
Proceedings of the 17th International Conference on Natural Language Processing, pages 138–143
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

1381

Abstract

This paper proposes language independent natural

language generator for Tree Adjoining Grammar (TAG)

based Machine Translation System. In this model, the

TAG based parsing and generation approach considered

for the syntactic and semantic analysis of a source

language. This model provides an efficient and a

systematic way of encapsulating language resources

with engineering solution to develop the machine

translation System. A TAG based Generator is

developed with existing resources using TAG

formalism to generate the target language from TAG

based parser derivation. The process allows syntactic

feature-marking, the Subject-Predicate Agreement

marking and multiple synthesized generated outputs in

complex and morphological rich language. The

challenge in applying such approach is to handle the

linguistically diversified features. It is achieved using

rule-based translation grammar model to align the

source language to corresponding target languages.

Nevertheless, this paper also describes the process of

lexicalization and explain the state charts, TAG based

adjunction and substitution function and the complexity

and challenges beneath parsing-generation process.

1 Introduction

Machine Translation is a sub-field of

(computational linguistics) under natural language

processing (NLP) where computer is act as a

human translator. It processes natural language

constructs to automate the process of language

translation. Every machine translation system

requires programs for translation and

automated dictionaries and grammars to support

translation. Among the various statistical and rule

based methodologies, we have researched on

Grammar based model for English to Indian

language Translation. Lexicalized Tree Adjoining

Grammar (LTAG) is a non Chomsky formalism

initially proposed in (Joshi et al., 1975) considered

to be mildly context grammar that is ideal for any

natural language.

The proposed Translation scheme is based on

compatible Tags of the source and target

languages. A TAG Parser is act as compliers used

to analyze the source sentence based on the Tree

Adjoining Grammar and construct the source

derivation which is the summarization of the state

chart processing. TAG Generator is like an

interpreter that interprets the source derivation to a

target derivation and lexicalizes the target

Derivation into Derived Tree Generator which

gives us the target Sentence accordingly.

The basic motivation to use this TAG Grammar

model is that it is a rule based language

independent feature oriented approach. Any

complex agglutinative language can be

represented using Tags and their unification

features. The translation accuracy of this approach

depends on the Tree Grammar rather than “bag of

corpus”. While any statistical approach translation

accuracy depends on the corpus, more the corpus

size better will be the output. We can still build a

robust model for Indian languages with complex

verb and noun morphology. Generation of the tree

grammar for the source and Target language

requires good linguistic knowledge and expertise

for providing feature with the grammar.

Related research work of TAG Generator in NLP

is presented in Section-2 as Literature survey.

Section-3 elaborates more about basic flow of

TAG Generator considering the TAG based MTS.

Detailed architecture along with internal modules

description have also been explained in this

section. While Section-4 talks about results and

analysis. Conclusion of the paper is done in

Section-5.

2 Literature Survey

There has been a fair amount of research in the

field of Tree Adjoining Grammar based generation

of Machine Translation (MT). Some closely

related research work (Joshi et al., 1997) is

reported to address the similar work. (Joshi et al.,

1997) discussed that TAG may be an appropriate

formalism for generation because of their syntactic

TREE ADJOINING GRAMMAR BASED “LANGUAGE INDEPENDENT

GENERATOR"

Pavan Kurariya, Prashant Chaudhary, Jahnavi Bodhankar, Lenali Singh, Ajai Kumar and Hemant Darbari

Centre for Development of Advanced Computing, Pune, India

pavank@cdac.in, cprashant@cdac.in, jahnavib@cdac.in, lenali@cdac.in, ajai@cdac.in and darbari@cdac.in

mailto:pavank@cdac.in
mailto:pavank@cdac.in
mailto:jahnavib@cdac.in
mailto:jahnavib@cdac.in
mailto:ajai@cdac.in
mailto:darbari@cdac.in

1392

attributes. The same observation was found in the

work of (J. firgen Wedekind et al. 1988), who

applies TAGs to the task of generation. Several

researchers describe the properties of TAGs for

extracting the syntactic processing of a natural

language essential for natural-language generation.

Although, generation is not a problem in Machine

Translation Application as any system that is based

on the TAG formalism has to build a generation

component by which a TAG can articulate

appropriately with semantic information. In this

paper, we discuss one such mechanism where

source and target grammar are aligned by defining

a relation between the rule sets. The recent

research in this field can be viewed as an effort to

utilize Syntactic and semantic feature during the

generation process. As discussed by (J. firgen

Wedekind et al. 1988) requires a property of a

grammar which specifies that complements be

semantically connected to their head while (Stuart

M. Shieber et al. 1988) defines a notion of

semantic information, a compositional property

which guarantees that it can be locally determined

whether phrases can contribute to forming an

expression with a given meaning. Generation

approach that reorder top-down generation (Marc

Dymetman et al. 1988) so as to make available

information that utilize the top- down recursion

also fall into the localizing information. Semantic-

head-driven generation (Yves Schabes et al. 1989)

uses semantic heads and their complements as a

locus of semantic locality.

