@inproceedings{imoto-ito-2020-jdd,
title = "{JDD} @ {F}in{C}ausal 2020, Task 2: Financial Document Causality Detection",
author = "Imoto, Toshiya and
Ito, Tomoki",
editor = "El-Haj, Dr Mahmoud and
Athanasakou, Dr Vasiliki and
Ferradans, Dr Sira and
Salzedo, Dr Catherine and
Elhag, Dr Ans and
Bouamor, Dr Houda and
Litvak, Dr Marina and
Rayson, Dr Paul and
Giannakopoulos, Dr George and
Pittaras, Nikiforos",
booktitle = "Proceedings of the 1st Joint Workshop on Financial Narrative Processing and MultiLing Financial Summarisation",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "COLING",
url = "https://aclanthology.org/2020.fnp-1.7",
pages = "50--54",
abstract = "This paper describes the approach we built for the Financial Document Causality Detection Shared Task (FinCausal-2020) Task 2: Cause and Effect Detection. Our approach is based on a multi-class classifier using BiLSTM with Graph Convolutional Neural Network (GCN) trained by minimizing the binary cross entropy loss. In our approach, we have not used any extra data source apart from combining the trial and practice dataset. We achieve weighted F1 score to 75.61 percent and are ranked at 7-th place.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="imoto-ito-2020-jdd">
<titleInfo>
<title>JDD @ FinCausal 2020, Task 2: Financial Document Causality Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Toshiya</namePart>
<namePart type="family">Imoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tomoki</namePart>
<namePart type="family">Ito</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Joint Workshop on Financial Narrative Processing and MultiLing Financial Summarisation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dr</namePart>
<namePart type="given">Mahmoud</namePart>
<namePart type="family">El-Haj</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dr</namePart>
<namePart type="given">Vasiliki</namePart>
<namePart type="family">Athanasakou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dr</namePart>
<namePart type="given">Sira</namePart>
<namePart type="family">Ferradans</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dr</namePart>
<namePart type="given">Catherine</namePart>
<namePart type="family">Salzedo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dr</namePart>
<namePart type="given">Ans</namePart>
<namePart type="family">Elhag</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dr</namePart>
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dr</namePart>
<namePart type="given">Marina</namePart>
<namePart type="family">Litvak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dr</namePart>
<namePart type="given">Paul</namePart>
<namePart type="family">Rayson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dr</namePart>
<namePart type="given">George</namePart>
<namePart type="family">Giannakopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikiforos</namePart>
<namePart type="family">Pittaras</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>COLING</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the approach we built for the Financial Document Causality Detection Shared Task (FinCausal-2020) Task 2: Cause and Effect Detection. Our approach is based on a multi-class classifier using BiLSTM with Graph Convolutional Neural Network (GCN) trained by minimizing the binary cross entropy loss. In our approach, we have not used any extra data source apart from combining the trial and practice dataset. We achieve weighted F1 score to 75.61 percent and are ranked at 7-th place.</abstract>
<identifier type="citekey">imoto-ito-2020-jdd</identifier>
<location>
<url>https://aclanthology.org/2020.fnp-1.7</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>50</start>
<end>54</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T JDD @ FinCausal 2020, Task 2: Financial Document Causality Detection
%A Imoto, Toshiya
%A Ito, Tomoki
%Y El-Haj, Dr Mahmoud
%Y Athanasakou, Dr Vasiliki
%Y Ferradans, Dr Sira
%Y Salzedo, Dr Catherine
%Y Elhag, Dr Ans
%Y Bouamor, Dr Houda
%Y Litvak, Dr Marina
%Y Rayson, Dr Paul
%Y Giannakopoulos, Dr George
%Y Pittaras, Nikiforos
%S Proceedings of the 1st Joint Workshop on Financial Narrative Processing and MultiLing Financial Summarisation
%D 2020
%8 December
%I COLING
%C Barcelona, Spain (Online)
%F imoto-ito-2020-jdd
%X This paper describes the approach we built for the Financial Document Causality Detection Shared Task (FinCausal-2020) Task 2: Cause and Effect Detection. Our approach is based on a multi-class classifier using BiLSTM with Graph Convolutional Neural Network (GCN) trained by minimizing the binary cross entropy loss. In our approach, we have not used any extra data source apart from combining the trial and practice dataset. We achieve weighted F1 score to 75.61 percent and are ranked at 7-th place.
%U https://aclanthology.org/2020.fnp-1.7
%P 50-54
Markdown (Informal)
[JDD @ FinCausal 2020, Task 2: Financial Document Causality Detection](https://aclanthology.org/2020.fnp-1.7) (Imoto & Ito, FNP 2020)
ACL