Free Word Order in Sanskrit and Well-nestedness

Sanal Vikram and Amba Kulkarni
sanal.vikram@gmail.com, ambakulkarni@uohyd.ac.in
Department of Sanskrit Studies, University of Hyderabad

Abstract

The common wisdom about Sanskrit is that it is free word order language. This word order poses challenges such as handling non-projectivity in parsing. The earlier works on the word order of Sanskrit have shown that there are syntactic structures in Sanskrit which cannot be covered under even the non-planarit. In this paper, we study these structures further to investigate if they can fall under well-nestedness or not. A small manually tagged corpus of the verses of Śrīmad-Bhagavad-Gītā (BhG) was considered for this study. It was noticed that there are as many well-nested trees as there are ill-nested ones. From the linguistic point of view, we could get a list of relations that are involved in the planarity violations. All these relations had one thing in common—that they have unilateral expectancy. It was this loose binding, as against the mutual expectancy with certain other relations, that allowed them to cross the phrasal boundaries.

1 Introduction

Sanskrit is inflectionally rich and it rarely uses position to encode any syntactic or semantic relation between words. This enables Sanskrit to move the words freely in a sentence. Within Indian tradition, the word order was regarded as free, provided the proximity (sannīdhi) is not violated. The Indian theorists found the sentences with different arrangements of words to be equivalent in meaning, with an exception of subject-predicate (uddeṣya-vidheyā). The difficulty in understanding the verses due to deviation from the ‘default’ word order, however, had been realised. The commentators commenting on the verses have followed this ‘default’ word order known as the anvaya of a verse (slokā)1. But this default word order is not followed strictly either by the commentators or by the authors while composing prose. When the Sanskrit texts started being translated into fixed word order European languages, the free word order of Sanskrit had been noted. The westerners tried to propose a framework for the Sanskrit word order. However, these studies also lead to only a preferential, or frequent arrangement, and not ‘the’ arrangement. The deviations were considered to be the exceptions. Even while discussing the syntax, much emphasis had been laid on the concord and government rather than order.

Though Sanskrit allows free movement of words, and there are preferential word orders, certainly not all permutations of the words are allowed. So the attention of the researchers then was drawn to the restrictions on word order rather than possible word orders. The first systematic account of the word order in Sanskrit was by Staal (1967). He introduced a concept of ‘wild tree’ which allows the movement of the items within a phrase freely. In this model, any two items from different phrases cannot interleave or the words in one phrase cannot leave their place and move to the domain of other phrases.

This model was formalised and empirically tested by Gillon on a corpus of approximately thousand Classical Sanskrit prose sentences. Half of the sentences of this corpus was from a single text,2 and the other half was selected at random from the sentences found in Apte (1925). His empirical observations confirm the model suggested by Staal

viśeṣam puraśṛtya viśeṣam tadāntraram kartṛkarmakriyayuktam etad anvayalaksanaṃ ||
(Samāsacakra karikās 4, 10)

(English: Starting with kartṛ, followed by other words, placing the non-finite verb forms such as kvā, tumun, hyap in between, place the main verb at the end. Starting with adjectives, targeting the headword, in the order of kartṛ-karma-kriya gives an anvaya (natural order of words).)

2Prose commentary by Dharmakīrti on the Pramāṇavārttika.
with an exception of movement of genitives and adjectives across the clause boundaries.

Aralikatti (1991) studies the modern Sanskrit texts and conversations from the point of view of the flexibility in word order. He found that the modern writings and the conversations follow the default word order. Scharf et al. (2015) presents the preliminary observations with regards to the comparison of the word order in prose and verse which confirm more flexibility in verses than in prose.

In order to develop a computational parser for Sanskrit, these theoretical insights are very much useful. Kulkarni et al. (2015) studied and carried out an empirical study of the verses in Srimad-Bhagavad-Gītā(BhG). The aim of this study was to gain insights regarding the flexibility in the word order to build a computational model of grammatical sentences in Sanskrit. They could fit a weakly non-projective (or planar) model for the Sanskrit sentences, barring a few cases. One important observation was that the number of cases of violation of planarity condition in verse was higher than the number of exceptions studied by Gillon in prose. Another observation was with respect to the relations involved in the planarity violation. It was observed that in addition to the two relations viz. the adjective (višešaṇa) and the genitive, pointed out by Gillon, a few other relations such as vocative, negation etc. also violated the planarity of the graph. But these relations were not as frequent as the genitive and adjective. At the same time, the behaviour of these relations was the same irrespective of whether the text is a prose or a verse.