3 Workflow of TAG Generator

As earlier said, TAG Generation act like

interpreters, just like Java virtual machine (JVM)

in the Java Programming language which interpret

the byte code to machine code, like wise TAG

Generator interpret the source derivation to target

Language. TAG Generation compresses into three

parts: Transfer Model, Derivation generation,

Derived tree generator.

As shown in figure 1, Transfer model is a

linguistic based model in which source tree is

mapped with the target tree i.e. every node of the

source tree is mapped with the node of target tree

which is called as Link Information. Link

Information is an agreement between a source tree

and the target tree, illustrate the node mapping

between the language pair. Derivation Generation

process the Derivation Parser (byte code in java)

convert it into intermediate Derivation understand

by the Generator intermediate process called the

Derived Tree Generator. Derived Tree Generator is

the Lexicalization process of the Derivation

Generator which gives us the target output and

language based feature required for synthesis.

3.1 Tree Vector

Tree vector is a very important structure for parser

and generator. The tree vector is like a pool for

TAG trees, from which the lexicalized trees are

spooled up for parsing and generation. The tree

vector is a conventional structure implicitly

defined as an input to the parser. The tree vector

holds maps between trees, tree names and

lexicons. There is a string array which holds the

segmented sentence with all the words in it. Each

word is a key to map, holding the set of tree

lexicalized by that word. It also contains a reverse

map where a tree is a key to a set of lexicon that

uses this particular tree. The most interesting

concept of the tree vector is the idea of non

repeating trees. The tree vector stores exactly one

copy of every tree even if it is lexicalized by many

words in the sentence.

3.2 Multithreaded TAG Parser &

Derivation

Figure 2, depicts monolithic hybrid parser for Tree

Adjunction Grammar (constraint). It is modified

multithreaded implementation of 'Early-Type

Parsing Algorithm' by Arvind Joshi (Joshi et al.

1997). In this multithreaded parser, every parse

requires multithreading and the parser clones a

new thread but with a different current state. Multi

threaded parser implements the higher

RECOGNIZER algorithm. It is an offline

recognizer it is designed to identify the first

successful parse of an input string. The

termination of the thread of the successfully parse

is meant to be the end of that iteration. The

'RECOGNIZER' is a non-backtracking algorithm,

which instead multi-threads all possibilities at a

decision point. The main decisions involves the

operation of adjunction and substitution as which

tree should be adjuncted or substituted at a given

node. The initiation of the parser itself is parallel.

Externally the parser starts with 'n' sentence initial

Figure 1: Basic architecture of TAG Generator

1403

trees, each of which initiates a parse in a different

thread. This means that multi-threading occurs at 2

levels, one at the start and then at the parsing level.

3.3 Transfer Model

It is a linguistic based model in which grammar is

written in the tree format for the source and target

language. In this model, the source and target

grammar are aligned by defining a relation

between the rule sets. Similarly of two generative

grammar can be mathematically proved to be the

similarity in their rule sets and not the language

generated. The translation model that we are

defining reflects from the proposal in [Abeille,

Schabes and Joshi, 1990] is in fact manipulation

of multiple similar Grammars. Consider the

following illustration where two TAG trees are

drawn, similar in nature. The mapping between

the nodes is evident here. But there is one

problem as the computability of the

representation. Through it is complete with

respect to the information conveyed; it is

computationally redundant. That means the

generator will have to compute the actual links

from the lexical link given.

Link-info:

1.S_r=2.S_r.~1.NPadjn=2.NPadjn.~1.NP_0=2.N

P.~1.VPadjn=2.VPadjn.~1.VP=2.VP.~1.PP=2.PP

_1.~1.V=2.ADJ.~

3.4 Target derivation generation
There was an observation during the research on

the TAG Generator that how TAG Parser

communicates with the TAG Generator. TAG

Parser keeps all the parsing information in the

states, are stacked in the state chart. TAG

Generator doesn’t know about the parsing

algorithm, state and state chart. To process state

chart, you have to know the flow of the parsing so

we need one structure which keep the

summarization of the state chat and it could be

understandable by Generator that interpret in

target language.

To summarize the state chart information, we

adopted the derivation structure(see figure 3)

which is a record of how the elementary trees of a

TAG are put together by the operations of

substitution and adjoining in order to obtain the

derived tree whose yield is the string being

parsed. The nodes of the derivation tree are

labeled by the names of the elementary trees and

the edges are labeled by the addresses of the tree

labeling the parent node in which the trees

labeling the child nodes are either substituted or

adjoined.

