
ICON 2020

17th International Conference on Natural Language
Processing

Proceedings of the Conference

December 18 - 21, 2020
Indian Institute of Technology Patna, India

©2020 NLP Association of India (NLPAI)

ii

Preface

Research in Natural Language Processing (NLP) has taken a noticeable leap in recent years. The
tremendous growth of information on the web and its easy access has stimulated a large interest in
the field. India, with multiple languages and continuous growth of Indian language content on the
web, makes a fertile ground for NLP research. Moreover, the industry is keenly interested in obtaining
NLP technology for mass use. Internet search companies are increasingly aware of the large market for
processing languages other than English. For example, search capability is needed for content in Indian
and other languages. There is also a need for searching content in multiple languages, and making the
retrieved documents available in the language of the user. As a result, a strong need is being felt for
machine translation to handle this large instantaneous use. Information Extraction, Question Answering
Systems, and Sentiment Analysis are also showing up as other business opportunities.

These needs have resulted in two welcome trends. First, there is a much wider student interest in
getting into NLP at both postgraduate and undergraduate levels. Many students interested in computing
technology are getting interested in natural language technology, and those interested in pursuing
computing research are joining NLP research. Second, the research community in academic institutions
and government funding agencies in India have joined hands to launch consortia projects to develop NLP
products. Each consortium project is a multi-institutional endeavour working with a common software
framework, common language standards, and common technology engines for all the different languages
covered in the consortium. As a result, it has already led to the development of basic tools for multiple
languages that are interoperable for machine translation, cross-lingual search, handwriting recognition,
and OCR.

In this backdrop of increased student interest, greater funding, and most importantly, common standards
and interoperable tools, there has been a spurt in research in NLP on Indian languages whose effects we
have just begun to see. A great number of submissions reflecting good research is a heartening matter.
There is an increasing realization to take advantage of features common to Indian languages in machine
learning. It is a delight to see that such features are not just specific to Indian languages but to a large
number of languages of the world, hitherto ignored. The insights so gained are furthering our linguistic
understanding and will help in technology development for hopefully all languages of the world.

For machine learning and other purposes, linguistically annotated corpora using the common standards
have become available for multiple Indian languages. They have been used for the development of basic
technologies for several languages. A larger set of corpora are expected to be prepared in the near future.

These conference proceedings contain papers selected for presentation in technical sessions of ICON-
2020. We are thankful to our excellent team of reviewers from all over the globe who deserve full
credit for the hard work of reviewing the high-quality submissions with rich technical content. From 130
submissions, 66 papers were selected, 29 long papers, 34 short papers, 3 doctoral consortium papers,
representing a variety of new and interesting developments, covering a wide spectrum of NLP areas and
core linguistics. Besides presentations, the conference also hosted 2 tutorials, 1 workshop, 3 shared tasks,
and 18 system demonstrations.

We are deeply grateful to Prof. David Yarowsky from John Hopkins University (USA), Prof. Iryna
Gurevych from Technische Universität Darmstadt (Germany), and Prof. Eduard Hovy from Carnegie
Mellon University for giving the keynote lectures at ICON. We also extend our heartfelt thanks to Dr
Soujanya Poria, Singapore University of Technology and Design, Singapore for giving the invited talk at

iii

ICON.

We thank all the area chairs for the various tracks at ICON 2020, especially, Sobha Lalitha Devi
(Language Resources, NLP Language Documentation and Preservation), Ashwini Vaidya, Pawan Goyal
(Syntax and Lexical Semantics), Praveen Kumar G S (Named Entity Recognition, Question Answering,
Information Extraction, Dialogue Systems), Amitava Das, Radhika Mamidi (Sentiment and Emotion
Analysis), Karunesh Arora, Sandipan Dandapat (Machine Translation), Vasudeva Varma, Dipankar
Das (Summarization, Natural Language Generation, Information Retrieval and Text Mining), C V
Jawahar (Multimodality, Speech Recognition, Speech Synthesis), Raksha Sharma, Nikesh Garera, (NLP
for Digital Humanities, NLP for Education), Samar Husain (Ethics in NLP, Cognitive Modelling and
Psycholinguistics), Karthik Sankaranarayanan, Ashutosh Modi (Machine Learning Applications to NLP,
Interpretability and Explainability of NLP models). We also thank Gurpreet Singh Lehal, Sanjay
Dwivedi, Rajeev R R, Sanjeev Gupta, Neeraj Mogla, Amba Kulkarni (Co-Chairs, Tools Contest), Sudip
Kumar Naskar, Sriparna Saha (Co-Chairs, Workshop/Tutorial), Preethi Jyothi (Doctoral Consortium
Chair) for taking the responsibilities of the events.

We are thankful to the team members of the Artificial Intelligence-Natural Language Processing-
Machine Learning (AI-NLP-ML) Group of the Department of Computer Science and Engineering for
making the organization of the event at the Indian Institute of Technology Patna (IIT Patna) a success.
We heartily express our gratitude to Pushpak Bhattacharyya, Asif Ekbal, Sriparna Saha, Soumitra Ghosh,
Ratnesh Joshi, Prabhat Kumar Bharti, Gitanjali Singh, Tirthankar Ghosal, Apoorva Singh, and other AI-
NLP-ML team members at IIT Patna for their timely help with sincere dedication to make this conference
a success. We also thank and all those who came forward to help us with this task.

Finally, we thank all the researchers who responded to our call for papers and all the participants of
ICON-2020, without whose overwhelming response the conference would not have been a success.
We wholeheartedly thank all the reviewers who accepted our invitation and spent their valuable time
reviewing the papers to maintain their high international standards. We thank the session chairs for
finding out time for our conference.

December 2020 Pushpak Bhattacharyya-PC Co-chair
Patna Dipti Misra Sharma-PC Co-chair
. Rajeev Sangal-General Chair

Asif Ekbal-Organizing Committee Chair

iv

Conference General Chair

Rajeev Sangal, IIIT Hyderabad, India

Program Chairs:

Dipti Misra Sharma, IIIT Hyderabad, India (Co-Chair)
Pushpak Bhattacharyya, IIT Bombay, India (Co-Chair)

Organizing Chair:

Asif Ekbal, IIT Patna, India

Program Committee:

Sobha Lalitha Devi, AU-KBC Research Centre, Anna University
Ashwini Vaidya, IIT Delhi
Pawan Goyal, IIT Kharagpur, India
Praveen Kumar G S, Samsung
Amitava Das, Wipro AI Lab
Radhika Mamidi, IIIT Hyderabad, India
Karunesh Arora, CDAC
Sandipan Dandapat, Microsoft
Vasudeva Varma, IIIT Hyderabad
Pushpak Bhattacharyya, IIT Bombay, India
Dipti Misra Sharma, IIIT Hyderabad
Dipankar Das, Jadavpur University
C V Jawahar, IIIT Hyderabad
Raksha Sharma, IIT Roorkee
Samar Husain, Indian Institute of Technology Delhi, India
Nikesh Garera, Flipkart
Karthik Sankaranarayanan, IBM Reseach
Ashutosh Modi, Indian Institute of Technology Kanpur
Tanmoy Charaborty, IIIT Delhi
Sriparna Saha, IIT Patna, India
Anil Kumar Vuppala, IIIT Hyderabad
Aditya Joshi, CSIRO
Girish Palshikar, Tata Consultancy Services Limited
Manish Srivastava, IIIT Hyderabad
Vishal Goyal, Punjabi University, Patiala
Sudip Kumar Naskar, Jadavpur University
Sudeshna Sarkar, IIT Kharagpur, India
Anoop Kunchukuttan, Microsoft AI and Research
Shad Akhtar, IIIT Delhi

v

Tools Contest Chairs:

Gurpreet Singh Lehal, Punjabi University Patiala
Sanjay Dwivedi, Central University, Lucknow
Rajeev R R, ICFOSS, Trivandrum
Sanjeev Gupta, Google, Bangalore
Neeraj Mogla, Flipkart, USA
Amba Kulkarni, University of Hyderabad

Workshop/Tutorial Chairs:

Sudip Kumar Naskar, Jadavpur University
Sriparna Saha, IIT Patna, India

Doctoral Consortium Chairs:

Preethi Jyothi, IIT Bombay, India

Invited Speakers:

Prof. David Yarowsky, John Hopkins University, USA
Prof. Iryna Gurevych, Technische Universität Darmstadt, Germany
Prof. Eduard Hovy, Carnegie Mellon University
Dr. Soujanya Poria, Singapore University of Technology and Design, Singapore

vi

Referees

We gratefully acknowledge the excellent quality of refereeing we received from the reviewers. We
thank them all for being precise and fair in their assessment and for reviewing the papers in time.

Muhammad Abulaish, South Asian University
Sriparna Saha, IIT Patna, India
Zishan Ahmad, IIT Patna, India
Md. Shad Akhtar, Indraprastha Institute of Information Technology, Delhi
Ashish Anand, Indian Institute of Technology Guwahati, India
C Anantaram, Indraprastha Institute of Information Technology, Delhi
Mohd Zeeshan Ansari, Jamia Millia Islamia
Karunesh Arora, CDAC
Rakesh Balabantaray, IIIT Bhubaneswar
Kalika Bali, Microsoft Research Labs
Somnath Banerjee, University of Milano-Bicocca
Srinivas Bangalore, Interactions Corp
Debajyoty Banik, IIT Patna, India
Biswan Barik, GE Global Research
Kingshuk Basak, Samsung Research and Development
Brendan Bena, Drury University
Riyaz A. Bhat, Interactions LLC
Mehar Bhatia, IIIT-Delhi, India
Michael Carl, Kent State University
Tanmoy Chakraborty, Indraprastha Institute of Information Technology Delhi (IIIT-D), India
Sanjay Chatterji, Indian Institute Of Information Technology Kalyani
Dushyant Singh Chauhan, IIT Patna, India
Kushal Chawla, University of Southern California
Soumya Chennabasavaraj, Flipkart
Manoj Chinnakotla, Microsoft
Monojit Choudhury, Microsoft Research
Thomas Conley, University of Colorado, Colorado Springs
Sandipan Dandapat, Microsoft
Dipankar Das, Jadavpur University
Amitava Das, Wipro AI Lab
Kumar Gourav Das, Jadavpur University
Ayan Das, IIT Kharagpur, India
Niladri Sekhar Dash, Linguistic Research Unit, Indian Statistical Institute, Kolkata
Arkadia De, Indian Institute of Technology Hyderabad, India
Alok Debnath, International Institute of Information Technology, Hyderabad, India
Kuntal Dey, Accenture Technology Labs
Gihan Dias, University of Moratuwa
Sri Harsha Dumpala, Vector Institute, and Dalhousie University
Pratik Dutta, IIT Patna, India
Hridoy Sankar Dutta, IIIT Delhi, India
Indranil Dutta, Jadavpur University
Mohd Fazil, Madanapalle Institute of Technology & Science, Madanapalle, Chittoor, India
Mauajama Firdaus, IIT Patna, India

vii

Suryakanth V Gangashetty, KLEF Deemed to be University, Green Fields
Nikesh Garera, Flipkart
Ibrahim Gashaw, Mangalore University
Tirthankar Ghosal, IIT Patna, India
Deepanway Ghosal, Singapore University of Technology and Design
Soumitra Ghosh, IIT Patna, India
Prabhat Kumar Bharti, IIT Patna, India
Sanjukta Ghosh, IIT BHU, India
Souvick Ghosh, San Jose State University
Pranav Goel, Wadhwani Institute for Artificial Intelligence
Vishal Goyal, Punjabi University Patiala
Pawan Goyal, IIT Kharagpur, India
Praveen Kumar GS, Samsung
Kamal Kumar Gupta, IIT Patna, India
Deepak Gupta, IIT Patna, India
Harald Hammarstrom, Uppsala University
Rejwanul Haque, Dublin City University
Mohammed Hasanuzzaman, Cork Institute of Technology, Dublin, Ireland
Samar Husain, Indian Institute of Technology Delhi, India
Nikhil Jaiswal, TCS Research
C V Jawahar, IIIT Hyderabad
Girish Jha, Jawaharlal Nehru University
Saurav Jha, University of Lorraine
Harimohan Jha, IIT Kharagpur
Aditya Joshi, CSIRO
Nilesh Joshi, IIT Bombay, India
Preethi Jyothi, IIT Bombay, India
Mitesh M. Khapra, IIT Madras, India
Sunil Kumar Kopparapu, TCS Research, and Innovation, Mumbai
Alapan Kuila, IIT Kharagpur, India
Amba Kulkarni, University of Hyderabad,
Malhar Kulkarni, IIT Bombay, India
Pranaw Kumar, CDAC Mumbai
Niraj Kumar, Senior Researcher, and Manager, Samsung Research Institute India, Bangalore
Ritesh Kumar Dept. of Linguistics, Dr. Bhimrao Ambedkar University, Agra
Abhinav Kumar, NIT Patna, India
Abhishek Kumar, IIT Patna, India
Vijay Kumar, Ministry of Electronics and Information Technology
Anil Kumar Singh, IIT BHU Varanasi, India
Divya Kumari, IIT Patna, India
Rina Kumari, IIT Patna, India
Anoop Kunchukuttan, Microsoft AI and Research
Bibekananda Kundu, Centre for Development of Advanced Computing (CDAC) Kolkata
Sobha Lalitha Devi, AU-KBC Research Centre, Anna University
Gurpreet Lehal, Punjabi University
Abhijith Madan, International Institute of Information Technology, Bangalore, India
Avinash Madasu, Samsung R & D Institute Bangalore
Sainik Mahata, Jadavpur University

viii

Abhra Majumdar, IIT Kharagpur, India
Shrikant Malviya, IIIT Allahabad, India
Radhika Mamidi, IIIT Hyderabad, India
Soumik Mandal, Rutgers University
Soumil Mandal, SRM University
Pruthwik Mishra IIIT, Hyderabad
Sayantan Mitra, IIT Patna, India
Dr. Vinay Kumar Mittal, Professor, KL University
Ashutosh Modi, Indian Institute of Technology Kanpur
Aditya Mogadala, Saarland University
Vandan Mujadia, IIIT-Hyderabad
Animesh Mukherjee, IIT Kharagpur
Aditi Mukherjee, IIIT-Hyderabad
Siddhartha Mukherjee, Samsung R&D Institute India, Bangalore
Abhijith Athreya Mysore Gopinath, Pennsylvania State University
Abhishek Narayanan, Department of Computer Science and Engineering, PES University
Mukuntha Narayanan SundararamanNarayanan Sundararaman, IIT Patna, India
Sudip Kumar Naskar, Jadavpur University
Tapas Nayak, National University of Singapore
Hamada Nayel, Benha University
Anish Nediyanchath, Samsung R&D Institute India - Bangalore
Vasudevan Nedumpozhimana, TU Dublin
Preksha Nema, IIT Madras
Kishorjit Nongmeikapam, Indian Institute of Information Technology(IIIT) Manipur
Deepak P, Queen’s University Belfast
Jisha P Jayan, IIITMK
Partha Pakray, National Institute of Technology Silchar
Santanu Pal, Saarland University
Girish Palshikar, Tata Consultancy Services Limited
Rrubaa Panchendrarajan, National University of Singapore
Shantipriya Parida, Idiap Research Institute
Md. Aslam Parwez, Jamia Millia Islamia
Tanvina Patel, Cogknit Semantics
Kevin Patel, IIT Bombay
Sangameshwar Patil, TRDDC, TCS Research, and Innovation
Braja Gopal Patra, Department of Population Health Sciences, Weill Cornell Medicine
Abhipsa Patro, IIIT Bhubaneswar
Sayanta Paul, Indian Institute of Management
Jyoti Pawar, Goa University, Goa
Sachin Pawar, Tata Consultancy Services Ltd.
Jerin Philip, Naver Labs Europe
Soujanya Poria, Singapore University of Technology and Design
Suhan Prabhu, International Institute of Information Technology, Hyderabad
Ganesh Prasad, Samsung
S R Mahadeva Prasanna, IIT Dharwad
Michal Ptaszynski, Kitami Institute of Technology
Srinivas PYKL, IIIT Sri City
Vartika Rai, IIIT Hyderabad

