@inproceedings{sangati-etal-2020-challenge,
title = "The Challenge of the {TV} game La Ghigliottina to {NLP}",
author = "Sangati, Federico and
Pascucci, Antonio and
Monti, Johanna",
editor = "Lukin, Stephanie M.",
booktitle = "Workshop on Games and Natural Language Processing",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2020.gamnlp-1.5",
pages = "34--38",
abstract = "In this paper, we describe a Telegram bot, Mago della Ghigliottina (Ghigliottina Wizard), able to solve La Ghigliottina game (The Guillotine), the final game of the Italian TV quiz show L{'}Eredit{\`a}. Our system relies on linguistic resources and artificial intelligence and achieves better results than human players (and competitors of L{'}Eredit{\`a} too). In addition to solving a game, Mago della Ghigliottina can also generate new game instances and challenge the users to match the solution.",
language = "English",
ISBN = "979-10-95546-40-5",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sangati-etal-2020-challenge">
<titleInfo>
<title>The Challenge of the TV game La Ghigliottina to NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Federico</namePart>
<namePart type="family">Sangati</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antonio</namePart>
<namePart type="family">Pascucci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Johanna</namePart>
<namePart type="family">Monti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">English</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Workshop on Games and Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Stephanie</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Lukin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-10-95546-40-5</identifier>
</relatedItem>
<abstract>In this paper, we describe a Telegram bot, Mago della Ghigliottina (Ghigliottina Wizard), able to solve La Ghigliottina game (The Guillotine), the final game of the Italian TV quiz show L’Eredità. Our system relies on linguistic resources and artificial intelligence and achieves better results than human players (and competitors of L’Eredità too). In addition to solving a game, Mago della Ghigliottina can also generate new game instances and challenge the users to match the solution.</abstract>
<identifier type="citekey">sangati-etal-2020-challenge</identifier>
<location>
<url>https://aclanthology.org/2020.gamnlp-1.5</url>
</location>
<part>
<date>2020-05</date>
<extent unit="page">
<start>34</start>
<end>38</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The Challenge of the TV game La Ghigliottina to NLP
%A Sangati, Federico
%A Pascucci, Antonio
%A Monti, Johanna
%Y Lukin, Stephanie M.
%S Workshop on Games and Natural Language Processing
%D 2020
%8 May
%I European Language Resources Association
%C Marseille, France
%@ 979-10-95546-40-5
%G English
%F sangati-etal-2020-challenge
%X In this paper, we describe a Telegram bot, Mago della Ghigliottina (Ghigliottina Wizard), able to solve La Ghigliottina game (The Guillotine), the final game of the Italian TV quiz show L’Eredità. Our system relies on linguistic resources and artificial intelligence and achieves better results than human players (and competitors of L’Eredità too). In addition to solving a game, Mago della Ghigliottina can also generate new game instances and challenge the users to match the solution.
%U https://aclanthology.org/2020.gamnlp-1.5
%P 34-38
Markdown (Informal)
[The Challenge of the TV game La Ghigliottina to NLP](https://aclanthology.org/2020.gamnlp-1.5) (Sangati et al., GAMESandNLP 2020)
ACL