@inproceedings{bartl-etal-2020-unmasking,
title = "Unmasking Contextual Stereotypes: Measuring and Mitigating {BERT}{'}s Gender Bias",
author = "Bartl, Marion and
Nissim, Malvina and
Gatt, Albert",
editor = "Costa-juss{\`a}, Marta R. and
Hardmeier, Christian and
Radford, Will and
Webster, Kellie",
booktitle = "Proceedings of the Second Workshop on Gender Bias in Natural Language Processing",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.gebnlp-1.1",
pages = "1--16",
abstract = "Contextualized word embeddings have been replacing standard embeddings as the representational knowledge source of choice in NLP systems. Since a variety of biases have previously been found in standard word embeddings, it is crucial to assess biases encoded in their replacements as well. Focusing on BERT (Devlin et al., 2018), we measure gender bias by studying associations between gender-denoting target words and names of professions in English and German, comparing the findings with real-world workforce statistics. We mitigate bias by fine-tuning BERT on the GAP corpus (Webster et al., 2018), after applying Counterfactual Data Substitution (CDS) (Maudslay et al., 2019). We show that our method of measuring bias is appropriate for languages such as English, but not for languages with a rich morphology and gender-marking, such as German. Our results highlight the importance of investigating bias and mitigation techniques cross-linguistically,especially in view of the current emphasis on large-scale, multilingual language models.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bartl-etal-2020-unmasking">
<titleInfo>
<title>Unmasking Contextual Stereotypes: Measuring and Mitigating BERT’s Gender Bias</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marion</namePart>
<namePart type="family">Bartl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Malvina</namePart>
<namePart type="family">Nissim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Albert</namePart>
<namePart type="family">Gatt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Gender Bias in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marta</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Costa-jussà</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Hardmeier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Will</namePart>
<namePart type="family">Radford</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kellie</namePart>
<namePart type="family">Webster</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Contextualized word embeddings have been replacing standard embeddings as the representational knowledge source of choice in NLP systems. Since a variety of biases have previously been found in standard word embeddings, it is crucial to assess biases encoded in their replacements as well. Focusing on BERT (Devlin et al., 2018), we measure gender bias by studying associations between gender-denoting target words and names of professions in English and German, comparing the findings with real-world workforce statistics. We mitigate bias by fine-tuning BERT on the GAP corpus (Webster et al., 2018), after applying Counterfactual Data Substitution (CDS) (Maudslay et al., 2019). We show that our method of measuring bias is appropriate for languages such as English, but not for languages with a rich morphology and gender-marking, such as German. Our results highlight the importance of investigating bias and mitigation techniques cross-linguistically,especially in view of the current emphasis on large-scale, multilingual language models.</abstract>
<identifier type="citekey">bartl-etal-2020-unmasking</identifier>
<location>
<url>https://aclanthology.org/2020.gebnlp-1.1</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>1</start>
<end>16</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Unmasking Contextual Stereotypes: Measuring and Mitigating BERT’s Gender Bias
%A Bartl, Marion
%A Nissim, Malvina
%A Gatt, Albert
%Y Costa-jussà, Marta R.
%Y Hardmeier, Christian
%Y Radford, Will
%Y Webster, Kellie
%S Proceedings of the Second Workshop on Gender Bias in Natural Language Processing
%D 2020
%8 December
%I Association for Computational Linguistics
%C Barcelona, Spain (Online)
%F bartl-etal-2020-unmasking
%X Contextualized word embeddings have been replacing standard embeddings as the representational knowledge source of choice in NLP systems. Since a variety of biases have previously been found in standard word embeddings, it is crucial to assess biases encoded in their replacements as well. Focusing on BERT (Devlin et al., 2018), we measure gender bias by studying associations between gender-denoting target words and names of professions in English and German, comparing the findings with real-world workforce statistics. We mitigate bias by fine-tuning BERT on the GAP corpus (Webster et al., 2018), after applying Counterfactual Data Substitution (CDS) (Maudslay et al., 2019). We show that our method of measuring bias is appropriate for languages such as English, but not for languages with a rich morphology and gender-marking, such as German. Our results highlight the importance of investigating bias and mitigation techniques cross-linguistically,especially in view of the current emphasis on large-scale, multilingual language models.
%U https://aclanthology.org/2020.gebnlp-1.1
%P 1-16
Markdown (Informal)
[Unmasking Contextual Stereotypes: Measuring and Mitigating BERT’s Gender Bias](https://aclanthology.org/2020.gebnlp-1.1) (Bartl et al., GeBNLP 2020)
ACL