These relations which do not conform to the planar graphs had a special status. A peep into the Indian theories of verbal cognition revealed that these exceptions correspond to the cases where the words have unilateral expectancy (utthāpya ākāṅksā). Such grammatically accepted sentences were studied further in order to build a proper computational model for parsing them. In this paper, we test whether the exceptions to the planar graphs fall under the category of well-nested graphs or not. The organisation of the rest of the paper is as follows. In the next section, we describe various parameters to classify the syntactic structures mathematically. In the third section we discuss two major concepts—the concept of expectancy (ākāṅksā) and the concept of proximity (sānædhī)—from Indian theories of verbal cognition (sānædbodha) that are useful from the point of view of dependency. In the fourth section, we describe the empirical experiments we carried out to classify the cases of proximity violation. We show that the violations do occur both in the well-nested as well as ill-nested graphs and that the non-planarity is mainly due to the adjectival and genitive relations with a few cases of other non-kāraṇa relations such as negation, vocative, conjunction, etc. Finally we conclude that the utthīta and utthāpya ākāṅksā provide a better classification for the non-planar graphs rather than well-nested and ill-nested classification.

2 Dependency Structures

In this section we present the formal definition of various mathematical structures associated with the dependency. The dependency parse of a sentence is expressed in the form of a tree structure. This tree is a Directed Acyclic Graph with one root node, and all other nodes connected to at least one other node in the tree by a direct edge.

2.1 Projectivity Principle

The principle of projectivity imposes certain constraints on the dependency tree which bans certain dependency structures.

A sentence is projective if and only if we can draw a dependency tree whose every node can be projected by a vertical line onto its word form in the surface string without crossing another projection or a dependency edge. Thus, if A depends directly on B and some other element C intervenes between them (in linear order of string), then C depends directly on A or on B or on some other intervening element. Thus the projectivity requires the node to dominate a continuous substring of the sentence and bans on discontinuous constituents. The intuitive ‘wild tree’ notion of Staal comes very close to this projectivity principle. Dependency grammars that allow only projective structures are closely related to the context-free grammars (Gaifman, 1965), and hence can be parsed in cubic time (Eisner, 1996).

It was noticed that there are certain constructions in natural languages that do not fit in with the dependency tree satisfying the projectivity principle. Hence the constraint was further relaxed, so as to allow some non-projectivity. Figure 1 shows one dependency graph exhibiting non-projectivity.
2.2 Weak Non-projectivity (Planarity)

A dependency tree is weakly non-projective if there is no crossing among the relation edges when plotted on one side of the sentence (either above or below). This is also a planar graph. The planar graph in computational linguistics is the same as the one from the computer science with one modification that all the edges are drawn on the same side (either above or below) of a sentence. Thus a dependency graph is planar, if it does not contain nodes \(i, j, k, l\) such that \(i < j < k < l\) and edge \((i, k)\) and edge \((j, l)\).

For example, Figure 1 shows the crossing of a dependency relation with the projection. But the same dependency relations when drawn with words arranged in a linear order and the edges drawn above the sentence, the crossing disappears (See Figure 2).

\[\text{Figure 1: Non Projective Graph}\]

\[\text{Figure 2: Planar dependency graph for (1)}\]

2.3 Well-nestedness

The well-nested constraint imposes restrictions on the positioning of the disjoint sub-trees. Two trees are called disjoint if neither of their roots dominates the other. Two subtrees \(T_1\) and \(T_2\) interleave, iff there are nodes \(l_1, r_1\) of \(T_1\) and \(l_2, r_2\) of \(T_2\), such that \(l_1 < l_2 < r_1 < r_2\). A dependency graph is well-nested, iff no two of its disjoint subtrees interleave. If the two trees that interleave are not disjoint, that is if the root of one tree governs the root of the other tree, then the interleaving of edges in such trees is allowed. Dependency trees which have overlapping edges across disjoint subtrees are considered as ill-nested.

\[\text{Figure 3: Well-nested graph}\]

\[\text{Figure 4: Ill-nested graph}\]

\[\text{Figure 5: Ill-nested graph}\]

In the next section, we look at some linguistic concepts that are useful for understanding the potency of various dependency relations in the interleaving.

