToC 2020 challenge. Our proposed approach relies on the premise that the geometric layout and character features of the titles and non-titles can be learnt separately from a large corpus, and their learning can then be transferred to a domain-specific dataset. On a domain-specific dataset, we train a Deep Neural Net on the text of the document along with a pre-trained model for geometric and character features. We achieved an F-Score of 83.25 on the test set and secured top rank in the title detection task in FinToC 2020.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="premi-etal-2020-amex">
<titleInfo>
<title>AMEX-AI-LABS: Investigating Transfer Learning for Title Detection in Table of Contents Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dhruv</namePart>
<namePart type="family">Premi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amogh</namePart>
<namePart type="family">Badugu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Himanshu</namePart>
<namePart type="family">Sharad Bhatt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Joint Workshop on Financial Narrative Processing and MultiLing Financial Summarisation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dr</namePart>
<namePart type="given">Mahmoud</namePart>
<namePart type="family">El-Haj</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dr</namePart>
<namePart type="given">Vasiliki</namePart>
<namePart type="family">Athanasakou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dr</namePart>
<namePart type="given">Sira</namePart>
<namePart type="family">Ferradans</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dr</namePart>
<namePart type="given">Catherine</namePart>
<namePart type="family">Salzedo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dr</namePart>
<namePart type="given">Ans</namePart>
<namePart type="family">Elhag</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dr</namePart>
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dr</namePart>
<namePart type="given">Marina</namePart>
<namePart type="family">Litvak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dr</namePart>
<namePart type="given">Paul</namePart>
<namePart type="family">Rayson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dr</namePart>
<namePart type="given">George</namePart>
<namePart type="family">Giannakopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikiforos</namePart>
<namePart type="family">Pittaras</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>COLING</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a transfer learning approach for Title Detection in FinToC 2020 challenge. Our proposed approach relies on the premise that the geometric layout and character features of the titles and non-titles can be learnt separately from a large corpus, and their learning can then be transferred to a domain-specific dataset. On a domain-specific dataset, we train a Deep Neural Net on the text of the document along with a pre-trained model for geometric and character features. We achieved an F-Score of 83.25 on the test set and secured top rank in the title detection task in FinToC 2020.</abstract>
<identifier type="citekey">premi-etal-2020-amex</identifier>
<location>
<url>https://aclanthology.org/2020.fnp-1.26</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>153</start>
<end>157</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T AMEX-AI-LABS: Investigating Transfer Learning for Title Detection in Table of Contents Generation
%A Premi, Dhruv
%A Badugu, Amogh
%A Sharad Bhatt, Himanshu
%Y El-Haj, Dr Mahmoud
%Y Athanasakou, Dr Vasiliki
%Y Ferradans, Dr Sira
%Y Salzedo, Dr Catherine
%Y Elhag, Dr Ans
%Y Bouamor, Dr Houda
%Y Litvak, Dr Marina
%Y Rayson, Dr Paul
%Y Giannakopoulos, Dr George
%Y Pittaras, Nikiforos
%S Proceedings of the 1st Joint Workshop on Financial Narrative Processing and MultiLing Financial Summarisation
%D 2020
%8 December
%I COLING
%C Barcelona, Spain (Online)
%F premi-etal-2020-amex
%X We present a transfer learning approach for Title Detection in FinToC 2020 challenge. Our proposed approach relies on the premise that the geometric layout and character features of the titles and non-titles can be learnt separately from a large corpus, and their learning can then be transferred to a domain-specific dataset. On a domain-specific dataset, we train a Deep Neural Net on the text of the document along with a pre-trained model for geometric and character features. We achieved an F-Score of 83.25 on the test set and secured top rank in the title detection task in FinToC 2020.
%U https://aclanthology.org/2020.fnp-1.26
%P 153-157
Markdown (Informal)
[AMEX-AI-LABS: Investigating Transfer Learning for Title Detection in Table of Contents Generation](https://aclanthology.org/2020.fnp-1.26) (Premi et al., FNP 2020)
ACL