ix

Sai Krishna Rallabandi, Carnegie Mellon University
Surangika Ranathunga, university of moratuwa
Hanumant Redkar, IIT Bombay
Pattabhi RK Rao, AU-KBC Research center
Paolo Rosso, Universitat Politecnica de Valencia
Vijay Rowtula, International Institute of Information Technology, Hyderabad
Pradeep Kumar Roy, Vellore Institute of Technology, Vellore
Aniruddha Roy, IIT Kharagpur
Sowmya S Sundaram, IIT Madras
Tulika Saha, IIT Patna
Atanu Saha, Jadavpur university
Sujan Kumar Saha, Dept. of CSE, Birla Institute of Technology Mesra
Saumajit Saha, TCS Research and Innovation Labs
Sovan Kumar Sahoo, IIT Patna
Pracheta Sahoo, The University of Texas at Dallas
Tanik Saikh, IIT Patna
Naveen Saini, IIT Patna
Suyash Sangwan, IIT Patna
Karthik Sankaranarayanan, IBM Reseach
Sebastin Santy, Microsoft Research
Kamal Sarkar, Computer Science and Engineering Department, Jadavpur University
Sandip Sarkar, Hijli College
Sunil Saumya, IIIT Dharwad
Moritz Schaeffer, Johannes Gutenberg University of Mainz
Peter Scharf, International Institute of Information Technology; Indian Institute of Advanced Study
Sanket Shah, MSRI
Raksha Sharma, IIT Roorkee
Ravi Shekhar, Queen Mary University of London
Manish Shrivastava, International Institute of Information Technology Hyderabad
Smriti Singh, Samsung Research UK
Thoudam Doren Singh, NIT Silchar
Sandhya Singh, IITB
Vikram Singh, IIT Patna
Jyoti Prakash Singh, NIT Patna
Pardeep Singh, Jawaharlal Nehru University
Manjari Sinha, IITKharagpur
Sunayana Sitaram, Microsoft Research India
Saurabh Srivastava,TCS Research
Keh-Yih Su, Institute of Information Science, Academia Sinica
Chanchal Suman, IIT Patna
Bapi Raju Surampudi, International Institute of Information Technology Hyderabad
Partha Talukdar, Indian Institute of Science
Gaurish Thakkar, University of Zagreb
Anil Thakur, IIT (BHU) Varanasi
Nidhi Thakur, IIT Patna
Medari Tham, Assam Don Bosco University
Uthayasanker Thayasivam, University of Moratuwa
Uma Shanker Tiwary, IIIT Allahabad
Prajna Upadhyay, IIT Delhi

x

Ashwini Vaidya, IIT Delhi
Shalaka Vaidya, IIIT Hyderabad
Vasudeva Varma, IIIT Hyderabad
Deeksha Varshney, IIT Patna
Ashraf Kamal, Jamia Millia Islamia
Sriram Venkatapathy, Amazon
Samudra Vijaya, IIT Guwahati
Anil Kumar Vuppala, IIIT Hyderabad
Saumitra Yadav, International Institute of Information Technology, Hyderabad

xi

Organized by:

Indian Institute of Technology Patna Natural Language Processing Association of India

xii

Table of Contents

The WEAVE Corpus: Annotating Synthetic Chemical Procedures in Patents with Chemical Named Enti-
ties

Ravindra Nittala and Manish Shrivastava . 1

Increasing accuracy of a semantic word labelling tool based on a small lexicon
Hugo Sanjurjo-González . 10

Treatment of optional forms in Mathematical modelling of Pãn. ini
Anupriya Aggarwal, Malhar Kulkarni . 15

Automatic Hadith Segmentation using PPM Compression
Taghreed Tarmom, Eric Atwell and Mohammad Alsalka . 22

Using multiple ASR hypotheses to boost i18n NLU performance
Charith Peris, Gokmen Oz, Khadige Abboud, Venkata sai Varada, Prashan Wanigasekara and Haidar

Khan . 30

A Grammatical Sketch of Asur: A North Munda language
Zoya Khalid . 40

English to Manipuri and Mizo Post-Editing Effort and its Impact on Low Resource Machine Translation
Loitongbam Sanayai Meetei, Thoudam Doren Singh, Sivaji Bandyopadhyay, Mihaela Vela and

Josef van Genabith . 50

Learning to Interact: An Adaptive Interaction Framework for Knowledge Graph Embeddings
Chandrahas ., Nilesh Agrawal and Partha Talukdar . 60

Inducing Interpretability in Knowledge Graph Embeddings
Chandrahas ., Tathagata Sengupta, Cibi Pragadeesh and Partha Talukdar . 70

Solving Arithmetic Word Problems Using Transformer and Pre-processing of Problem Texts
Kaden Griffith and Jugal Kalita . 76

Clickbait in Hindi News Media : A Preliminary Study
Vivek Kaushal and Kavita Vemuri . 85

Self Attended Stack-Pointer Networks for Learning Long Term Dependencies
Salih Tuç and Burcu Can . 90

Creation of Corpus and Analysis in Code-Mixed Kannada-English Social Media Data for POS Tagging
Abhinav Reddy Appidi, Vamshi Krishna Srirangam, Darsi Suhas and Manish Shrivastava 101

Identifying Complaints from Product Reviews in Low-resource Scenarios via Neural Machine Translation
Raghvendra Pratap Singh, Rejwanul Haque, Mohammed Hasanuzzaman and Andy Way 108

Generative Adversarial Networks for Annotated Data Augmentation in Data Sparse NLU
Olga Golovneva and Charith Peris . 117

BertAA : BERT fine-tuning for Authorship Attribution
Maël Fabien, Esaú Villatoro-Tello, Petr Motlicek and Shantipriya Parida . 127

xiii

TREE ADJOINING GRAMMAR BASED "LANGUAGE INDEPENDENT GENERATOR"
Pavan Kurariya, Prashant Chaudhary, Jahnavi Bodhankar, Lenali Singh, Ajai Kumar and Hemant

Darbari . 138

Exploration of Cross-lingual Summarization for Kannada-English Language Pair
Vinayaka R Kamath, Rachana Aithal K R, Vennela K and Mamatha HR. .144

Hater-O-Genius Aggression Classification using Capsule Networks
Parth Patwa, Srinivas PYKL, Amitava Das, Prerana Mukherjee and Viswanath Pulabaigari 149

A New Approach to Claim Check-Worthiness Prediction and Claim Verification
Shukrity Si, ANISHA DATTA and Sudip Kumar Naskar .155

Improving Passage Re-Ranking with Word N-Gram Aware Coattention Encoder
Chaitanya Alaparthi and Manish Shrivastava . 161

Language Model Metrics and Procrustes Analysis for Improved Vector Transformation of NLP Embed-
dings

Thomas Conley and Jugal Kalita . 170

Cognitively Aided Zero-Shot Automatic Essay Grading
Sandeep Mathias, Rudra Murthy, Diptesh Kanojia and Pushpak Bhattacharyya 175

Automated Arabic Essay Evaluation
Abeer Alqahtani and Amal Alsaif . 181

Semantic Extractor-Paraphraser based Abstractive Summarization
Anubhav Jangra, Raghav Jain, Vaibhav Mavi, Sriparna Saha and Pushpak Bhattacharyya 191

ThamizhiUDp: A Dependency Parser for Tamil
Kengatharaiyer Sarveswaran and Gihan Dias . 200

Constructing a Korean Named Entity Recognition Dataset for the Financial Domain using Active Learn-
ing

Dong-Ho Jeong, Min-Kang Heo, Hyung-Chul Kim and Sang-Won Park . 208

Self-Supervised Claim Identification for Automated Fact Checking
Archita Pathak, Mohammad Abuzar Shaikh and Rohini Srihari . 213

SUKHAN: Corpus of Hindi Shayaris annotated with Sentiment Polarity Information
Salil Aggarwal, Abhigyan Ghosh and Radhika Mamidi . 228

Improving Neural Machine Translation for Sanskrit-English
Ravneet Punia, Aditya Sharma, Sarthak Pruthi and Minni Jain . 234

Parsing Indian English News Headlines
Samapika Roy, Sukhada and Anil Kumar Singh . 239

WORD SENSE DISAMBIGUATION FOR KASHMIRI LANGUAGE USING SUPERVISED MACHINE
LEARNING

Tawseef Ahmad Mir and Aadil Ahmad Lawaye . 243

Sentimental Poetry Generation
Kasper Aalberg Rostvøld and Björn Gambäck . 246

xiv

WEKA in Forensic Authorship Analysis: A corpus-based approach of Saudi Authors
Mashael M. AlAmr and Eric Atwell . 257

Native-Language Identification with Attention
Stian Steinbakken and Björn Gambäck. .261

Does a Hybrid Neural Network-based Feature Selection Model Improve Text Classification?
Suman Dowlagar and Radhika Mamidi . 272

Efforts Towards Developing a Tamang Nepali Machine Translation System
Binaya Kumar Chaudhary, Bal Krishna Bal and Rasil Baidar . 281

Event Argument Extraction using Causal Knowledge Structures
Debanjana Kar, Sudeshna Sarkar and Pawan Goyal . 287

Claim extraction from text using transfer learning.
Acharya Ashish Prabhakar, Salar Mohtaj and Sebastian Möller . 297

Assamese Word Sense Disambiguation using Genetic Algorithm
Arjun Gogoi, Nomi Baruah and Shikhar Kr. Sarma . 303

Free Word Order in Sanskrit and Well-nestedness
Sanal Vikram and Amba Kulkarni . 308

A Multi-modal Personality Prediction System
Chanchal Suman, Aditya Gupta, Sriparna Saha and Pushpak Bhattacharyya 317

D-Coref: A Fast and Lightweight Coreference Resolution Model using DistilBERT
Chanchal Suman, Jeetu Kumar, Sriparna Saha and Pushpak Bhattacharyya 323

Semantic Slot Prediction on low corpus data using finite user-defined list
Bharatram Natarajan, Dharani Simma, Chirag Singh, Anish Nediyanchath and Sreoshi Sengupta

329

Leveraging Latent Representations of Speech for Indian Language Identification
Samarjit Karmakar and P Radha Krishna . 334

Acoustic Analysis of Native (L1) Bengali Speakers’ Phonological Realization of English Lexical Stress
Contrast

Shambhu Nath Saha and Shyamal Kr. Das Mandal . 341

Towards Performance Improvement in Indian Sign Language Recognition
Kinjal Mistree, Devendra Thakor and Brijesh Bhatt . 349

Question and Answer pair generation for Telugu short stories
Meghana Bommadi, Shreya Terupally and Radhika Mamidi .355

Detection of Similar Languages and Dialects Using Deep Supervised Autoencoder
Shantipriya Parida, Esaú Villatoro-Tello, Sajit Kumar, Maël Fabien and Petr Motlicek 362

Weak Supervision using Linguistic Knowledge for Information Extraction
Sachin Pawar, Girish Palshikar, Ankita Jain, Jyoti Bhat and Simi Johnson 368

Leveraging Alignment and Phonology for low-resource Indic to English Neural Machine Transliteration
Parth Patel, Manthan Mehta, Pushpak Bhattacharya and Arjun Atreya . 373

xv

STHAL: Location-mention Identification in Tweets of Indian-context
Kartik Verma, Shobhit Sinha, Md. Shad Akhtar and Vikram Goyal . 379

On-Device detection of sentence completion for voice assistants with low-memory footprint
Rahul Kumar, Vijeta Gour, Chandan Pandey, Godawari Sudhakar Rao, Priyadarshini Pai, Anmol

Bhasin and Ranjan Samal . 384

Polarization and its Life on Social Media: A Case Study on Sabarimala and Demonetisation
Ashutosh Ranjan, Dipti Sharma and Radhika Krishnan . 393

A Rule Based Lightweight Bengali Stemmer
Souvick Das, Rajat Pandit and Sudip Kumar Naskar . 400

End-to-End Automatic Speech Recognition for Gujarati
Deepang Raval, Vyom Pathak, Muktan Patel and Brijesh Bhatt . 409

Deep Neural Model for Manipuri Multiword Named Entity Recognition with Unsupervised Cluster Fea-
ture

Jimmy Laishram, Kishorjit Nongmeikapam and Sudip Kumar Naskar . 420

ScAA: A Dataset for Automated Short Answer Grading of Children’s free-text Answers in Hindi and
Marathi

Dolly Agarwal, Somya Gupta and Nishant Baghel . 430

Exploring Pair-Wise NMT for Indian Languages
Kartheek Akella, Sai Himal Allu, Sridhar Suresh Ragupathi, Aman Singhal, Zeeshan Khan, C.V.