3 Indian Theories

According to the exegesists (mīmāṃsakas) a sentence is defined as

\text{arthaikatvāt ekam vākyam sākāṃśam cet vibhāge syāt | MS 2.1.46}

(A sentence is an integral unit conveying a single purpose, and when it is split into two parts, some words in one part would have an expectancy for...
This implies that each word in a sentence either satisfies an expectancy of or has an expectancy for some other word in a sentence. That is every word in a sentence should be connected with at least one other word in it. Let us represent the words in a sentence by the nodes, and the expectancies between words by edges joining the nodes. Two nodes connected by an edge do not have the same status. One of them has an expectancy and the other one satisfies the expectancy. Hence we use directed edges to mark this asymmetry.

3.1 Expectancy and Proximity

Indian grammatical texts discuss two kinds of expectancies—utthita and utthāpya. The expectancies which are mutual, direct and natural are termed niyata/utthita ākāṅksā (restricted or risen expectancy) (Kunjunni Raja, 1963). The expectancy between a verb and the words denoting kārakas or between relational words falls under this category. In a Sanskrit sentence ‘dvāram pidhehi’ (close the door), the verb ‘close’ has an expectancy of a karma (object) which is fulfilled by the word ‘dvāram’ (the door). Inversely, a verb is expected with the word ‘door’ mentioning what to do with the door. Expectancies of kāraka relations are mutual. In contrast to mutual expectancy, the expectancy that is unilateral is called aniyata or utthāpya ākāṅksā (unrestricted or to be raised). This is aroused only if necessary. So it is potential. For example, in a phrase such as ‘white cow’, the expectancy of ‘white’ for a noun is natural, but the expectancy of ‘cow’ to have an adjective is potential. It gets aroused only in the presence of an adjective such as ‘white’. Even a noun in apposition may arouse an expectancy. Similarly, a noun in genitive arouses an expectancy of another noun. And this expectancy is uni-directional and not mutual.

Another concept from the Indian grammar viz. sannidhi (proximity) puts certain constraints on the word order. It states that the words that are related to each other should not be intervened by other words.

The proximity, along with the expectancy was further studied by Kulkarni et al. (2015). They carried out an empirical evaluation of a manually annotated corpus to understand the nature of this ban on crossing of dependency relations. They found that one of the relations involved in the crossing of edges was corresponding to the unilateral expectancy. A few cases were also found where both the relations involved had mutual expectancies.

In this paper, we study these cases where the planarity constraint is violated and investigate if these cases of violations are well-nested or not.

4 Dependency Graphs and Planarity

Sanskrit is inflectionally rich. So the common wisdom is that we can move around the words in any order. For example, the following sentence with three words,

(1) śvetaḥ aśvah dhāvati
White horse runs
can have $3! = 6$ permutations. But among these the following permutation, for example,

(2) aśvah dhāvati śvetaḥ.
A horse runs white.

is non-projective (See Figure 6).

![Figure 6: Non Planar Graph](image)

However if the relation edges are plotted above the sentence, we notice that it produces a planar graph (See Figure 7).

![Figure 7: Planar dependency graph for (2)](image)

But every non-projective graph may not produce a planar graph. For example, consider sentence (3).

(3) Rāmāḥ dugdham pītvā
Rama{nom.} milk{acc.} drink{abs.}
śālām gacchati.
school{acc.} go{3p.sg.}.
Rama goes to school after drinking milk.
This sentence has 5 words. But not all the 5! (=120) combinations are meaningful. The following sentence obtained by permuting the words in the above sentence is not meaningful.

(4) *Ramah sālām dugdham
 Rama{nom.} school{acc.} milk{acc.}
gacchati pītvā,
go{3p.sg.} drink{abs.},
*Rama to school milk goes drinking.

It not only violates the projectivity principle, but even the graph is non-planar as there are crossings (See Figure 8). And this sentence is grammatically ill-formed.

(5) esaḥ vāk-visaya-bhūtah saḥ te vīrāh.
This speech-topic-become he your hero.

This is the hero who has become the topic of your speech.

In this sentence, the demonstrative adjective ‘saḥ’ modifying a predicate noun ‘vīrāh’, intervenes between its predicate ‘bhūtah’ and the agent (kartā) of the ‘speech’ (vāk) viz. ‘te’, as shown in Figure 9.