Generator derivation is the kernel, building the

target derivation and tree vector (see figure 4). It

also dynamically builds the target tree vector,

which is used to clone tree and stitching the clone

together to get the final derivation tree. We build

the target derivation from the parser derivation.

Every node of the parser derivation is mapped

with the Target derivation node. During mapping,

name of the source elementary tree will be

mapped with the target elementary tree, source

lexicon will be replace with the target lexicon and

Translation model identify in which node of the

parent tree, child tree will be adjuncted , it is

indicated by gorn number.

Major advantages to make derivation is to save

memory, don’t need to know how the parser

Figure 2: Workflow of TAG Generator

Figure 3: Parser derivation

Figure 4: Generated derivation

1414

analyze the sentence and easily understandable by

generation process. Lexicalization of the

generation process could be done by only

derivation information, not need of extra

information. But there is one drawback, it is very

sensitive about grammar, mapping between the

nodes in the trees (source and target) should be

proper mapped otherwise operation will give the

wrong output.

3.5 Parse Tree Builder (Derived Tree

Generator)
Another concern in our generation process is

when and where will the actual lexicalization of

the derived tree happen? The lexicon that a tree is

to be lexicalized with is present in the derivation

node mapped to that tree. The lexicon that a tree is

to be lexicalized with is present in the derivation

node mapped to that tree. So this property of the

derivation map is used to Preserve and still

achieve strong lexicalization of the derived tree

that is generated. The target derivation node will

preserve the additional information required for

smoothing and morph synthesis, so no external

map or structure are required to carry them.

The derivation tree summarizes all the translate

information stores in the state chart and

compresses it to minimal size (see figure 5),

easier to manipulate. But to see the actual

derivation of how the sentence emerged from the

grammar trees, we require the translate tree or

more commonly, just, the translate. It is stitching

of the entire set of tree used in deriving this

particular sentence. But although it is a straight

forward problem with a linear time algorithm, it

has vast temporal space complexities, when we

come to implementation. The TAG grammar

derives the sentence in a lexical order and other

order should not be assumed. To make it

manipulatable in post and pre-order space, we

need to use different maps and at many levels.

The implementation becomes further cumbersome

when the gorn indices used for locating

adjunctions and substitutions, changes with each

physical operation.

TAG Generation approach give us lot of feature in

terms of subject object agreement marker, which

gives us the information of the subject, Object and

main verb; Possessive case marker in the Indian

language like ‘Ne’, ’Ko’, ’Ke-Pass’; multiple

synonym generation; multiple output generation

based on the context.

TAG Generation approach give us lot of feature

in terms of subject object agreement marker,

which gives us the information of the subject,

Object and main verb; Possessive case marker in

the Indian language like ‘Ne’, ’Ko’, ’Ke-Pass’;

multiple synonym generation; multiple output

generation based on the context.

4 Results and Experiments

Sample sentences covering different type of

grammatical structures were generated using TAG

Generator in different languages. One of the

examples taken from English to Hindi Translation

process, here figure 7 and figure8 depict

derivation trees created in source and target

language. It indicates syntactic relationship

between word and how this information has

utilized during translation process. Here Tree

Vector (see figure 6) is also shown for source

sentence.

Source Sentence: The Hawa-Mahal is the most

recognizable monument of Jaipur.

Figure 6: Derived Generation

Figure 5 : Tree Vector

Figure 7: Derived Tress of Parser

1425

Generator Output: म ल र र

 र र |

Figure 8: Derived Tress of Generator

4.1 TAG Generator Performance

Analysis with PARAM Shavak

Aim of this experiment is to analyze Performance

of TAG Generator using multi-core programming

on PARAM Shavak*. Virtual Machine has been

created by VMware to analyze the performance of

Generator. Various test have been carried out to

evaluate the Performance of EILMT System with

different cores through vnc viewer . During the

Test CPU usages and memory Utilizations has

been observed.

TAG generator performance experiment on

PARAM Shavak with different number of cores.

Data Number of Cores

Time in Second

 1 core 2

core

4

core

6

core

8

core

12

core

16

core

Sample 1

(217 words)

36 34 32 29 23 20 17

Sample 2

 (240 words)

32 21 16 14 12 12 11

Sample 3

(480 words)

58 36 28 26 24 23 21

Sample 4

 (960 words)

110 74 52 49 46 42 40

Table 1: Performance experiment table

Figure 10: TAG generator performance experiment

on PARAM Shavak

Above graph shows as we increase sample size,

execution time decreases with each added cores

during experiment while CPU usage increased 90-

99 % and Memory utilization has been observed

(2.1 to 2.8 GB) during test run

*PARAM Shavak: Supercomputer in a Box

solution, aims to provide computational resource

with advanced technologies to perform the high-

end computations on a larger scale for the

scientific, engineering and academic

programmers. PARAM Shavak is a ready-to-use

affordable supercomputer pre-loaded with all the

required system software and applications from

selected scientific and engineering domains.