Jawahar and Vinay P. Namboodiri . 437

Only text? only image? or both? Predicting sentiment of internet memes
Pranati Behera, Mamta . and Asif Ekbal . 444

Towards Bengali Word Embedding: Corpus Creation, Intrinsic and Extrinsic Evaluations
Md. Rajib Hossain and Mohammed Moshiul Hoque . 453

Annotated Corpus of Tweets in English from Various Domains for Emotion Detection
Soumitra Ghosh, Asif Ekbal, Pushpak Bhattacharyya, Sriparna Saha, Vipin Tyagi, Alka Kumar,

Shikha Srivastava and Nitish Kumar . 460

PhraseOut: A Code Mixed Data Augmentation Method for Multilingual Neural Machine Tranlsation
Binu Jasim, Vinay Namboodiri and C V Jawahar. .470

CLPLM: Character Level Pretrained Language Model for Extracting Support Phrases for Sentiment
Labels

Raj Pranesh, Sumit Kumar and Ambesh Shekhar .475

Developing a Faroese PoS-tagging solution using Icelandic methods
Hinrik Hafsteinsson and Anton Karl Ingason . 481

Leveraging Multi-domain, Heterogeneous Data using Deep Multitask Learning for Hate Speech Detec-
tion

Prashant Kapil and Asif Ekbal . 491

xvi

Conference Program

Day 1: Saturday, December 19, 2020

+ 10:00 - 11:00 Inaugural Ceremony

+ 11:30 - 13:00 BREAK

+ 13:00 -14:30 Technical Session I: Information Extraction-I
Session Chair: Karthik Sankaranarayanan

Automatic Hadith Segmentation using PPM Compression
Taghreed Tarmom, Eric Atwell and Mohammad Alsalka

Learning to Interact: An Adaptive Interaction Framework for Knowledge Graph
Embeddings
Chandrahas, Nilesh Agrawal and Partha Talukdar

Event Argument Extraction using Causal Knowledge Structures
Debanjana Kar, Sudeshna Sarkar and Pawan Goyal

Weak Supervision using Linguistic Knowledge for Information Extraction
Sachin Pawar, Girish Palshikar, Ankita Jain, Jyoti Bhat and Simi Johnson

Technical Session II: NLP Language Documentation and Preservation
Session Chair: Sobha Lalitha Devi

A Grammatical Sketch of Asur: A North Munda language
Zoya Khalid

Treatment of optional forms in Mathematical modelling of Pãn. ini
Anupriya Aggarwal and Malhar Kulkarni

Language Model Metrics and Procrustes Analysis for Improved Vector Transforma-
tion of NLP Embeddings
Thomas Conley and Jugal Kalita

Assamese Word Sense Disambiguation using Genetic Algorithm
Arjun Gogoi, Nomi Baruah and Shikhar Kr. Sarma

Technical Session III: Computational Social Science and Social Media
Session Chair: Tanmoy Chakraborty

Identifying Complaints from Product Reviews in Low-resource Scenarios via Neural
Machine Translation
Raghvendra Pratap Singh, Rejwanul Haque, Mohammed Hasanuzzaman and Andy
Way

Hater-O-Genius Aggression Classification using Capsule Networks
Parth Patwa, Srinivas PYKL, Amitava Das, Prerana Mukherjee and Viswanath Pu-
labaigari

xvii

Native-Language Identification with Attention
Stian Steinbakken and Björn Gambäck

Acoustic Analysis of Native (L1) Bengali Speakers’ Phonological Realization of
English Lexical Stress Contrast
Shambhu Nath Saha and Shyamal Kr. Das Mandal

+15:00-16:00 Keynote Lecture 1: Prof. Dr. Iryna Gurevych, Technische Univer-
sität Darmstadt, Germany
Title: Let’s Argue - Understanding and Generating Natural Language Arguments
Session Chair: Sudeshna Sarkar

+16:00-16:30 BUFFER

Technical Session IV: Sentiment and Emotion Analysis
Session Chair: Amitava Das

Polarization and its Life on Social Media: A Case Study on Sabarimala and De-
monetisation
Ashutosh Ranjan, Dipti Sharma, and Radhika Krishnan

Only text? only image? or both? Predicting sentiment of internet memes
Pranati Behera, Mamta and Asif Ekbal

Leveraging Multi-domain, Heterogeneous Data using Deep Multitask Learning for
Hate Speech Detection
Prashant Kapil and Asif Ekbal

CLPLM: Character Level Pretrained Language Model for Extracting Support
Phrases for Sentiment Labels
Raj Pranesh, Sumit Kumar and Ambesh Shekhar

Technical Session V: Named Entity Recognition
Session Chair: Sriparna Saha

The WEAVE Corpus: Annotating Synthetic Chemical Procedures in Patents with
Chemical Named Entities
Ravindra Nittala and Manish Shrivastava

Deep Neural Model for Manipuri Multiword Named Entity Recognition with Unsu-
pervised Cluster Feature
Jimmy Laishram, Kishorjit Nongmeikapam and Sudip Kumar Naskar

Constructing a Korean Named Entity Recognition Dataset for the Financial Domain
using Active Learning
Dong-Ho Jeong, Min-Kang Heo, Hyung-Chul Kim and Sang-Won Park

Technical Session VI: Multimodality/Speech Recognition
Session Chair: Anil Kumar Vuppala

xviii

A Multi-modal Personality Prediction System
Chanchal Suman, Aditya Gupta, Sriparna Saha and Pushpak Bhattacharyya

End-to-End Automatic Speech Recognition for Gujarati
Deepang Raval, Vyom Pathak, Muktan Patel and Brijesh Bhatt

Using multiple ASR hypotheses to boost i18n NLU performance
Charith Peris, Gokmen Oz, Khadige Abboud, Venkata sai Varada, Prashan Wani-
gasekara, and Haidar Khan

Leveraging Latent Representations of Speech for Indian Language Identification
Samarjit Karmakar and P Radha Krishna

+17:30-18:00 BUFFER

+18:00-19:00 Keynote Lecture 2: Prof. Eduard Hovy, Carnegie Mellon University
Title: From Simple to Complex QA
Session Chair: Prof. Pushpak Bhattacharyya

+19:00-19:30 BUFFER

+19:30-21:00 NLPAI Meeting

xix

Day 2: Sunday, December 20, 2020

+ 11:00 -13:00 Technical Session VII: Information Extraction-II
Session Chair: Dipankar Das

Inducing Interpretability in Knowledge Graph Embeddings
Chandrahas, Tathagata Sengupta, Cibi Pragadeesh and Partha Talukdar

Solving Arithmetic Word Problems Using Transformer and Pre-processing of Prob-
lem Texts
Kaden Griffith and Jugal Kalita

Generative Adversarial Networks for Annotated Data Augmentation in Data Sparse
NLU
Olga Golovneva and Charith Peris

Semantic Extractor-Paraphraser based Abstractive Summarization
Anubhav Jangra, Raghav Jain, Vaibhav Mavi, Sriparna Saha and Pushpak Bhat-
tacharyya

Technical Session VIII:: Machine Learning Applications to NLP-I
Session Chair: Aditya Joshi

BertAA : BERT fine-tuning for Authorship Attribution
Maël Fabien, Esaú Villatoro-Tello, Petr Motlicek and Shantipriya Parida

Claim extraction from text using transfer learning.
Acharya Ashish Prabhakar, Salar Mohtaj and Sebastian Möller

On-Device detection of sentence completion for voice assistants with low-memory
footprint
Rahul Kumar, Vijeta Gour, Chandan Pandey, Godawari Sudhakar Rao,
Priyadarshini Pai, Anmol Bhasin and Ranjan Samal

A New Approach to Claim Check-Worthiness Prediction and Claim Verification
Shukrity Si, ANISHA DATTA and Sudip Kumar Naskar

Technical Session IX: Machine Learning Applications to NLP-II
Session Chair: Ashutosh Modi

Clickbait in Hindi News Media : A Preliminary Study
Vivek Kaushal and Kavita Vemuri

xx

Does a Hybrid Neural Network-based Feature Selection Model Improve Text Clas-
sification?
Suman Dowlagar and Radhika Mamidi

Semantic Slot Prediction on low corpus data using finite user-defined list
Bharatram Natarajan, Dharani Simma, Chirag Singh, Anish Nediyanchath and Sre-
oshi Sengupta

Detection of Similar Languages and Dialects Using Deep Supervised Autoencoder
Shantipriya Parida, Esaú Villatoro-Tello, Sajit Kumar, Maël Fabien and Petr
Motlicek

Sentimental Poetry Generation
Kasper Aalberg Røstvold and Björn Gambäck

Towards Performance Improvement in Indian Sign Language Recognition
Kinjal Mistree, Devendra Thakor and Brijesh Bhatt

Technical Session X: Machine Translation-I
Session Chair: Nikesh Garera

Exploring Pair-Wise NMT for Indian Languages
Kartheek Akella, Sai Himal Allu, Sridhar Suresh Ragupathi, Aman Singhal, Zee-
shan Khan, C.V. Jawahar and Vinay P. Namboodiri

PhraseOut: A Code Mixed Data Augmentation Method for Multilingual Neural
Machine Tranlsation
Binu Jasim, Vinay Namboodiri and C V Jawahar

Efforts Towards Developing a Tamang Nepali Machine Translation System
Binaya Kumar Chaudhary, Bal Krishna Bal and Rasil Baidar

TREE ADJOINING GRAMMAR BASED "LANGUAGE INDEPENDENT GENER-
ATOR"
Pavan Kurariya, Prashant Chaudhary, Jahnavi Bodhankar, Lenali Singh, Ajai Kumar
and Hemant Darbari

+13:00-14:00 BREAK

+ 14:00 -16:00 Technical Session XI: Language Resources- I
Session Chair: Girish Palsikar

A Rule Based Lightweight Bengali Stemmer
Souvick Das, Rajat Pandit and Sudip Kumar Naskar

Towards Bengali Word Embedding: Corpus Creation, Intrinsic and Extrinsic Eval-
uations
Md. Rajib Hossain and Mohammed Moshiul Hoque

xxi

Annotated Corpus of Tweets in English from Various Domains for Emotion Detec-
tion
Soumitra Ghosh, Asif Ekbal, Pushpak Bhattacharyya, Sriparna Saha, Vipin Tyagi,
Alka Kumar, Shikha Srivastava and Nitish Kumar

STHAL: Location-mention Identification in Tweets of Indian-context
Kartik Verma, Shobhit Sinha, Md. Shad Akhtar and Vikram Goyal

Developing a Faroese PoS-tagging solution using Icelandic methods
Hinrik Hafsteinsson and Anton Karl Ingason

Technical Session XII: Language Resources-II
Session Chair: Manish Srivastava and Vishal Goyal

Increasing accuracy of a semantic word labelling tool based on a small lexicon
Hugo Sanjurjo-González

Creation of Corpus and Analysis in Code-Mixed Kannada-English Social Media
Data for POS Tagging
Abhinav Reddy Appidi, Vamshi Krishna Srirangam, Darsi Suhas and Manish Shri-
vastava

Exploration of Cross-lingual Summarization for Kannada-EnglishLanguage Pair
Vinayaka R Kamath, Rachana Aithal K R, Vennela K and Mamatha HR

SUKHAN: Corpus of Hindi Shayaris annotated with Sentiment Polarity Information
Salil Aggarwal

Technical Session XIII: NLP for Education
Session Chair: Sudip Naskar

Cognitively Aided Zero-Shot Automatic Essay Grading
Sandeep Mathias, Rudra Murthy, Diptesh Kanojia and Pushpak Bhattacharyya

Automated Arabic Essay Evaluation
Abeer Alqahtani and Amal Alsaif

Question and Answer pair generation for Telugu short stories
Meghana Bommadi, Shreya Terupally and Radhika Mamidi

ScAA: A Dataset for Automated Short Answer Grading of Children’s free-text An-
swers in Hindi and Marathi
Dolly Agarwal, Somya Gupta and Nishant Baghel

+16:00-16:30 BUFFER

+16:30-17:30 Technical Session XIV: Information Retrieval and Text Mining
Session Chair: Sudeshna Sarkar

xxii

Improving Passage Re-Ranking with Word N-Gram Aware Coattention Encoder
Chaitanya Alaparthi and Manish Shrivastava

Self-Supervised Claim Identification for Automated Fact Checking
Archita Pathak, Mohammad Abuzar Shaikh and Rohini Srihari

D-Coref: A Fast and Lightweight Coreference Resolution Model using DistilBERT
Chanchal Suman, Jeetu Kumar, Sriparna Saha and Pushpak Bhattacharyya

Technical Session XV: Syntax
Session Chair: Pawan Goyal

Self Attended Stack-Pointer Networks for Learning Long Term Dependencies
Salih Tuc and Burcu Can

ThamizhiUDp: A Dependency Parser for Tamil
Kengatharaiyer Sarveswaran and Gihan Dias

Free Word Order in Sanskrit and Well-nestedness
Sanal Vikram and Amba Kulkarni

Technical Session XVI: Machine Translation-II
Session Chair: Anoop Kunchukuttan

English to Manipuri and Mizo Post-Editing Effort and its Impact on Low Resource
Machine Translation
Loitongbam Sanayai Meetei, Thoudam Doren Singh, Sivaji Bandyopadhyay, Mi-
haela Vela and Josef van Genabith

Improving Neural Machine Translation for Sanskrit-English
Ravneet Punia, Aditya Sharma, Sarthak Pruthi and Minni Jain

Leveraging Alignment and Phonology for low-resource Indic to English Neural Ma-
chine Transliteration
Parth Patel and Manthan Mehta

+17:30-18:00 BUFFER

+18:00-19:00 Keynote Lecture 3: David Yarowsky, John Hopkins University, USA
Title: Translingual Learning of 1000+ Languages
Session Chair: Prof. Dipti Misra Sharma

+19:00-19:30 Valedictory Session

xxiii

Pre-conference: Friday, December 18, 2020

+ 15:00 -16:30 Doctoral Consortium Session
Session Chair: Anil Kumar Singh

Parsing Indian English News Headlines
Samapika Roy, Sukhada and Anil Kumar Singh

WORD SENSE DISAMBIGUATION FOR KASHMIRI LANGUAGE USING SU-
PERVISED MACHINE LEARNING
TAWSEEF AHMAD MIR

WEKA in Forensic Authorship Analysis: A corpus-based approach of Saudi Authors
Mashael AlAmr and Eric Atwell

xxiv

Proceedings of the 17th International Conference on Natural Language Processing, pages 1–9
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

The WEAVE Corpus: Annotating Synthetic Chemical Procedures in
Patents with Chemical Named Entities

Ravindra Nittala
Language Technology Research Centre,

IIIT - Hyderabad, India
ravindra.n@research.iiit.ac.in

Manish Shrivastava
Language Technology Research Centre,

IIIT - Hyderabad, India
m.shrivastava@iiit.ac.in

Abstract

The modern pharmaceutical industry depends
on the iterative design of novel synthetic routes
for drugs while not infringing on existing intel-
lectual property rights. Such a design process
calls for analyzing many existing synthetic
chemical reactions and planning the synthesis
of novel chemicals. These procedures have
been historically available in unstructured raw
text form in publications and patents. To
facilitate automated synthetic chemical reac-
tions analysis and design the novel synthetic
reactions using Natural Language Processing
(NLP) methods, we introduce a Named Entity
Recognition (NER) dataset of the Examples
section in 180 full-text patent documents with
5188 synthetic procedures annotated by do-
main experts. All the chemical entities which
are part of the synthetic discourse were anno-
tated with suitable class labels. We present
the second-largest chemical NER corpus with
100,129 annotations and the highest IAA value
of 98.73% (F-measure) on a 45 document sub-
set. We discuss this new resource in detail and
highlight some specific challenges in annotat-
ing synthetic chemical procedures with chemi-
cal named entities. We make the corpus avail-
able to the community to promote further re-
search and development of downstream NLP
systems applications. We also provide base-
line results for the NER model to the commu-
nity to improve on.

1 Introduction

There is a renewed interest in academia and indus-
try to access the information regarding chemical
and chemical reactions currently available in un-
structured raw text form in journal publications
and patents (Coley et al., 2017; Segler et al., 2018;
Mysore et al., 2019) using machine learning. Also,
several chemical NER datasets exist. With in-
creasing demand in automated chemical synthe-
sis design and planning novel chemical reactions,

we need to shift away from the annotation of ti-
tle and abstract of patents or reactions in isola-
tion to the patents’ core, the Examples section.
The CHEMDNER-patents corpus (Krallinger et al.,
2015c) is the only dataset focusing on titles and ab-
stracts. The Chapati corpus (Grego et al., 2009) and
BioSemnatics corpus (Akhondi et al., 2014) focus
on the full text of patents for annotation. The reason
for the insufficiency of these corpora is discussed
in detail in Section 3.3 and 3.5. The ChEMU labs
introduced a named entity dataset with chemical
role labels (Nguyen et al., 2020). As part of the
dataset, they have annotated only snippets of re-
action text from the patents’ experimental section.
They also acknowledge the problem of entity of-
ten referring to context beyond the current reaction
text1. This context cannot be accounted for by the
snippets of reaction text in isolation. As part of
the WEAVE corpus, we would like to annotate the
chemical entities in their full reaction discourse.
This would enable us to model the context beyond
the immediate reaction text. We refer readers to the
supporting information containing full-text patents
to understand how the discourse varies from section
to section.