Below is a part of a verse from Śrīmad-Bhagavad-Gītā (BhG) that exhibits similar phenomenon.

cāñcalam hi manah kṛṣṇa
pramāthi balavat dydhām |
tasya ahām nigrāham manye
vāyōḥ iva suduṣkāram || BhG 6.34

(English: For, O Krishna, the mind is unsteady, turbulent, strong and obstinate, I consider its control to be as difficult as of the wind.)

In the second line of this verse the main verb is ‘manye’ (consider) whose kartā is ‘ahām’ (I). The karma of the verbal noun ‘nigrāham’ (control) is the pronominal ‘tasya’ (its), which refers to ‘manah’ (mind) in the first part of the verse. Thus the word sequence ‘tasya ahām nigrāham manye’ produces two crossing edges involving the relations of kartā and karma.

Let us see one more example. This is 18th sloka of 10th chapter.

vistareṇa ātmano yogam
vibhūtim ca janārdana |
bhūyāḥ kathaya trpiṭḥi hi
śṛṇvato nāsti me ‘mrṭam || BhG 10.18

(English: O Janardan, tell me again elaborately your own yoga and manifestations. For, I’m not satisfied when I listen to your immortal words.)

In this verse, again we look at the second part of the second line in the verse. The kartā of the main verb ‘asti’ (is) is ‘trpiṭṭh’ (satisfaction), the karma of ‘śṛṇvataḥ’ (while listening) is ‘amṛtam’ (immortal), and there is a genitive relation between ‘me’ (my) and ‘trpiṭṭh’ (satisfaction). We see two crossings, one between the kartā and karma, and the other between genitive and karma.
There is an important difference between the crossing in Figures 9, 10 and 11 though all of them are grammatically sound. In Figure 9 the relations involved in crossings are genitive and adjective. In Figure 10 the relations are kartā and karma, which are the arguments of the verb, called kāraka relations in Sanskrit grammar. So in one sentence, there is a crossing between two kāraka relations. In another, the crossing is between non-kāraka relations. As we have seen earlier, the kāraka relations have mutual expectancies, while the non-kāraka relations such as genitive and adjective have unilateral expectancy. And in Figure 11, we see both types of crossings. Further we notice that while the graphs of Figure 9 and Figure 10 are well-nested, the graph of Figure 11 is ill-nested.

Now we describe the empirical observations of the dependency trees of BhG with special reference to the crossings involved and the well-nestedness.

4.1 Experiment

Sanskrit is a low resource language from the point of view of computational resources. For this experiment, we needed treebanks. A treebank developed under SHMT\(^3\) consists of simple prose sentences, which hardly shows any crossings. There are some efforts to develop treebanks following the Universal Dependency (UD) (Hellwig et al., 2020). Since we aim at using the Pāṇinian grammar, the UD treebanks were not useful for our experiment. Therefore we decided to base our experiments on the same treebank that was used by Kulkarni et al. (2015). This treebank consists of verses from Śrīmad-Bhagavad-Gītā. It has 700 verses. Some verses were made up of more than one sentence while in some cases more than one verse formed one sentence. We followed the mīmāṃsaka’s definition of a sentence given in section 3.

There were several ślokas which consisted of more than one sentence with an ellipsis of one or more word. For the evaluation purpose, we considered only complete sentences. So all the sentences with ellipsis of the verbs were not considered. For example, the first part of the verse BhG 1.15

\[\text{pāñcajanyam hrṣikeśah} \]
\[\text{deva-dattam dhanañjayaḥ} \]

consists of two sentences,

\[\text{pāñcajanyam hrṣīkeśaḥ (dadhmau)}\]
Pāñcajanya Hṛṣīkeśa (blew)

\[\text{deva-dattam dhanañjayaḥ (dadhmau)}\]
Devadatta Dhanañjaya (blew)

There are two sentences, and both of them require a verb ‘dadhmau’, which is to be borrowed from the next part. Such parts of verses which are devoid of a verb are not considered for the evaluation.

Similarly, in Sanskrit, the copula is absent. The tagging scheme demands the presence of a verb, and therefore, while tagging the verses, the copula is provided. Since in the original verses the copula is absent, we have not considered these verses/part of these verses where such copula is provided manually.

