@inproceedings{mccrae-arcan-2020-nuig,
title = "{NUIG} at {TIAD}: Combining Unsupervised {NLP} and Graph Metrics for Translation Inference",
author = "McCrae, John Philip and
Arcan, Mihael",
editor = "Kernerman, Ilan and
Krek, Simon and
McCrae, John P. and
Gracia, Jorge and
Ahmadi, Sina and
Kabashi, Besim",
booktitle = "Proceedings of the 2020 Globalex Workshop on Linked Lexicography",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2020.globalex-1.15",
pages = "92--97",
abstract = "In this paper, we present the NUIG system at the TIAD shard task. This system includes graph-based metrics calculated using novel algorithms, with an unsupervised document embedding tool called ONETA and an unsupervised multi-way neural machine translation method. The results are an improvement over our previous system and produce the highest precision among all systems in the task as well as very competitive F-Measure results. Incorporating features from other systems should be easy in the framework we describe in this paper, suggesting this could very easily be extended to an even stronger result.",
language = "English",
ISBN = "979-10-95546-46-7",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mccrae-arcan-2020-nuig">
<titleInfo>
<title>NUIG at TIAD: Combining Unsupervised NLP and Graph Metrics for Translation Inference</title>
</titleInfo>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="given">Philip</namePart>
<namePart type="family">McCrae</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mihael</namePart>
<namePart type="family">Arcan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">English</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2020 Globalex Workshop on Linked Lexicography</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ilan</namePart>
<namePart type="family">Kernerman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Krek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="given">P</namePart>
<namePart type="family">McCrae</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jorge</namePart>
<namePart type="family">Gracia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sina</namePart>
<namePart type="family">Ahmadi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Besim</namePart>
<namePart type="family">Kabashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-10-95546-46-7</identifier>
</relatedItem>
<abstract>In this paper, we present the NUIG system at the TIAD shard task. This system includes graph-based metrics calculated using novel algorithms, with an unsupervised document embedding tool called ONETA and an unsupervised multi-way neural machine translation method. The results are an improvement over our previous system and produce the highest precision among all systems in the task as well as very competitive F-Measure results. Incorporating features from other systems should be easy in the framework we describe in this paper, suggesting this could very easily be extended to an even stronger result.</abstract>
<identifier type="citekey">mccrae-arcan-2020-nuig</identifier>
<location>
<url>https://aclanthology.org/2020.globalex-1.15</url>
</location>
<part>
<date>2020-05</date>
<extent unit="page">
<start>92</start>
<end>97</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NUIG at TIAD: Combining Unsupervised NLP and Graph Metrics for Translation Inference
%A McCrae, John Philip
%A Arcan, Mihael
%Y Kernerman, Ilan
%Y Krek, Simon
%Y McCrae, John P.
%Y Gracia, Jorge
%Y Ahmadi, Sina
%Y Kabashi, Besim
%S Proceedings of the 2020 Globalex Workshop on Linked Lexicography
%D 2020
%8 May
%I European Language Resources Association
%C Marseille, France
%@ 979-10-95546-46-7
%G English
%F mccrae-arcan-2020-nuig
%X In this paper, we present the NUIG system at the TIAD shard task. This system includes graph-based metrics calculated using novel algorithms, with an unsupervised document embedding tool called ONETA and an unsupervised multi-way neural machine translation method. The results are an improvement over our previous system and produce the highest precision among all systems in the task as well as very competitive F-Measure results. Incorporating features from other systems should be easy in the framework we describe in this paper, suggesting this could very easily be extended to an even stronger result.
%U https://aclanthology.org/2020.globalex-1.15
%P 92-97
Markdown (Informal)
[NUIG at TIAD: Combining Unsupervised NLP and Graph Metrics for Translation Inference](https://aclanthology.org/2020.globalex-1.15) (McCrae & Arcan, GLOBALEX 2020)
ACL