A patent is the grant of a legal right by a patent
office to an inventor. This grant provides the in-
ventor exclusive rights for a designated period of
time in exchange for comprehensive invention dis-
closure. The disclosure should be complete, such
that a person well versed in the field should be able
to reproduce this patented process, design, or in-
vention. This disclosure is done in the Examples
section of a patent. Hence the Examples section is
fundamentally different in its linguistic structure
from other sections in a patent. It is the most use-
ful part of understanding the synthetic chemical

1https://chemu-patent-ie.github.
io/resources/Annotation_Guidelines_
CLEF2020_ChEMU_task1.pdf

1

reactions given in the patent.

1.1 Related work

There is a large body of chemical and biomedi-
cal NER literature. We refer readers to Yadav
and Bethard (2018) and Huang et al. (2020) for
a comprehensive survey. We include a summary of
the publicly available datasets as follows: Cha-
pati corpus (Grego et al., 2009) is a manually
annotated set of 40 patents with 11,162 annota-
tions. The chemical named entities identified were
mapped to the Chemical Entities of Biological In-
terest (ChEBI) database. BioSemantics corpus
(Akhondi et al., 2014) is a manually annotated
set of patents. This corpus has two sets: First,
a harmonized set of 47 patents with 36,537 an-
notations, and the second set of 198 patents with
400,125 annotations. Besides chemical entity men-
tions, they also annotate diseases, targets, modes
of actions (MOAs), OCR errors, and spelling er-
rors. It is the largest chemical NER dataset. BC-
IV CHEMDNER corpus (Krallinger et al., 2015a)
is an annotated set of 10,500 titles and abstracts
from the PubMed database with 84,355 annotations.
BC-V CHEMDNER-patents corpus (Krallinger
et al., 2015c) is an annotated set of 21,000 titles
and abstracts from patents with 99,634 annota-
tions. With BC-IV CHEMDNER corpus and BC-
V CHEMDNER-patents corpus being the widely
cited among these. CHEMDNER-patents corpus
exclusively focuses on chemical entity mentions.
The entity mention classes are a variant of earlier
published CHEMDNER corpus (Krallinger et al.,
2015b). Nguyen et al. (2020) have introduced a
new evaluation lab named ChEMU. It focuses on
two tasks: First, named entity recognition of chem-
ical compounds and assign the compound’s role
within a chemical reaction. Second, event trigger
detection and argument identification of previously
detected chemical entities. In the publically avail-
able NER dataset2, there are 20,186 annotations
(train + dev) in 1125 reaction snippets extracted
from 170 patents.

1.2 Structure of a patent

A typical US patent3 granted has the following dis-
course structure: Patent grant number, Title, Bib-
liography, Abstract, Other Patent Relations, Brief
Summary, Detailed Description, and Claims. The

2http://chemu.eng.unimelb.edu.au/
3USPTO, https://www.uspto.gov

intellectual property rights or the innovative part
of the patent granted resides in the examples con-
tained in the Detailed Description section. This
section will be analyzed thoroughly for any novel
synthetic route to be non-infringing on existing in-
tellectual property rights. Therefore in the next
section, we present the WEAVE4 patents corpus,
which focuses exclusively on synthetic procedures
in the Examples section.

2 The WEAVE patents corpus

An important consideration in preparing a corpus
for NER training, development, and evaluation sets
is selecting documents representing the distribu-
tion of chemical named entities seen in related
documents. In the WEAVE corpus, the focus is
on synthetic chemical procedures and the chemi-
cal entities present. Two considerations influenced
document selection in our corpus. First, the docu-
ments used in the corpus should be available with-
out copyright protection. Second, they are com-
plementary to existing datasets. We accessed the
patents from the United States Patent and Trade-
mark Office (USPTO)5. Following criterion were
applied to further subset the patents for annotation:

• IPC code: The selection of patents for the
WEAVE corpus was made based on IPC (Inter-
national Patent Classification) code. Patents
which belonged to at least A61K (Prepara-
tions for Medical, Dental, or Toilet purposes)6

or C07D (Heterocyclic compounds) 7 were
selected. This enriched patents with chemical
entities in medicinal and organic chemistry.
An additional criterion for selection within
this subset was the presence of synthetic or-
ganic procedures.

• Date and Publication type: We decided to
select patents that were granted in the years

4to form something from several different things or
to combine several different things, in a complicated or
skilled way https://dictionary.cambridge.org/
dictionary/english/weave

5USPTO Bulk Data Storage System (BDSS) https://
bulkdata.uspto.gov/#pats

6https://www.wipo.int/classifications/
ipc/en/ITsupport/Version0170101/
transformations/ipc/20170101/en/htm/
A61K.htm

7https://www.wipo.int/classifications/
ipc/en/ITsupport/Version0170101/
transformations/ipc/20170101/en/htm/
C07D.htm

2

2018 and 2019. This would ensure the avail-
ability of patents in XML format and text free
from OCR errors.

• Character encoding and language: XML
character entities were converted to corre-
sponding UTF-8 characters, and the full text
was encoded in UTF-8 encoding. As the
patents were selected from USPTO, only En-
glish language patents were included.

• Document format: The patent in XML for-
mat was converted to a UTF-8 encoded text
file. Only the paragraph elements, headings,
subheadings, and tables were written to the
text file. All the formatting elements like bold,
italics, subscript, and superscript were dis-
carded. Bibliographic details and XML for-
matting was also discarded. There was no re-
striction on the number of lines in documents.

• Documents inclusion and exclusion:
Patents covering Inorganic, Organometal-
lic, Polymers, Natural products, Proteins,
DNA/RNA, Polymorphic crystal forms
were excluded. The overriding criterion for
inclusion was at least one synthetic organic
procedure in the Examples section, and this
was manually checked in each document.

• Final document sets: After applying the
above selection criteria and prepossessing,
we were left with 180 documents. The sum-
mary of these sets is given in Table 1. These
were randomly assigned to training, devel-
opment, and test sets. 45 documents from
the above settings were used for the Inter-
annotator agreement (IAA). For display per-
formance in BRAT, all patents were split into
files of 100 lines each before annotation and
later concatenated into a single document after
annotation.

Set Documents Reactions
Evaluation 45 438
Training 60 1311
Development 60 2020
Test 60 1857
Overall 180 5188

Table 1: Document sets. Evaluation set is a subset of
overall 180 documents

3 Corpus annotation

3.1 Annotation tools
Neves and Leser (2012) have surveyed the annota-
tion tools available for biomedical literature. They
determined that BRAT was easy to use and cus-
tomizable as per the annotation scheme among the
tools reviewed. Hence we used the BRAT Rapid
Annotation Tool (BRAT) (Stenetorp et al., 2012)
for the entire annotation process and BRAT stand-
off format for storing the annotations.

3.2 Evaluation metric
We used CoNLL 2003 shared task (Tjong
Kim Sang and De Meulder, 2003) evaluation script
to compute the macro averaged F-measure on
named entity annotations. The annotation output in
the BRAT standoff format was converted to CoNLL
2003 shared task format with BIO tagging repre-
sentation before computing the F-measure. We
used F-measure as the evaluation metric for IAA
as suggested by Corbett et al. (2007) and Kolarik
et al. (2008). CoNLL 2003 shared task evaluation
script evaluates an entity to be valid by matching
the chemical mention and class label. The use
of F-measure provides an advantage in a direct
comparison between system performance and inter-
annotator agreement (Grouin and Névéol, 2014).

3.3 Annotation scheme
We had to make a choice of designing our own
scheme or utilize an existing scheme. Based on
publicly available guidelines and corpora, we had
a choice between Chapati corpus by Chemical En-
tities of Biological Interest (ChEBI) and European
Patent Office (EPO) (Grego et al., 2009), BioSemat-
ics corpus (Akhondi et al., 2014), CHEMDNER
corpus (Krallinger et al., 2015a), CHEMDNER-
patents corpus (Krallinger et al., 2015c) and
ChEMU Labs NER corpus (Nguyen et al., 2020).
In Chapati corpus, 40 patents were manually anno-
tated with 11,162 annotations (Grego et al., 2009).
The number of annotated patents and the corre-
sponding number of annotations was small in size.

We were left with a choice between BioSeman-
tics, CHEMDNER, and CHEMDNER-patents cor-
pora. On a closer look at BioSemantics corpus,
which was based on 15 rules published in their arti-
cle (Akhondi et al., 2014), we noticed that the IAA
(F-score), when considered for only chemical men-
tions in the corpus, varies from 0.94 to 0.38 depend-
ing on entity type and the agreement between the

3

Figure 1: An example an annotated organic reaction, within the Examples section of patent.

four annotator groups on the harmonized patents
set (47 patents) (Akhondi et al., 2014). The wide
variation in IAA indicates a lack of consistency in
guidelines and the need for multiple disambigua-
tion steps. This could be potentially misleading to
the annotators.

The near-simultaneous publication of the
ChEMU Labs NER dataset8 (Nguyen et al., 2020)
with this publication precluded a full evaluation
of the dataset. After reviewing the guidelines9, it
was determined that this dataset is not suitable for
the chemical named entity recognition in the full
discourse of reaction text in the Examples section.

The extensive guidelines documentation (30
pages), illustrated with examples, led us to choose
the annotation scheme developed for BioCre-
ative IV (BC-IV) CHEMDNER (Krallinger et al.,
2015a). As modified in BioCreative V (BC-
V), CHEMDNER-patents task (Krallinger et al.,
2015c) to be used for the WEAVE corpus annota-
tion process. CHEMDNER-patents task had an-
notated titles and abstracts from 21,000 patents
with 99,625 annotations (Krallinger et al., 2015c).
SYSTEMATIC, IDENTIFIER, FORMULA, TRIV-
IAL, ABBREVIATION (ABBV), FAMILY and
MULTIPLE entity mention classes as reported
by Krallinger et al. (2015c) were utilized. We
chose to annotate the Examples section of the
patent with synthetic organic procedures against
title and abstract only in the CHEMDNER-patents
task (Krallinger et al., 2015c). This is illustrated in
Figure 1.

3.4 Annotation process

The entire annotation process was done in two
stages. The first stage work was done to establish

8http://chemu.eng.unimelb.edu.au/
9https://github.com/chemu-patent-ie/

chemu-patent-ie.github.io/tree/master/
resources/Annotation_Guidelines_
CLEF2020_ChEMU_task1.pdf

the inter-annotator agreement on the evaluation set
of 45 documents. The documents were annotated
by nine chemistry domain experts with no formal
linguistics experience and were equally divided
between them (5 each).

These 45 documents were independently dou-
ble annotated by another chemistry domain expert,
designated as lead annotator with formal linguis-
tics experience. The lead annotator’s annotations
were designated as the gold standard for evaluat-
ing the quality of annotation by the nine annota-
tors. These 45 documents were compared to the
gold standard using F-measure. Once the annota-
tion consistency was established, the second stage
work was done on the rest of the 135 documents.
With each annotator getting 15 documents. Fol-
lowing the concept of annotator-reviser (or adju-
dicator) agreement (Campillos et al., 2018; Bada
et al., 2012), annotators were free to consult the
lead annotator throughout the annotation process
regarding guidelines.

3.5 IAA statistics

CLASS Precision Recall F1
ABBV. 98.50% 99.88% 99.19
FAMILY 90.86% 97.28% 93.96
FORMULA 98.84% 95.63% 97.21
IDENTIFIER 80.00% 72.73% 76.19
MULTIPLE 75.00% 100.00% 85.71
SYSTEMATIC 99.02% 99.13% 99.07
TRIVIAL 98.85% 100.00% 99.42
Overall 98.66% 98.81% 98.73

Table 2: IAA statistics.

Table 2 presents IAA statistics for 45 documents
set. The average F-measure was 98.73%. Bada et al.
(2012) have reported 90+% IAA level following
the annotator-reviser (or adjudicator) agreement
concept. Hence the F-measure reported by us is

4

consistent with published results. This IAA value
is the highest reported to date on the chemical en-
tity mention dataset. The F-measure at the micro-
level was the lowest for IDENTIFIER (76.19%)
and MULTIPLE (85.71%). This can be attributed
to the data sparsity in the corpus for these two
classes. Tables 4, 5 and 6 demonstrate that the data
sparsity for these two classes can also be seen in
BC-IV CHEMDNER (Krallinger et al., 2015a) and
BC-V CHEMDNER-patents task (Krallinger et al.,
2015c).

Akhondi et al. (2014) have reported an annotated
chemical patent corpus, which besides chemical
mentions, also annotates diseases, protein targets,
and MOAs in the patents. The best-reported IAA
value among a set of values was 78% (F-score).
Krallinger et al. (2015b) in BC-IV CHEMDNER
task has reported the IAA value of 91% (F-score)
while matching the chemical mention ignoring
the class label. When the class label was also
considered, the IAA value was 85.26% (F-score).
Krallinger et al. (2015c) in BC-V CHEMDNER-
patents task have not reported any IAA value and
have proposed an IAA study based on a blind anno-
tation of 200 patent abstracts in case of the chemi-
cal entity mentions. To the best of our knowledge,
this has not yet been published.

Despite no published IAA study for
CHEMDNER-patents corpus, we relied on
the extensive guidelines published as part of their
corpus.

3.6 Error Analysis

Table 3 presents the error analysis of the doubly an-
notated 45 documents. In the table, rows represent
the gold standard labels, and columns represent
the annotator’s labels. Of the 7503 gold labels, 90
labels (1.2%) were assigned outside the reaction
discourse. These should have been assigned to the
OTHER class. 78 labels (1.0%) where they should
have been assigned one of seven class labels, they
were assigned, OTHER class. Only 4 (0.05%) were
assigned the incorrect label within the seven class
labels.

The error analysis demonstrates that annotators
were able to assign the class labels to the chemical
entities. The majority of the errors occurred at the
boundary of reaction discourse. These errors were
communicated to the annotators. They were trained
to identify the reaction discourse boundaries and
the chemical entities present. They were also en-

couraged to consult the lead annotator in case of
any doubt.

3.7 Corpus statistics

Tables 4, 5 and 6 present the counts of chemical en-
tity mention class labels in the WEAVE corpus (180
documents). These were randomly divided into
Training, Development, and Test sets and compared
with similar counts from BC-IV CHEMDNER
(Krallinger et al., 2015a) and BC-V CHEMDNER-
patents task (Krallinger et al., 2015c). Table 7
presents the statistics for the counts of annotations
in the WEAVE corpus and CHEMDNER-patents
corpus. There are a total of 100,129 annotations
with an average of 556 annotations per document.
As shown in the table, there is a wide variation
between average and median counts per document.
This skew is due to a small number of documents
having a large number of annotations (Bada et al.,
2012). This assertion is supported by the minimum
and maximum count across 180 documents.

The top three entity mention classes as a percent-
age of total annotations in WEAVE corpus was:
SYSTEMATIC (49.73%), FORMULA (26.58%),
and ABBREVIATION (11.25%). The corre-
sponding distribution of the top three classes in
BC-IV CHEMDNER task was: SYSTEMATIC
(30.36%), TRIVIAL (22.69%) and ABBREVI-
ATION (15.55%), and in BC-V CHEMDNER-
patents task was: FAMILY (36.49%), SYSTEM-
ATIC (28.79%) and TRIVIAL (26.11%). The sta-
tistical distribution of entities mentions classes be-
tween WEAVE corpus and CHEMDNER-patents
corpus is different. Hence the need for annotation
of the Examples section of patents was felt. This
would significantly help develop machine learning
models tailored for the Examples section and down-
stream processing of synthetic organic reactions in
patents.