In order to decide whether the dependency graph is well-nested or not, we need to distinguish between the relations that show governance from those that do not show governance. All the relations that have mutual expectancy show governance. Table 1 lists all the relations that have mutual expectancy, and Table 2 shows all the relations that have only unilateral expectancy.

kartā	kartṛsamāṇādhiṣṭharaṇam
karma	karmasamāṇādhiṣṭharaṇam
karaṇam	sampradānam
apādānam	adhiṣṭharaṇam

Table 1: Relations with mutual expectancies

sambodhyah	sambhandhaḥ	viṣeṣaṇam
sāṣṭhīsambhandhaḥ	samuccitam	pratiṣedham
samuccayadyotakah	prayojanam	nirdhāraṇam
samānakālaḥ	kriyāviṣeṣaṇam	hetuḥ
prakāraḥ	pūrvakālaḥ	

Table 2: Relations with unilateral expectancies

In Figure 3, the edge 1 → 3, which crosses the edge 2 → 5, should be from Table 1. If either 1 → 3 is not from Table 1, or the two edges belong to two disjoint trees as in Figure 5, then the dependency graph is ill-nested. With the set of relations as described in Tables 1 and 2 we classified the dependency graphs of BhG verses. Table 3 shows the results of this empirical study.

\[\text{pāñcajanyam hrṣīkeśah} \]
\[\text{deva-dattam dhanañjayaḥ} \]

\[\text{pāñcajanyam hrṣīkeśaḥ} \]
Pāñcajanya Hṛṣīkeśa (blew)

\[\text{deva-dattam dhanañjayaḥ} \]
Devadatta Dhanañjaya (blew)

\[\text{pāñcajanyam hrṣīkeśaḥ} \]
Pāñcajanya Hṛṣīkeśa (blew)

\[\text{deva-dattam dhanañjayaḥ} \]
Devadatta Dhanañjaya (blew)

In Figure 3, the edge 1 → 3, which crosses the edge 2 → 5, should be from Table 1. If either 1 → 3 is not from Table 1, or the two edges belong to two disjoint trees as in Figure 5, then the dependency graph is ill-nested. With the set of relations as described in Tables 1 and 2 we classified the dependency graphs of BhG verses. Table 3 shows the results of this empirical study.

\[\text{pāñcajanyam hrṣīkeśah} \]
\[\text{deva-dattam dhanañjayaḥ} \]

\[\text{pāñcajanyam hrṣīkeśaḥ} \]
Pāñcajanya Hṛṣīkeśa (blew)

\[\text{deva-dattam dhanañjayaḥ} \]
Devadatta Dhanañjaya (blew)

kartā	kartṛsamāṇādhiṣṭharaṇam
karma	karmasamāṇādhiṣṭharaṇam
karaṇam	sampradānam
apādānam	adhiṣṭharaṇam

Table 1: Relations with mutual expectancies

sambodhyah	sambhandhaḥ	viṭeṣaṇam
sāṣṭhīsambhandhaḥ	samuccitam	pratiṣedham
samuccayadyotakah	prayojanam	nirdhāraṇam
samānakālaḥ	kriyāviṭeṣaṇam	hetuḥ
prakāraḥ	pūrvakālaḥ	

Table 2: Relations with unilateral expectancies

3A project funded by Meity for the Development of Computational Tools and Sanskrit-Hindi Machine Translation.
Analysis of BhG

<table>
<thead>
<tr>
<th>Analysed sentences</th>
<th>1396</th>
<th>100.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weakly non-projective</td>
<td>1153</td>
<td>82.59%</td>
</tr>
<tr>
<td>Only Well-nested</td>
<td>49</td>
<td>3.51%</td>
</tr>
<tr>
<td>Only Ill-nested</td>
<td>74</td>
<td>5.30%</td>
</tr>
<tr>
<td>Both Ill and well nested</td>
<td>120</td>
<td>8.60%</td>
</tr>
</tbody>
</table>

Table 3: Analysis of BhG

5 Discussions

The majority of the sentences (around 83%) have dependency graphs that are weakly non-projective. The remaining 17% graphs did not have planar graphs as they involved crossings of the dependency relations. Several of the sentences had more than one crossing. Some of these crossings show well-nestedness while the others show ill-nestedness. We notice that trees with only well-nested crossings are considerably less than trees with only ill-nested crossings. Further, there are almost double the number of sentences that have both ill-nested as well as well-nested crossings. Any graph that involves both ill-nested as well as well-nested crossings, essentially is an ill-nested graph. Thus we notice that almost 14% of the sentences have ill-nested graphs. Thus every sixth sentence of the corpus has a non-planar graph involving crossings between the disjoint graphs, with the majority of them being ill-nested. In order to understand more about these crossings, we looked at the relations involved in them. Table 4 shows the distribution of relations with mutual and unilateral expectancies in crossings.