5 Conclusion

In this paper, we have discussed some of the

major tasks involved in the development of

TAG generator using TAG formalism for

translation from English to Hindi Language. All

the examples illustrated above are taken from

the output generated by the machine translation

system developed by us. The effectiveness of

this approach is tested by experiments on

sample corpus abstract taken from existing

resources. We have implemented TAG

generator as a part of research in Machine

Translation system based on Tree Adjoining

Grammar. Firstly, we carried out experiments

on web application (integrated MT System

using TAG based Parser and Generator)

running on Windows and Linux platform to

provide a baseline. We have demonstrated that

Parser and Generator are two core components

in Machine Translation System. The system can

handle simple and complex sentences with

considerably good accuracy rate.

Figure 11: TAG generator performance experiment on

PARAM Shavak

1436

References

Joshi, A. K., Levy, L., and Takahashi, M. (1975). Tree

Adjunct Grammars. Journal of Computer and System

Sciences.

Joshi, A. K and Yves Schabes. 1997. Tree Adjoining

Grammars. In Handbook of Formal Languages,

volume 3, pages 69–123. Springer-Verlag, Berlin.

Nederhof, M.-J. (1998). an alternative LR algorithm

for TAGs. In Proceedings of the 36th Annual Meeting

of the Association for Computational Linguistics and

16th International Conference on Computational

Linguistics, Montreal, Canada.

Khalil Sima’an. 2000. Tree-gram parsing: Lexical

dependencies and structural relations. In Proceedings

of the 38th Annual Meeting of the Association for

Computational Linguistics, Hong Kong, China

Prolo, C. A. (Feb., 2002b). LR parsing for Tree

Adjoining Grammars and its application to corpus-

based natural language parsing. Ph.D. Dissertation

Proposal, Department of Computer and Information

Science, University of Pennsylvania.

Karin Harbusch and Jens Woch. 2000d. Reuse of

plan–based knowledge sources in a uniform tag–

based generation system. Under submission, see:

http://www.uni-koblenz.de/~harbusch/plantotag.ps.

Schabes, Y. and Vijay-Shanker, K. (1990).

Deterministic left to right parsing of tree adjoining

languages. In Proceedings of 28th Annual Meeting of

the Association for Computational Linguistics, pages

276–283, Pittsburgh, Pennsylvania, USA.

Tomita, M. (1985). Efficient Parsing for Natural

Language. Kluwer Academic Publishers, Boston,

MA, USA.

Nicolas Nicolov. 1998. Memoisation in sentence

generation with lexicalized grammars. In Abeill´e et

al.(Abeill´e et al., 1998), pages 124–127.

XTAG Research Group, T. (1998). A Lexicalized

Tree Adjoining Grammar for English. Technical

Report IRCS 98-18, University of Pennsylvania.

David D. McDonald and James D. Pustejovsky.

TAGs as a grammatical formalism for generation.

In Proceedings of the 23rd Annual Meeting of the

Association for Computational Linguistics, pages

94-103, University

J. firgen Wedekind. Generation as structure driven

derivation. In Proceedings of the 12th International

Conference on Computational Linguistics, pages

732- 737, Budapest, Hungary, 1988.

Stuart M. Shieber. A uniform architecture for

parsing and generation. In Proceedings of the 12th

International Conference on Computational

Linguistics, pages 614-619, Karl Marx University of

Economics, Budapest, Hungary, 22-27 August 1988.

David D. McDonald and James D. Pustejovsky. TAGs

as a grammatical formalism for generation. In

Proceedings of the 23rd Annual Meeting of the

Association for Computational Linguistics, pages 94-

103, University

J. firgen Wedekind. Generation as structure driven

derivation. In Proceedings of the 12th International

Conference on Computational Linguistics, pages 732-

737, Budapest, Hungary, 1988.

Stuart M. Shieber. A uniform architecture for parsing

and generation. In Proceedings of the 12th

International Conference on Computational

Linguistics, pages 614-619, Karl Marx University of

Economics, Budapest, Hungary, 22-27 August 1988.

Marc Dymetman and Pierre Isabelle. Reversible logic

grammars for machine translation. In Proceedings of

the Second International Conference on Theoretical

and Methodological Issues in Machine Translation of

Natural Languages, Pittsburgh, Pennsylvania, 1988.

Carnegie-Mellon University.

Yves Schabes and Aravind K. Joshi. The relevance of

lexicalization to parsing. In Proceedings of the

International Workshop on Parsing Technologies,

pages 339-349, Pittsburgh, Pennsylvania, 28-31

August 1989. Carnegie-Mellon University.

http://www.uni-koblenz.de/~harbusch/plantotag.ps
http://www.uni-koblenz.de/~harbusch/plantotag.ps