4 Experiments

To establish some baseline performance parame-
ters for the evaluation of the WEAVE corpus, we
applied the NER model10 developed by Yadav et al.
(2018), which has been successfully applied in
Multilingual, Clinical and Drug NER. Morpho-
logical features have been successfully applied in
named entity recognition. In submissions to BC-
IV CHEMDNER task (Krallinger et al., 2015a)

10https://github.com/vikas95/Pref_Suff_
Span_NN

5

A
B

B
V.

FA
M

IL
Y

FO
R

M
U

L
A

ID
E

N
T

IF
IE

R

M
U

LT
IP

L
E

SY
ST

E
M

A
T

IC

T
R

IV
IA

L

O
T

H
E

R

ABBV. 855 1 0 0 0 0 0 0
FAMILY 0 179 0 0 0 0 0 5
FORMULA 2 0 854 0 0 0 0 37
IDENTIFIER 0 0 0 8 0 0 1 2
MULTIPLE 0 0 0 0 6 0 0 0
SYSTEMATIC 0 0 0 0 0 4658 0 34
TRIVIAL 0 0 0 0 0 0 861 0
OTHER 11 17 10 2 2 39 9 498807

Table 3: Error analysis of annotations.

Figure 2: Architecture of NER model proposed by Yadav et al. (2018)

CLASS BC-IV BC-V WEAVE
ABBV. 4538 588 2520
FAMILY 4090 12209 783
FORMULA 4448 2239 6709
IDENTIFIER 672 99 47
MULTIPLE 202 140 6
NO CLASS 40 - -
SYSTEMATIC 6656 9570 14547
TRIVIAL 8832 8698 2756
Total 29478 33543 27368

Table 4: Training set.

and BC-V CHEMDNER-patents task (Krallinger
et al., 2015c) they feature prominently in the top-
performing models.

4.1 Word embeddings

200-dimension GloVe embeddings (Pennington
et al., 2014) were trained on text extracted from

CLASS BC-IV BC-V WEAVE
ABBV. 4521 454 3857
FAMILY 4223 11710 769
FORMULA 4137 2120 9679
IDENTIFIER 639 125 47
MULTIPLE 188 141 13
NO CLASS 32 - -
SYSTEMATIC 6816 9194 20106
TRIVIAL 8970 8398 4054
Total 29526 32142 38525

Table 5: Development set.

100,000 US patents belonging to IPC code A61K11

and C07D12. A window of word co-occurrence of
11https://www.wipo.int/classifications/

ipc/en/ITsupport/Version0170101/
transformations/ipc/20170101/en/htm/
A61K.htm

12https://www.wipo.int/classifications/
ipc/en/ITsupport/Version0170101/
transformations/ipc/20170101/en/htm/
C07D.htm

6

CLASS BC-IV BC-V WEAVE
ABBV. 4059 331 4892
FAMILY 3622 12319 597
FORMULA 3443 2459 10231
IDENTIFIER 513 54 57
MULTIPLE 199 137 10
NO CLASS 41 - -
SYSTEMATIC 5666 9818 15145
TRIVIAL 7808 8831 3304
Total 25351 33949 34236

Table 6: Test set.

Type WEAVE BC-V
Total annotations 100,129 99,634
Average per document 522 5
Median per document 366 3
Minimum per document 10 0
Maximum per document 3640 233

Table 7: Statistics for counts of annotations

8 and word frequency of 1 was used to train the
uncased text. The resulting embeddings had a dic-
tionary size of 6,828,514 and were used for all
experiments.

4.2 Model and Hyper-parameters
Figure 2 presents the architecture of the NER
model proposed by Yadav et al. (2018). The model
features Character Bi-LSTM, Word features, Word
Bi-LSTM, and Word CRF layer for generating
BIO tags for the named entities. The above model
was used as is with minor modifications in hyper-
parameters. The word embeddings size of 200-d
was used, train embeddings was set to false, and
batch size was set to 25. All other parameters were
set to the default values given in the model pro-
posed by Yadav et al. (2018).

4.3 NER datasets
The WEAVE corpus of the present study was ran-
domly split into training, development, and test set
with 60 documents in each set. The official training,
development, and test set of CHEMDNER-patents
task (Krallinger et al., 2015c) was used without
modification.

4.4 Preprocessing
The WEAVE corpus in the BRAT standoff for-
mat was converted into CoNLL 2003 BIO for-
mat and truncated to the Examples section. The

resulting WEAVE corpus had 73,522 sentences,
3,453,525 tokens, and 15,782 unique tokens. The
CHEMDNER-patents corpus in a tab-separated for-
mat was converted into CoNLL 2003 BIO format
before being used in training and evaluation of the
model. The resulting CHEMDNER-patents cor-
pus had 73,383 sentences, 2,511,006 tokens, and
51,570 unique tokens.

5 Analysis

To better understand the WEAVE corpus’s baseline
performance, we conducted several experiments
involving BC-V corpus and its combinations with
the WEAVE corpus. In Tables 8 and 9 we present
the results of experiments on various combinations
of WEAVE and BC-V datasets.

Based on the simple NER model (Yadav et al.,
2018), the best result in terms of macro-averaged
F-measure was the model on standalone WEAVE
corpus and tested on WEAVE test set with 91.37%.
Followed by a model trained on BC-V + WEAVE
corpus and tested on the WEAVE test set with
91.34%. In comparison, the top-performing team
in the BC-V CHEMDNER-patents task had an F-
score of 89.37% (Krallinger et al., 2015c). Whereas
the model trained on standalone BC-V corpus and
tested on BC-V test corpus had an F-measure of
80.89%. The model’s worst performance was when
trained on WEAVE corpus and tested on the BC-V
test set; the F-measure was 29.93%.

The results validate the linguistic structure of the
title and abstract of a patent is very different from
that of the Examples section. Hence, when com-
bined with the CHEMDNER-patents corpus, the
WEAVE corpus are complementary; without losing
precision, we have an increase in the recall of the
NER model. This also supports our assertion of
the need for a focused dataset covering the Exam-
ples section of patents. The combined corpus can
perform very close to the state-of-the-art results
in chemical NER. This combination also gives us
many high-quality annotations 199,763 (100,129
WEAVE + 99,634 BC-V) to develop better chem-
ical NER models. The IAA value of 98.73% on
45 documents subset and the best NER model with
F-measure of 91.37% is instructive of the NER
model’s simple nature. There is good scope for
researching better NER models, which can reduce
this difference.

7

Training Development Test Precision Recall F1
BC-V BC-V BC-V 78.62 83.30 80.89
BC-V WEAVE BC-V 78.21 80.21 79.19
WEAVE BC-V BC-V 35.68 25.78 29.93
WEAVE WEAVE BC-V 32.40 24.65 27.99
BC-V + WEAVE BC-V BC-V 74.50 78.77 76.58
BC-V + WEAVE WEAVE BC-V 73.33 76.34 74.80
BC-V + WEAVE BC-V + WEAVE BC-V 73.84 77.93 75.83

Table 8: Experimental results with BC-V Test corpus

Training Development Test Precision Recall F1
BC-V BC-V WEAVE 67.08 50.80 57.82
BC-V WEAVE WEAVE 73.32 48.38 58.29
WEAVE BC-V WEAVE 93.24 89.11 91.13
WEAVE WEAVE WEAVE 93.55 89.29 91.37
BC-V + WEAVE BC-V WEAVE 92.91 88.76 90.79
BC-V + WEAVE WEAVE WEAVE 92.54 88.74 90.60
BC-V + WEAVE BC-V + WEAVE WEAVE 93.43 89.34 91.34

Table 9: Experimental results with WEAVE Test corpus.

6 Discussion

Our results show that a focused annotated NER
dataset with a simple NER model can achieve near
state-of-the-art results. Complementary datasets
can achieve high recall without sacrificing the preci-
sion of the chemical NER model. This is illustrated
by the rows highlighted as bold in Table 9. The
reuse of the existing manually annotated dataset
results in substantial savings in manual annotation
effort.

Chemical NER models with high precision and
recall can be used for downstream processing and
analysis of chemical reactions in patents. The
present annotated dataset would help better tempo-
ral modeling of the synthetic procedures given in
the Examples section of patents.

We propose to explore more complex NER mod-
els. These models can better account for the high
IAA values reported by us. In the future, we would
explore the possibility of extending this dataset to
chemical reaction role labeling for the identified
chemical entities.

7 Supporting Information

The WEAVE corpus described in this paper is avail-
able at Github repository: https://github.com/
nv-ravindra/the-weave-corpus

Acknowledgments

We thank Vincatis Technologies Private Limited,
Hyderabad and anonymous reviewers for their help
with this publication.

References
Saber A Akhondi, Alexander G Klenner, Christian Tyr-

chan, Anil K Manchala, Kiran Boppana, Daniel
Lowe, Marc Zimmermann, Sarma ARP Jagarlapudi,
Roger Sayle, Jan A Kors, et al. 2014. Annotated
Chemical Patent Corpus: A Gold Standard for Text
Mining. PloS One, 9(9):e107477.

Michael Bada, Miriam Eckert, Donald Evans, Kristin
Garcia, Krista Shipley, Dmitry Sitnikov, William A
Baumgartner, K Bretonnel Cohen, Karin Verspoor,
Judith A Blake, et al. 2012. Concept annota-
tion in the CRAFT corpus. BMC Bioinformatics,
13(1):161.

Leonardo Campillos, Louise Deléger, Cyril Grouin,
Thierry Hamon, Anne-Laure Ligozat, and Aurélie
Névéol. 2018. A French clinical corpus with com-
prehensive semantic annotations: development of
the Medical Entity and Relation LIMSI Annotated
Text corpus (MERLOT). Language Resources and
Evaluation, 52(2):571–601.

Connor W Coley, Regina Barzilay, Tommi S Jaakkola,
William H Green, and Klavs F Jensen. 2017. Predic-
tion of Organic Reaction Outcomes using Machine
Learning. ACS Central Science, 3(5):434–443.

8

Peter Corbett, Colin Batchelor, and Simone Teufel.
2007. Annotation of Chemical Named Entities. In
Biological, translational, and clinical language pro-
cessing, pages 57–64, Prague, Czech Republic. As-
sociation for Computational Linguistics.

Tiago Grego, Piotr Pezik, Francisco M Couto, and Di-
etrich Rebholz-Schuhmann. 2009. Identification of
Chemical Entities in Patent Documents. In Inter-
national Work-Conference on Artificial Neural Net-
works, pages 942–949. Springer.

Cyril Grouin and Aurélie Névéol. 2014. De-
identification of clinical notes in French: towards a
protocol for reference corpus development. Journal
of Biomedical Informatics, 50:151 – 161. Special
Issue on Informatics Methods in Medical Privacy.

Ming-Siang Huang, Po-Ting Lai, Pei-Yen Lin, Yu-Ting
You, Richard Tzong-Han Tsai, and Wen-Lian Hsu.
2020. Biomedical named entity recognition and
linking datasets: survey and our recent development.
Briefings in Bioinformatics. Bbaa054.

Corinna Kolarik, Roman Klinger, Christoph M.
Friedrich, Martin Hofmann-Apitius, and Juliane
Fluck. 2008. Chemical Names: Terminological Re-
sources and Corpora Annotation. In Workshop on
Building and evaluating resources for biomedical
text mining (6th edition of the Language Resources
and Evaluation Conference), pages 51–58.

Martin Krallinger, Florian Leitner, Obdulia Rabal,
Miguel Vazquez, Julen Oyarzabal, and Alfonso Va-
lencia. 2015a. CHEMDNER: The drugs and chemi-
cal names extraction challenge. Journal of Chemin-
formatics, 7(S1):S1.

Martin Krallinger, Obdulia Rabal, Florian Leitner,
Miguel Vazquez, David Salgado, Zhiyong Lu,
Robert Leaman, Yanan Lu, Donghong Ji, Daniel M
Lowe, et al. 2015b. The CHEMDNER corpus of
chemicals and drugs and its annotation principles.
Journal of Cheminformatics, 7(1):1–17.

Martin Krallinger, Obdulia Rabal, Analia Lourenço,
Martin Perez Perez, Gael Perez Rodriguez, Miguel
Vazquez, Florian Leitner, Julen Oyarzabal, and Al-
fonso Valencia. 2015c. Overview of the CHEMD-
NER patents task. In Proceedings of the fifth BioCre-
ative challenge evaluation workshop, pages 63–75.

Sheshera Mysore, Zach Jensen, Edward Kim, Kevin
Huang, Haw-Shiuan Chang, Emma Strubell, Jef-
frey Flanigan, Andrew McCallum, and Elsa Olivetti.
2019. The Materials Science Procedural Text Cor-
pus: Annotating Materials Synthesis Procedures
with Shallow Semantic Structures. In Proceedings
of the 13th Linguistic Annotation Workshop, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Mariana Neves and Ulf Leser. 2012. A survey on anno-
tation tools for the biomedical literature. Briefings
in Bioinformatics, 15(2):327–340.

Dat Quoc Nguyen, Zenan Zhai, Hiyori Yoshikawa,
Biaoyan Fang, Christian Druckenbrodt, Camilo
Thorne, Ralph Hoessel, Saber A. Akhondi, Trevor
Cohn, Timothy Baldwin, and Karin Verspoor. 2020.
ChEMU: Named Entity Recognition and Event Ex-
traction of Chemical Reactions from Patents. In
Advances in Information Retrieval, pages 572–579,
Cham. Springer International Publishing.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global Vectors for Word
Representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Marwin HS Segler, Mike Preuss, and Mark P Waller.
2018. Planning chemical syntheses with deep neural
networks and symbolic AI. Nature, 555(7698):604–
610.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. BRAT: a Web-based Tool for NLP-
Assisted Text Annotation. In Proceedings of the
Demonstrations at the 13th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, pages 102–107, Avignon, France. Asso-
ciation for Computational Linguistics.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 Shared
Task: Language-Independent Named Entity Recog-
nition. In Proceedings of the Seventh Conference on
Natural Language Learning at HLT-NAACL 2003,
pages 142–147.

Vikas Yadav and Steven Bethard. 2018. A Survey on
Recent Advances in Named Entity Recognition from
Deep Learning models. In Proceedings of the 27th
International Conference on Computational Linguis-
tics, pages 2145–2158, Santa Fe, New Mexico, USA.
Association for Computational Linguistics.

Vikas Yadav, Rebecca Sharp, and Steven Bethard. 2018.
Deep Affix Features Improve Neural Named Entity
Recognizers. In Proceedings of the Seventh Joint
Conference on Lexical and Computational Seman-
tics, pages 167–172, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

9

Proceedings of the 17th International Conference on Natural Language Processing, pages 10–14
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Increasing accuracy of a semantic word labelling tool based on a small
lexicon

Hugo Sanjurjo-González
University of Deusto, Spain

hugo.sanjurjo@deusto.es

Abstract

Semantic annotation has become an important
piece of information within corpus linguistics.
This information is usually included for every
lexical unit of the corpus providing a more ex-
haustive analysis of language. There are some
resources such as lexicons or ontologies that al-
low this type of annotation. However, expand-
ing these resources is a time-consuming task.
This paper describes a simple NLP baseline
for increasing accuracy of the existing seman-
tic resources of the UCREL Semantic Analysis
System (USAS). In our experiments, Spanish
token accuracy is improved by up to 30% us-
ing this method.

1 Introduction

Apart from raw texts, a corpus can include ex-
tra linguistic information by way of annotation.
Most common types of annotation are grammatical,
semantic, prosodic and historical. The semantic
one has become an important piece of information
within the corpus linguistics research field. A cor-
pus with this information is a useful resource to
extract knowledge from a real context: as Navarro
et al. (2005) state, it can be considered as a semi-
structured database that offers deep information
about human knowledge, concepts and relations
among them.