We noted down the relations involved in crossings, and counted the number of instances of crossings that show well-nestedness or ill-nestedness. As expected, we noticed that, barring a few cases, at least one relation among the two relations involved in crossing has unilateral expectancy. Kulkarni et al. (2015) has discussed various examples of crossing where both the relations are with mutual expectancy.

<table>
<thead>
<tr>
<th>Relations</th>
<th>Well-nested</th>
<th>Ill-nested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutual × Mutual</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>Mutual × Unilateral</td>
<td>109</td>
<td>136</td>
</tr>
<tr>
<td>Unilateral × Unilateral</td>
<td>82</td>
<td>99</td>
</tr>
</tbody>
</table>

Table 4: Relations involved in crossings

Now we provide one example each of the crossings with unilateral expectancies. The first one corresponds to a well-nested graph involving a crossing between a *kartā* and a *viśeṣaṇam*. This is from the first line of *śloka* 7.2.

\[jñānam te aham sa-viṣeṣaṇam \]
\[idam vakṣyāmi a-śeṣatah | \]

(Eng: I will tell you this knowledge combined with realisation in detail.)

In this tree, the two edges labelled adjective and *kartā* belong to two disjoint trees, and the head node ‘vakṣyāmi’ of the *kartā* relation governs the head node ‘jñānam’ of the adjectival relation. Hence this is a well-nested tree with a crossing between a relation of *kartā* having mutual expectancy with a relation of adjective having unilateral expectancy.

Now we present another example. This is 21st *śloka* from the same 7th chapter.

\[yah yah yāṁ yāṁ tanuṁ bhaktah \]
\[śraddhayā arcitum icchati | \]

(Eng: Whichever form any devotee wants to worship.)

In this dependency graph, we notice that there is a crossing between *karma* and an adjective, and neither of the heads governs the other, giving rise to an ill-nested graph. This graph also shows another crossing between a *kartā* and a *karma* relation, which corresponds to the well-nested graph.

Now we present two examples, where both the relations have unilateral expectancy. The first one is a well-nested graph which corresponds to the 4th *śloka* of 18th chapter.

\[niścayaṁ śrunu me tatra \]
\[tyāge bharatasyatam | \]
(Eng: O the most excellent among the descendants of Bharata, hear from me the firm conclusion regarding the abandonment.)

niṣcayam śrūtu me bharatasattama
decision hear my Bharata-descendant

Figure 14: Analysis of BhG 18.4

In this graph, there is a crossing of two unilateral relations viz. genitive and vocative. The graph is well-nested, as the head of the genitive is governed by the head of the vocative relation.

The example of an ill-nested graph involving two unilateral relations is the first śloka of the 9th chapter.

idam tu te guhyatamam
pravaksyāmī anasūyave |
jñānam vijñānasahitam
yat jñātvā moks. yasea´subhāt || BhG 9.1

(Eng: I shall now reveal to you the non-envious, the greatest secret, the knowledge combined with realisation, having known which you shall be free from evil.)

We show the partial graph with crossing relations.

Figure 15: Analysis of BhG 9.1

In this graph, we see three crossings. The first one between the recipient and the adjective, the second one between the karma and the adjective, and the third one between the two adjectives. The first two crossings correspond to the well-nested graph. But the third one corresponds to the ill-nested one.

Finally, among the unilateral relations that contribute to either well-nested or ill-nested graphs, adjective, vocative, genitive and negation are prominent, followed by conjunction. Among the relations having mutual expectancy, kartā, karma and adhikaraṇam are more prominent.

6 Conclusion

Sanskrit, as the common wisdom goes, is a free word order language. The Calder mobile model of Staal which conjectures the free movement of the words within a phrase was found to be partially correct. Gillon through empirical study pointed out that there are certain cases of violation of this model. Later Kulkarni et al, again through the empirical study showed that the cases of violations of planarity correspond to the relations exhibiting unilateral expectancy. In this paper, we showed that there are as many cases of well-nested crossings as ill-nested ones. Thus not all syntactic structures of Sanskrit can be covered under the well-nested trees. A majority of non-planar graphs are ill-nested. In most of the cases, unilateral relations are involved in the violation of planarity as well as well-nestedness.

References