Semantic annotation in corpus linguistics tends
to recognise semantic categories and concepts at
different syntactic levels, such as word level, phrase
level or sentence level (Piao et al., 2018). For
this purpose, the information about grammatical
tags and NER (Named-Entity Recognition) classes
contribute to determine lexical semantics to some
extent, but they are not sufficiently informative
(Abzianidze and Bos, 2017). Semantic annotation
tries to overcome these barriers by adding new cat-
egories.

In this paper, we describe an NLP baseline that
increases accuracy of a semantic role labelling tool
that makes use of a small semantic lexicon in Span-
ish language (Piao et al., 2015) based on the USAS
tagset (Archer et al., 2002). We are able to increase
accuracy by means of a very simple strategy that
makes use of freely-available NLP toolkits such as
NLTK (Bird et al., 2009) and Spacy (Honnibal and
Montani, 2017). A novel approach using WordNet
similarity based on the information content theory
(Resnik, 1995) is also employed in order to search
synonyms of unknown words and, therefore, in-
crease lexical accuracy. As a proof of concept, we
carried out different experiments with texts from
the finance domain.

The article is organised as follows: Section 2
explains our approach together with the different
processes that are executed. Implementation is
described in Section 3. We show different experi-
ments in Section 4. Last, Section 5 outlines conclu-
sions and future directions.

2 Overview of our approach

The USAS lexicon is based on the Longman Lex-
icon of Contemporary English (McArthur, 1986),
which ensures, up to a certain point, the linguistic
validity and motivation of this resource. There are
21 major discourse fields, expanding into 232 cate-
gory labels1. USAS employs a group of labels in
an attempt to include most meanings of the lexi-
calised unit. To employ USAS lexicon, we need
to extract lemma and grammatical annotation for
each word. Table 1 shows an example of entry for
the word business.

Regarding the Spanish version, it contains
around 10,000 words and 5,000 multiword expres-
sions, and most of them are Spanish named entities
such as places or locations. As a consequence of its

1More information can be found in (Archer et al., 2002)

10

Table 1: Example of lexicon entry.

Lemma POS Semantic tags
business noun I2.1 A1.1.1 A5.1+++

reduced size, accuracy of the Spanish USAS lexi-
con is limited if it is used in specific text domains.
For instance, only 3.30% of the lexicon entries
belong to the finance domain. If this is the only
resource employed for tagging, there will be many
words that will not have any tag, and thus, many
words will be incorrectly tagged as unknown be-
cause they do not appear in the lexicon (e.g. ı́ndice
- index).

A more in-depth analysis reveals that some of
these words are lemmatised incorrectly (e.g. véase
(note) is lemmatised as véase instead of ver). In ad-
dition, some words appear in the lexicon with only
one grammatical category when they can belong to
different categories (e.g. mucho (many/much) can
be an adverb and adjective in Spanish).

To solve these problems, the simplest solution
is to add new entries to the lexicon, however this
is a very time-consuming task. Another solution is
trying to improve results of the operations required
by USAS such as lemmatisation or grammatical an-
notation. We can also try to incorporate other tech-
niques such as stemming in order to match the stem
of the word with another stem in the lexicon. In
order to achieve that, we can simply employ avail-
able Spanish resources from NLP toolkits such as
Spacy and NLTK. In the rest of this section, we will
describe how lexicon accuracy may be increased
using some preprocessing techniques in a specific
domain such as the finance one.

2.1 Analysing finance domain texts

In this stage, we built a corpus of texts from the
finance domain in order to analyse its main features
such as most frequent words, keywords, colloca-
tions etc. More concretely we selected the Annual
Report of the Banco de España (1998-2019) (BDE,
2020) with the exception of the 2013 edition, since
it was used for validation purposes. These docu-
ments review economic and financial developments
in the Spanish economy and are composed of 19
samples and 2,841,826 words.

Analysis of this corpus reveals that this type of
texts appear to have many acronyms such as PIB
(Producto Interior Bruto - Gross Domestic Prod-
uct), numbers with different formats (2005, 36,3%,

540.000, 3,25), currency symbols, proper names
(Miguel Fernández Ordóñez Antonio Rosas), ge-
ographical names (Torrellano-Elche, Eurozona),
organisations names (Banco de España) and words
in languages different from Spanish (financial in-
stitutions) as well as other jargon of this domain.

2.2 Lemmatisation

As we previously mentioned, USAS lexicon entries
are composed of lemma, POS tag and semantic tag
(see Table 1). Thus, it is necessary to include a
Spanish lemmatiser. NLTK does not offer this tool
for Spanish language, and Spacy includes one but
it has some errors. For instance: reclamaciones as
reclamaciones (claims in English) or como (like) as
comer (eat), para (for) as parir (give birth), among
others.

Using full words instead of lemmas also entails
some errors because most of them do not appear
in the lexicon. For instance, músculos - muscles
instead of músculo - muscle. For this reason, we
make use of the NLTK stemmer, which returns
words’ bases or roots.

2.3 Grammatical annotation

We also need to annotate each word grammatically.
English USAS employs CLAWS (Garside, 1987), a
highly sophisticated grammatical tagger. However,
there is not an equivalent for other languages, so in
this case USAS for Spanish employs a simplified
version of the grammatical tagset that includes the
basic grammatical elements.

For this purpose, we employ Spacy grammatical
tagger since it offers a relatively adequate perfor-
mance. Nevertheless, some words are incorrectly
tagged, mainly some nouns or even adjectives that
were tagged as proper nouns because of their ini-
tial uppercase. For instance: Informe (Report) and
Anual (Annual). As a consequence, the semantic
tagger would return no tag for all these words. To
overcome this problem we search for words with-
out grammatical tags in the lexicon at the end of
the process, that is, as a final measure to return
semantic tag candidates.

2.4 Identifying named entities and foreign
words

We make use of a corpus of names included in
NLTK (Kantrowitz, 2020), for instance Alberto.
This allows us to identify any name in different
languages. We also employ some gazetteers for

11

geographical locations (e.g. Madrid) and the pre-
viously mentioned corpus for identifying English
words that usually appear in financial texts (e.g.
Exchange).

Including a NER tagger for Spanish is also an
option, however according to our experiments this
tool recognises many foreign words such as or-
ganisations or even locations (e.g. Cash). For this
reason, if we included it, it would return many false
positives.

2.5 Identifying other elements

In order to identify any format number, mathemati-
cal operations and symbols as well as some other
elements like abbreviations, we formulate patterns
using Perl compatible regular expressions.

2.6 Computing WordNet synonyms

We also wanted to make use of a novel approach for
identifying unknown words that were not tagged in
previous steps. To do that, we try to get synonyms
of the unknown words, since synonyms often have
the same semantic function.

We employ sense similarity of the information
content of the corpus compiled at the first stage of
this approach. Our premise is that if one word is
missing from the lexicon there are many possibili-
ties that this word has a synonym in the previously
compiled corpus.

We create an information content dictionary of
the corpus in order to employ similarity based on
the WordNet synsets. To measure similarity we
employ Lin measure (Lin, 1998).

3 Implementation and deployment

We develop all the components of the tagger fol-
lowing the specifications proposed in the previous
section. Fig. 1 shows a simplified workflow of this
process that can be described as follows:

1. First, the tagger searches if the lemma of the
word together with its grammatical tag is in
the lexicon. If it is, we already have the tag
for the word.

2. If it is not, the tagger searches if the word with
its grammatical tag is in the lexicon.

3. If not, we employ the stemmed version of
the word and the lexicon together with the
grammatical tag.

Table 2: Evaluation of accuracy.

Sample text size Correct Partially correct
13,331 words 86.26% 2.21%
7,064 words 86.71% 1.33%

4. If we do not have any results, we try the
same without using grammatical annotation
as a consequence of the possible errors of the
grammatical tagger.

5. After that, words without semantic tags are
analysed in order to identify named entities
and foreign words.

6. Subsequently, regular expressions are used
to match numbers and abbreviations, among
others.

7. For the rest of the unmatched words, the tag-
ger will search a synonym of the word us-
ing the information content and its similarity
based on WordNet synsets. We get a list of
candidates according to their similarity index
and search them in the lexicon.

8. If similar words cannot be calculated with that
word or its lemma, it will be set as a semantic
tag ‘Z99’ or unknown word.

4 Experiments

In the absence of resources for validating our tool
we needed to build a custom-made gold standard.
This is a consequence of the USAS tagset, a very
specific classification system, and the Spanish lan-
guage, which has less lexical coverage than English
language using this resource. We extracted some
sample texts that were not included in the corpus
together with some texts from independent sources.
The size of the gold standard is 20,395 words. This
size is a consequence of the laborious task of man-
ual annotation.

In order to evaluate the accuracy, we followed
the same metrics as (Piao et al., 2015). A first
metric refers to those instances where the first can-
didate tag is correct, and a second metric makes
reference to the cases where the other tags in the
list are correct or closely related to the word sense.
These results are shown in Table 2

As we can see in Fig. 2, results have been im-
proved around 30% in comparison with using only
Lemma – POS method.

12

Figure 1: Simplified workflow diagram of the tagger.

Figure 2: Experiment results.

Fig. 3 shows percentages of words that were
tagged for each subprocess of the tagger. As it
can be seen, the proposed baseline tags about 44%
of the words. WordNet synonym method did not
return any significant results, maybe as a conse-
quence of the absence of a basis of finance elements
in the lexicon. Its inclusion only improves accuracy
around 0.15% according to our experiments, so it
is not significant.

Last, the confusion matrix of the semantic tag-
ger according to the 21 major discourse fields of
the USAS taxonomy can be found in the Supple-

Figure 3: % of words that were tagged for each subpro-
cess.

mentary Material. Confusion matrix of all the 232
subcategories would be a more detailed option but
the representation of all the subcategories may be
slightly confusing. The most remarkable issues are
the following:

• Many words from the rest of the categories
are incorrectly tagged using Z category. More
specifically with ‘Z99’ tag. That means that
there are many words that our tagger can-
not recognised and as a consequence they are
tagged as unknown.

• Another issue is related to the words belong-
ing to the N category (Numbers and Measure-

13

ment) that are wrongly tagged using the A
category (General and Abstract terms). Words
such as ı́ndice (index) or tasa (rate, fee) are
not correctly identified.

• Last, it should be mentioned that words be-
longing to A category are tagged incorrectly
using the rest of the categories. One explana-
tion may be the own definition of this category,
general and abstract terms.

5 Conclusions and further work

The main contribution of this paper is a strategy
that utilises existing NLP toolkits such as NLTK
and Spacy to preprocess texts in order to obtain
better results using only a small lexicon as source of
semantic information. This strategy is implemented
following a simple and straightforward approach.
Empirical results are reported and compared across
an ad hoc gold standard based on texts from the
finance domain.

This study also introduced a novel approach for
extending lexical accuracy of semantic lexicons
by means of synsets similarity of WordNet which
did not provide the expected results, maybe as a
consequence of the limited lexicon.

We hope that this approach could be easily ex-
tended to other domains and even with under-
resourced languages. Therefore, expected future
work includes reproducing the good results ob-
tained in other text domains and employing lan-
guages different from Spanish or English. We also
need to investigate how to take advantage of the
semantic similarity provided by WordNet or even
word embeddings using taxonomies like USAS.

References

Lasha Abzianidze and Johan Bos. 2017. Towards uni-
versal semantic tagging. In IWCS 2017—12th In-
ternational Conference on Computational Seman-
tics—Short papers.

Dawn Archer, Andrew Wilson, and Paul Rayson.
2002. Introduction to the usas category system. re-
trieved from ucrel semantic analysis system (usas)
website. http://ucrel.lancs.ac.uk/usas/
usas_guide.pdf. Accessed: 2020-09-16.

BDE. 2020. Banco de españa - publicaciones an-
uales website. https://www.bde.es/bde/es/
secciones/informes/Publicaciones_an/
Informe_anual/. Accessed: 2020-09-16.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: analyz-
ing text with the natural language toolkit. ” O’Reilly
Media, Inc.”.

Roger Garside. 1987. The claws word-tagging system.
The Computational analysis of English: A corpus-
based approach. London: Longman, pages 30–41.

Matthew Honnibal and Ines Montani. 2017. spacy 2:
Natural language understanding with bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. To appear, 7(1).

Mark Kantrowitz. 2020. Mark kantrowitz corpora
names website. http://www.cs.cmu.edu/afs/
cs/project/ai-repository/ai/areas/nlp/
corpora/names/. Accessed: 2020-09-16.

Dekang Lin. 1998. An information-theoretic definition
of similarity. In Machine Learningˆ* Proceedings of
the Fifteenth International Conference (ICML’98),
pages 296–304.

Tom McArthur. 1986. Longman lexicon of contempo-
rary English. Longman.

Borja Navarro, Patricio Martı́nez-Barco, and Manuel
Palomar. 2005. Semantic annotation of a natural
language corpus for knowledge extraction. In In-
ternational Conference on Application of Natural
Language to Information Systems, pages 365–368.
Springer.

Scott SL Piao, Francesca Bianchi, Carmen Dayrell, An-
gela D’egidio, and Paul Rayson. 2015. Develop-
ment of the multilingual semantic annotation system.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1268–1274.

Scott SL Piao, Paul Rayson, Dawn Knight, and Gareth
Watkins. 2018. Towards a welsh semantic annota-
tion system. In Proceedings of the Eleventh Interna-
tional Conference on Language Resources and Eval-
uation (LREC 2018).

P Resnik. 1995. Using information content to evalu-
ate semantic similarity. In Proc. 14th International
Joint Conference on Artificial Intelligence (IJCAI-
95), Montreal, Canada, pages 448–453.

14

Proceedings of the 17th International Conference on Natural Language Processing, pages 15–21
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Abstract

Pāṇini in his Aṣṭādhyāyī has written the

grammar of Sanskrit in an extremely

concise manner in the form of about 4000

sūtras. We have attempted to

mathematically remodel the data produced

by these sūtras. The mathematical

modelling is a way to show that the

Pāṇinian approach is a minimal method of

capturing the grammatical data for

Sanskrit which is a natural language. The

sūtras written by Pāṇini can be written as

functions, that is for a single input the

function produces a single output of the

form y=f(x), where x and y is the input

and output respectively. However, we

observe that for some input dhātus, we get

multiple outputs. For such cases, we have

written multivalued functions that is the

functions which give two or more outputs

for a single input. In other words,

multivalued function is a way to represent

optional output forms which are expressed

in Pāṇinian grammar with the help of 3

terms i.e. vā, vibhaṣā, and anyatarasyām.

Comparison between the techniques

employed by Pāṇini and our notation of

functions helps us understand how

Pāṇinian techniques ensure brevity and

terseness, hence illustrating that Pāṇinian

grammar is minimal.

1 Introduction

Pāṇini’s Aṣṭādhyāyī is ‘almost an exhaustive

grammar for any human language with

meticulous details yet small enough to memorize

it’ (Kulkarni, 2016). Such an exhaustive grammar

is ideal to be used for artificial language

processing. Briggs (Briggs, 1985) even

demonstrated in his article the salient feature of

Sanskrit language that can make it serve as an

artificial language. Although, this is not a new

concept, various efforts in mathematical

modelling of Indian languages have been done

before. Joseph Kallrath in his book ‘Modeling

Languages in Mathematical Optimization’ says

that ‘a modeling language serves the need to pass

data and a mathematical model description to a

solver in the same way that people especially

mathematicians describe those problems to each

other’ (Kallrath, 2013). Mathematical modelling

of languages also impacts our understanding of

the language and its grammar. As scholars are

delving into the question of formalizing various

natural languages, it is also having an impact on

how we understand the language itself. Recent

work in theoretical and computational linguistics

has influenced the interpretation of grammar

(Scharf, 2008). We have followed a similar

approach, wherein we have modelled the

Pratyayas in Sanskrit in the form of functions

with the help of Pāṇinian sūtras.

Similar to mathematical functions which can be

expressed as f(x)=y where x is the input and y is

the output of function f; ‘the sūtras too look for

their preconditions in an input environment. The

effects produced by sūtras become part of an

ever-evolving environment which may trigger

other’ (Sohoni & Kulkarni, 2018). For the

grammar to fit mathematical functions, we ‘need

a strong and unambiguous grammar which is

provided by Maharishi Pāṇini in the form of

Aṣṭādhyāyī’ (Agrawal, 2013).

Statistical analysis of a language is a vital part

of natural language processing (Goyal, 2011).

According to how components of the target

linguistic phenomenon are realized

Treatment of optional forms in Mathematical modelling of Pāṇini

Anupriya Aggarwal, Malhar Kulkarni

Indian Institute of Technology Bombay, Mumbai
anupriya@iitb.ac.in, malharku@hss.iitb.ac.in

15

mathematically, available models of language

evolution can be classified as rule-based and

equation-based models. Equation-based models

tend to transform linguistic and relevant behaviors

into mathematical equations (Tao Gong, 2013),

which is what we have attempted in this paper.

Ambiguity is inherent in the Natural Language

sentences (Tapaswi & Jain, 2012), and hence

Sanskrit being a natural language also has certain

ambiguities. The ambiguity that we are dealing

with in this paper is that a single dhātu combined

with a single pratyaya can result in two or more

optional forms. Mathematical modelling of such

natural languages can help to remove this

ambiguity. Traditionally too, there have been

attempts by various scholars like Kātyāyana,

Patanjali and Bhartṛhari to provide extensive

commentaries which contain explanations for

various aspects of the grammar. They do not

question Pāṇini’s basic model, but rather explain

it, refine it and complete it (Huet, 2003).

Explanations and clarifications in the form of

various vārtikas also come handy while dealing

with ambiguities. However, here we are diverging

from the traditional approach and writing

functions in order to model the grammatical data.

To account for more than two forms of a word,

Pāṇini uses optional form rules to state that

alternate forms are also possible. For example,

sūtra (rule) 1.2.3 vibhaṣorṇoḥ states that ‘After

the verb ūrṇa 'to cover', the affix beginning with

the augment iṭ is regarded optionally like ṅit

(Source, 2020)’. We have used multivalued

functions to denote such optional forms in our

system of representing the pratyayas as functions.

2 Methodology

We are here attempting to mathematically model

the data produced by the sūtras for which we

started with compiling the list of dhātus and their

respective derived dhātus with different pratyayas

like from the Kridantkosh of Pushpa Dikhshita

Vol.1 (Dikshita, 2014), sanskritworld.in (Dhaval

Patel, n.d.), Siddhananta Kaumudi of Bhattoji

Dikshita (S.C.Vasu, 1905), The Madhaviya

DhātuVritti (Sayanacarya, 1964) and the roots,

verb-forms and primary derivatives of the

Sanskrit Language by W.D.Whitney (Whitney,

1885). The list of dhātus without the application

of any pratyaya are considered as x, after the

application of the concept of anubandhas.

Anubandhas have a very prominent role to play in

the Pāṇinian system of Sanskrit grammar. It

literally means ‘what is attached to’. It has been

used by all ancient authorities on Sanskrit

grammar who have come after Pāṇini, right from

Kātyāyana to Nageśa. However, Pāṇini has used

the term ‘it’ to describe the anubandhas. M.

Williams dictionary (Williams, 2008 revised)

defines anubandhas as an indicatory letter or

syllable attached to roots etc., marking some

peculiarity in their inflection e.g. an ‘i’ attached to

roots denotes the insertion of a nasal before their

final consonant. According to Nyāyakosa,

anubandha is a letter that is attached to the stem

(prakṛti), termination (pratyaya), augment

(āgama) or a substitute (ādesha) to indicate the

occurrence of some special modifications such as

vikaraṇa, āgama, guṇa or vṛddhi, accent etc. But

it is dropped from the finished word i.e. pada. The

use of anubandha is one of the crucial steps

Pāṇini has taken to ensure the brevity and

terseness of his work. We can say that

anubandhas do form part of the pratyayas etc. to

which they are found appended (Devasthali,

1967). But before we directly start writing our

functions, we need to define the input set which

comprises of dhātus from the Dhātupatha as well

as the derived dhātus without anubandhas.

Let A be a set of all the dhātus after the

anubandhas have been removed. These primary

dhātus are 1943 in total. However, the input

dhātus are not limited to these dhātus in set A. We

can also derive a new dhātu set B by adding a san

pratyaya to the dhātus of set A. The items in set B

can be called dhātus by following the grammatical

rule laid down by Pāṇini, ‘3.1.32 sanādyantāḥ

dhātavaḥ’ which says that ‘all roots ending with

Sūtra numbers Pratyaya

3.1.5 san

3.1.8 kyac

3.1.9 kāmyac

3.1.11 kyaṅ

3.1.13 kyaṣ

3.1.20 ṇiṅ

3.1.21 ṇic

3.1.22 yaṅ

3.1.27 yak

3.1.28 āy

3.1.29 īyaṅ

Table 1: List of San pratyayas in Aṣhṭādhyāyī

with their respective sūtra numbers

16

the pratyayas starting with san are called dhātu.

Hence the input x is defined as,

x є (A ∪ B)

In this paper we will focus on the multivalued

functions that give two or more outputs for the

same input dhātu of the form f(x)=

 if there are

two optional forms; f(x)=

 if there are three

optional forms and so on.

3 Notation

Let x be the input dhātu. For the purpose of

writing these functions, we start enumerating the

syllables from left to right or from right to left

depending upon that particular function. We can

denote x as, x= (….,x(2),x(1))= (x’(1),x’(2),….).

x can be a consonant (C) or a vowel (V) and they

are denoted by

C’(i)= i
th
 consonant from left;

V’(i)= i
th
 vowel from left;

C(i)= i
th
 consonant from right,

V(i)= i
th
 vowel from right.

For example: If x = cura, then

Conversion are denoted by a right arrow with a

number on the top. The number denotes the

location of the conversion.

For example, x[a

 ā] denotes that in the dhātu x,

a which is at the 2nd place from the right is

getting replaced with ā.

We also define a ‘+ operator’ to explain the

change of syllables when two syllables combine.

In Sanskrit language when two syllables come

closer, for the ease of pronunciation (in most

cases) it gets replaced by another syllable or a

combination of syllables. For example: ū+i=vi,

e+i=ayi, o+i=avi, d+ta=tta, ch+t= ṣṭa, j+ta=kta,

dh+ta=dhda, bh+ta=bdha, h+ta= ṇḍha. Note

that although the ‘+ operator’ may look similar to

the concept of Sandhi in Sanskrit, it is totally

based on our need to fit our dataset and does not

encompass the broad concept of Sandhi.

4 A function p(x)

This function is not a pratyaya function, but it is

required to write the pratyaya function. Thus, it

would be helpful to define it here. The dhātus

which have two or more vowels are called udātta,

and when a suffix is added to them an additional

‘i’ comes. Such dhātus are called seṭ (literally

meaning ‘with iṭ’). For dhātus which have one

vowel, we need to see the instructions given in the

Dhātupaṭha. They can either be seṭ or aniṭ

depending upon the given instructions given.

Example of one such instruction is ‘bhu sattayām|

‘udāttḥ parasmaibhāṣḥ’| It says that ‘i’ will come

as the prayogsamavāyī svara is udāttḥ.

The function p(x) is defined by,

cura = c u r a

Right

to left

x(4) x(3) x(2) x(1)

Left to

right

x’(1) x’(2) x’(3) x’(4)

Table 2: The numbers 1, 2, 3,… signify the

position of the syllable. The notation x

(unprimed) is used when the syllables are

counted right to left, and the notation x’ is used

when the syllables are counted left to right.

Figure 1: Example of an Instruction given in the

Dhātupatha.

17

5 Multivalued functions

The words used for optionality by Pāṇini are

vā, vibhaṣā, anyatarasyām. vā appears 136 times,

vibhaṣā appears 258 times and, anyatarasyām

appears 161 times respectively in Aṣṭādhyāyī;

including the ones that occur in Anuvritti
1
. Pāṇini

and all the commentators have given us no

indication that they are supposed to be anything

but synonyms. But the modern scholar Paul

Kiparsky has wondered how could this be so,

because Pāṇini has vowed to eliminate every

needless extraneous syllable and there must be a

deeper reason to suggest the use of three different

terms. Hence, he has propounded the hypothesis

in his well-argued study Pāṇini as a ‘variationist’

that the three terms vā, vibhaṣā, anyatarasyām

refer respectively to three different kinds of

options: those that are preferable (vā), those that

are marginal (vibhaṣā) and those that are simple

options(anyatarasyām) (Sharma, 2018).

One such case which results in such optional

forms is represented in the table below where the

addition and absence of ‘i’ results in two forms

and the change of ‘h’ syllable to two different

syllables further results in two forms. Thus, we

end up with three forms of the same word.

Let us look at an example for this case for x =

muh:

tum(muh) =

=

1
 The number of times these words appear in Aṣṭādhyāyī;

including the ones that occur in Anuvritti have been

calculated by using the ‘Ashtadhyayi sUtra pAtha with

Anuvruttis’ done by Dr. V. Sheeba with the help of RSVP

Shabdabodha (2006-08).

 Program to generate the text from markings: Pawan Goyal,

Ph.D. Student, IIT Kanpur Version Dated: 18th August,

2008

6 Cases for multivalued functions

Some cases for multivalued functions are

displayed below
2
.

Some Multivalued functions for Tumun

Pratyaya

Case I:

If x є {svṛ sū dhū}, then

 tum(x) =

x

tum(x)

sū
svi

so

svitum

sotum

svṛ
svari

svar

svaritum

svartum

Case II:

If x has two syllables such that x(1)= ṝ, then

tum(x) =

x

 tum(x)

v
vari

varī

varitum

varītum

k
kari

karī

karitum

karītum

Case III:

If x є {gup}, then

tum(x) =

2
 An exhaustive list of cases for Tumun and san

pratyayas including the multivalued cases are given

in the appendix in Devanagari script.

Word Occurrence Usage

vā 136 times preferable

vibhaṣā 258 times marginal

anyatarasyām 161 times simple

options

Table 3: Words used for optionality by Pāṇini

Figure 2:Multivalued functions

iḍāgama iḍābhava

hgh hḍh 18

x

 tum(x)

gup

gopi

gop

gop

gopitum

goptum

gop tum

Case IV:

If x є {tṛp dṛp}, then

tum(x) =

x

 tum(x)

dṛp

darp

drap

darpi

darpatum

draptum

darpitum

Some Multivalued functions for San Pratyaya

Case I:

If x’(1)=c, x’(2)=v= i u, x’(3)=c in x(which has

exactly 3 letters), then

san(x)=

where, T(x)=

x san(x)

gud ju jugodiṣa

jugudiṣa

yut yu yuyotiṣa

yuyutiṣa

vith vi vivethiṣa

vivithiṣa

cit ci cicetiṣa

cicitiṣa

Case II:

If there is only one v in x, such that x(2)=v= i u

and starts with at least two consonants i.e x’(1)=c,

x’(2)=c, then

san(x)=

x san(x)

cyut cu cucyotiṣa

cucyutiṣa

kliś ci cicleśiṣa

cikliśiṣa

7 Conclusion

According to the mathematical definition of a

function, it generates a unique output for every

input. However, while mathematically modelling

Pratyayas in Sanskrit we came across several

instances where a single input was generating

multiple outputs, which have been represented by

multivalued functions.

To ensure brevity, Pāṇini has used several tools

which have been compared with their equivalent

tools in our functional approach.

What we are essentially denoting as x(2) in our

functions i.e. the penultimate term is nothing but

upadhā. Pāṇini by convention treats x(1) as the

end and calls it antya. This is clear from the

definition of upadhā given by Pāṇini in

Aṣṭādhyāyī sūtra ‘1.1.65 alontyāt pūrva upadhā’,

which means ‘The letter immediately preceding

the last letter of a word is called penultimate

(upadhā) (Creative Commons, 2020)’. As stated

before in the paper, the words vā, vibhaṣā, and,

anyatarasyam are used by Pāṇini to denote

optional forms that we have demoted by

multivalued functions.

Another important feature of Pāṇinian

grammar is anuvṛtti, which is a technique of

carrying some parts of the previous sūtras to the

next sūtras. Due to anuvṛtti, the order in which

various elements appear in the sūtra itself are very

important. However, we do not need to define any

such equivalent tool in our modeling as long as

Functions Pāṇinian tools

x(2) upadhā

c’1,c’2,…,v’1 if

x'1=consonant;

c’1,c’2,…,v’2 if

x'1=vowel

ekāc

Multivalued functions vā, vibhaṣā,

anyatarasyām

x(1) antya

- anuvṛtti

Table 1: Pāṇinian Techniques vs functions

19

we define some global functions and operators

such as p(x) and the ‘+’ operator.

By mathematically modeling pratyayas, the

reason behind use of these techniques employed

by Pāṇini to ensure brevity becomes very clear.

Mathematical modelling of Pāṇinian grammar

in this way helps identify some general patterns,

each of which is grouped separately as a case in

the functions. These patterns are mainly

dependent upon the occurrence of certain specific

syllables at certain places. However, we observed

that there are some dhātus which even after

fulfilling the conditions given in the cases, give an

output which is different from what is observed in

the literature. All such cases needed a separate

approach. Hence the for the treatment of such

cases input sets for those particular cases have

been defined.

The knowledge of Pāṇinian rules also helps us

reduce the number of individual cases that have

been constructed for each function. It helps group

certain cases together into a single generalized

case. For example: instead of writing three

individual functions for i→e, u→o, and ṛ→ar, the

knowledge of the rules in Aṣṭādhyāyī helps to

write a general case of the form i u ṛ → e o ar.

Writing such functions for all other pratyaya

functions may lead us towards a global function

for pratyayas and for other grammatical tools as

well. This technique of mathematical modelling is

extremely helpful to understand Sanskrit grammar

for people who are non-linguists or do not

understand the technicalities of Sanskrit grammar.

This mathematical model can also form a base for

further processing of the grammatical rules for

natural language processing of the language with

the help of well-defined input and output sets.

Acknowledgments

Our deepest regards to Prof Swapneel Mahajan

from the Department of Mathematics, IIT

Bombay whose guidance in terms of inputs and

ideas have helped shape the concept of these

functions.

References

Agrawal, S. S. (2013). Sanskrit as a Programming

Language and Natural Language Processing.

Global Journal of Management and Business

Studies. Volume 3.

Briggs, R. (1985). Knowledge Representation in

Sanskrit and artificial Intelligence. The AI

Magazine, 32-39.

Creative Commons. (2020, 1 4). Ashtadhyayi.

Retrieved from Paniniya Moolstrot:

https://ashtadhyayi.github.io/

Devasthali, G. V. (1967). Anubandhas of Panini.

Poona: W.H.Golay.

Dhaval Patel, D. (n.d.). Sanskrit Tool. Retrieved 12

16, 2019, from Sanskrit World:

https://www.sanskritworld.in/sanskrittool/Sanskrit

Verb/tiGanta.html

Dikshita, P. (2014). kavirasayanmityaparanama

kridantkoshah prathamo bhagah. pratibha

prakashan.

Goyal, L. (2011). Comparative analysis of printed

Hindi and Punjabi text based on statistical

parameters. Information systems for Indian

languages, communications in computer and

information science, Volume 139, Part 2. Berlin,

Heidelberg: Springer.

Huet, G. (2003). Lexicon-directed segmentation and

tagging in Sanskrit. (pp. 307-325). Helsinki,

Finland: In XIIth World Sanskrit Conference.

Kallrath, J. (2013). Modeling Languages in

Mathematical Optimization. Springer Science &

Business Media.

Kulkarni, A. (2016). Brevity in Pāṇini’s Aśṭādhyāyī.

In B. A. Joseph, The Interwoven World: Ideas and

Encounters in History. Common Ground

Publishing.

S.C.Vasu. (1905). The Siddhanta Kaumudi of Bhattoji

Dikshita. Allahabad, The Panini office.

Sayanacarya. (1964). The Madhaviya Dhatuvritti.

Prachya Bharati Prakashan.

Scharf, P. M. (2008). Modeling Paninian Grammar.

International Sanskrit Computational Linguistics

Symposium, (p. 97).

Sharma, D. N. (2018). Introduction To Panini's

Grammar. CC0 1.0 Universal.

Sohoni, S., & Kulkarni, M. (2018). A Functional Core

for the Computational Aṣṭādhyāyī. Computational

Sanskrit and Digital Humanities, Selected papers

presented at the 17th World Sanskrit Conference.

Source, O. (2020). १.२.३ विभाषोर्णोः. Retrieved from

Ashtadhyayimulstrota:

https://ashtadhyayi.github.io//sutra-

details/?sutra=1.2.3

Tao Gong, L. S. (2013). Modelling language

evolution: Examples and predictions. Elsivier, 2.

20

Tapaswi, N., & Jain, S. (2012). Treebank based deep

grammar acquisition and Part-Of-Speech Tagging

for Sanskrit sentences. IEEE.

Whitney, W. D. (1885). The roots, verb-forms, and

primary derivatives of the Sanskrit language. A

supplement to his Sanskrit grammar. Leipzig,

Breitkopf and Härtel.

Williams, M. (2008 revised). Monier Williams

Dictionary.

21

Proceedings of the 17th International Conference on Natural Language Processing, pages 22–29
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Automatic Hadith Segmentation using PPM Compression

Taghreed Tarmom
School of Computing
University of Leeds

Leeds, UK
sctat@leeds.ac.uk

Eric Atwell
School of Computing
University of Leeds

Leeds, UK
e.s.atwell@leeds.ac.uk

Mohammad Alsalka
School of Computing
University of Leeds

Leeds, UK
M.A.Alsalka@leeds.ac.uk

Abstract

In this paper we explore the use of Predic-
tion by partial matching (PPM) compres-
sion based to segment Hadith into its two
main components (Isnad and Matan). The
experiments utilized the PPMD variant of
the PPM, showing that PPMD is effective
in Hadith segmentation. It was also tested
on Hadith corpora of different structures.
In the first experiment we used the non-
authentic Hadith (NAH) corpus for train-
ing models and testing, and in the second
experiment we used the NAH corpus for
training models and the Leeds University
and King Saud University (LK) Hadith cor-
pus for testing PPMD segmenter. PPMD
of order 7 achieved an accuracy of 92.76%
and 90.10% in the first and second experi-
ments, respectively.

1 Introduction

Automated text segmentation is the task of
building a tool that can automatically iden-
tify sentence boundaries in a given text and
divide them into their components. The need
to convert unstructured text into a structured
format is especially important when dealing
with unstructured text such as web text or old
documents.

One of the most important types of old holy
Islamic texts in the Arabic language is Hadith.
Hadith—the second source of Islam—refers to
any action, saying, order, or silent approval of
the holy prophet Muhammad that was deliv-
ered through a chain of narrators. Each Hadith
has an Isnad—the chain of narrators—and a
Matan—the act of the prophet Muhammad.
Figure 1 shows an example of Hadith.

While most ordinances of Islam are men-
tioned in the Quran in general terms, detailed
and vivid explanations are often provided in
the Hadith. This gives the Hadith importance

among Muslims. For example, prayer, ‘ ةالصلا ’,
is mentioned in the Quran, while the Hadith
specifies what Muslims should do and say; the
Hadith explains the time for each prayer and
what Muslims should do before and after the
prayer. In contrast to the Quran, some Hadiths,
which have been handed down over centuries,
have been corrupted by incompetent narra-
tors who transferred them incorrectly. Hadith
scholars have classified these as non-authentic
Hadiths.

Figure 1: An example of Hadith, Isnad in black
and Matan in green.

Automatic Hadith segmentation of Isnad and
Matan can help Hadith researchers, some of
whom focus on an Isnad with the aim of study-
ing narrators’ reliability, the links between
them, or how a specific Hadith has been trans-
ferred through the ages, sometimes generat-
ing a graphical visualization to represent this
(Azmi and Badia, 2010). Other research con-
centrates on Matan to classify Hadiths into
topics (Saloot et al., 2016).

Teahan (2000) used prediction by partial
matching (PPM) to solve several NLP prob-
lems, such as text classification and segmen-
tation. Altamimi and Teahan (2017) and
Tarmom et al. (2020b) pointed out that us-

22

ing a character-based compression scheme for
tasks such as detecting code-switching and gen-
der/authorship categorization is more effective
than word-based machine learning approaches.
Many current Hadith studies use a word-based
method to segment Hadith from the six canon-
ical Hadith books, but the method of this pa-
per uses a character-based PPM compression
method to automatically segment the Isnad
and Matan. Our goals are to evaluate PPM
segmenter on (1) unstructured Hadith text
from lesser-known Hadith books and (2) well-
structured Hadith text from the six canonical
Hadith books.

This paper explains the data sets chosen for
our experiments and outlines the experiments
performed on Arabic Hadith text to evaluate
the PPM compression method. Finally, we
draw conclusions and suggest future work based
on this study.

2 Related Work

There have been relatively few studies on the
segmentation of Hadith into Isnad and Matan.
One study was carried out by Harrag (2014),
who developed a finite state transducers-based
system to detect the different parts of a Ha-
dith, such as Title-Bab, Num Hadith, Sanad
‘Isnad’, and Matn ‘Matan’. The disadvantage
of this system is that it was built to depend
on the Hadith structure in Sahih Al-Bukhari
book (the most trusted Hadith book), which
cannot be used for other Hadith books. Fig-
ure 2 shows the Hadith structure in the Sahih
Al-Bukhari book. This system achieved a pre-
cision of 0.44 for Isnad extraction and 0.61 for
Matan extraction.

Figure 2: An example of a Hadith structure in the
Sahih Al-Bukhari book (Harrag, 2014).

Book Name Precision Recall F1 Measure
Sahih Muslim English 96% 91% 93%
Sahih Bukhari English 99% 99% 99%
Sunan Abudawud 100% 100% 100%
Mawta Imam Malik 100% 100% 100%

Table 1: Results of different Hadith books (Mah-
mood et al., 2018).

Mahmood et al. (2018) selected authentic
and reliable Hadith sources such as Sahih Al-
Bukhari, Sahih Muslim English, and Sunan
Abu Dawud. Since these books differ in for-
mat, structure, length, and content, the re-
searchers used different kinds of regular expres-
sions (Regex) for data extraction. However,
Hadith patterns extracted by their system lack
detail. The results obtained by their system
are summarized in Table 1.

Maraoui et al. (2019) implemented a seg-
mentation tool to automatically segment Isnad
and Matan from each text from the Sahih Al-
Bukhari book. First, they analysed the Sahih
Al-Bukhari corpus and identified the words that
distinguish Isnad from Matan. These words
were then added to the trigger word dictionary.
This tool achieved a precision of 96%.

Altammami et al. (2019) built a Hadith seg-
menter using N-grams. The Sahih Al-Bukhari
book was selected as a training set, and the
testing set was manually extracted from the six
canonical Hadith books. Their result showed
that using bi-grams achieved a much higher
accuracy (92.5%) than tri-grams (48%).

Most Hadith segmentation research works
have used the six famous Hadith books, called
The Authentic Six ‘ ةتسلاحاحصلا ’. Hence, there
is a shortage of research on lesser-known
Hadith books, such as Fake Pearls of the
Non-Authentic Hadiths ‘ ثيداحألايفةعونصملائلآللا

ةعوضوملا ’. These books contain a mixture of au-
thentic and non-authentic Hadiths and do not
have a clear structure, which makes the seg-
mentation task more complex. Also, character-
based text compression methods have not been
used in previous Hadith segmentation studies.
Our work seeks to fill these gaps in research.

3 Data Collection

For this study, we selected a non-authentic
Hadith (NAH) corpus built by Tarmom et al.
(2020a) as a training and testing set. The
main feature of this corpus is that it contains

23

452,624 words from different lesser-known Ha-
dith books. It also included several annotated
Hadith books, which help to determine the
switch points between the Isnad and the Matan,
and thus provide a ground truth. Table 2 shows
the NAH corpus contents.

These books were downloaded from Hadith
websites such as islamweb.net and almeshkat.net
as Word files and converted to csv files. Some
of these books have both Hadiths (authentic
and NAH), while others only contain NAH.
The annotating process was done to determine
eight primary features for each Hadith in this
corpus. These are No., Full Hadith, the Isnad,
the Matan, the Authors Comments, the Hadith
Type, Authenticity and Topic. A description of
the NAH corpus features is shown in Table 3.

4 PPM Compression-based
Segmenter

The PPM text compression algorithm is a
character-based model that predicts an upcom-
ing symbol by using the previous symbols with
a fixed context. Every possible upcoming sym-
bol is assigned a probability based on the fre-
quency of previous occurrences. If a symbol
has not been seen before in a particular context,
the method will ‘escape’ to another lower-order
context to predict the symbol. This is called
the escape method and is used to combine the
predictions of all character contexts (Cleary
and Witten, 1984). Different variants of PPM
have been produced in order to give better com-
pression results, such as PPMC (Moffat, 1990)
and PPMD (Howard, 1993). Howard (1993),
who invented PPMD, showed that PPMD gives
better results for text compression than PPMC.

Equation 1 defines how PPMD estimates the
probability P for the next symbol φ:

P (φ) =
2Cd(φ)− 1

2Td
(1)

where d is the coding order, Td indicates how
many times that the current context, in total,
has existed, and Cd(φ) is the total number of
instances for the symbol φin the current con-
text. Equation 2 defines how PPMD estimates
the escape probability e:

e =
td
2Td

(2)

where td represents how many times that a
unique character has existed following the cur-
rent context.

Table 4 describes how PPM handles the
string ‘PXYZXY’ with order k=2. For illus-
tration purposes, two has been chosen as the
model’s maximum order. In order two, if the
symbol ‘Z’ follows the context ‘PXYZXY’, its
probability will be 1

2 because it has been found
before (XY →Z). The encoding of the symbol
‘Z’ requires -log(12)=1 bit.

If the symbol ‘T’ follows the context
‘PXYZXY’, an escape probability of 1

2 will be
arithmetically encoded because it has not been
found after ‘XY’ in order two. Then the PPM
algorithm will move to the lower order, which
is order one. In order one, because the symbol
‘T’ has not been found after the symbol ‘Y’,
an escape probability of 1

2 will be also encoded.
Then, it will be repeated in order zero and an
escape probability of 4

10 will be be encoded
because the symbol ‘T’ has not been found in
order zero. Finally, the algorithm will move to
order –1. In this order, all symbols are found
and the probability will be 1

|A| , where A = 256
(the alphabet size for ASCII), so its probability
will be 1

256 . The encoding of the symbol ‘T’
requires -log(12×1

2× 4
10× 1

256)=11.32 bits.
Tawa is a compression-based toolkit that

adopts the PPM algorithm. It consists of
nine main applications, such as classify,
codelength, train, markup, and segment
(Teahan, 2018). This study concentrates on
two applications provided by the Tawa toolkit:
building models and text segmentation.

4.1 Viterbi Algorithm

For text segmentation using Tawa, we used
the toolkit’s train tool to train multiple mod-
els on representative text under research. We
then used the markup tool, which utilizes the
Viterbi algorithm (Viterbi, 1967). This uses
a trellis-based search (Ryan and Nudd, 1993)
to find the segmentation with the best com-
pression with all possible segmentation search
paths extended at the same time, discarding
the poorly performing alternatives (Teahan,
2018).

Figure 3 shows an illustrative example of
the search tree for the text segmentation prob-
lem in the Tawa toolkit. In this example, the

24

No. Book Reference Name Book’s Title Author Book’s Contents Hadith’s Type No. of words
1 N1 ريهاشملاوحاحصلاوريكانملاوليطابألا يناقروجلايناذمهلاهللادبعوبأ Isnad/Matan/Comments Authentic and NAH 121,080
2 N2 ظاعولاوءابطخلانيبةرشتنمعوـضوموفـيعضثـيدحةئام يبيتعلاناسحإ Matan/Comments NAH 2,898
3 N3_1 ةفرعملارادطيناثلاءزجلاةعوضوملاثيداحألايفةعونصملائلآللا يطويسلانيدلالالج Isnad/Matan/Comments Authentic and NAH 15,421
4 N3_2 ةفرعملارادطيناثلاءزجلاةعوضوملاثيداحألايفةعونصملائلآللا يطويسلانيدلالالج Isnad/Matan/Comments Authentic and NAH 151,382
5 N4 نيـحلاصلاضايرباتكيفةفيعضلاثيداحألا يـبيتعلاناسحإ Isnad/Matan/Comments NAH 5,675
6 N5 ةيارلارادديزوبتثيدحبسيلامنايبيفثيثحلادجلا يرماعلاميركـلادبعنبدمحأ Matan/Comments NAH 16,382
7 N6 ةيملعلاطةعوضوملاثيداحألايفةعومجملادئاوفلا يناكوشلايلعنبدمحممامإلا Matan/Comments NAH 139,786

Table 2: The NAH corpus contents.

Features Description
No. The Hadith reference number.
Full Hadith The Hadith as it appears in the book without annotations
Isnad The chain of narrators
Matan The act of the Prophet Muhammad
Authors Comments The author describes the authenticity of each Hadith
Hadith Type The Hadith Type (Maqtu‘ عوطقم , Mawquf فوقوم and Marfo عوفرم) or Hadith degree (فيعض ،عوضوم and so on)
Authenticity Whether this Hadith is authentic or non-authentic
Topic The chapter title

Table 3: Features of the NAH corpus.

Order k=2 Order k=1 Order k=0 Order k=-1
Prediction c p Prediction c p Prediction c p Prediction c p
PX →Y

→Esc
1
1

1/2
1/2

P →X
→Esc

1
1

1/2
1/2

P 1 1/10 A 1 1/|A|
X 2 2/10

XY→ Z
→Esc

1
1

1/2
1/2

X →Y
→Esc

2
1

2/3
1/3

Y 2 2/10
Z 1 1/10

YZ →X
→Esc

1
1

1/2
1/2

Y →Z
→Esc

1
1

1/2
1/2

→Esc 4 4/10

ZX →Y
→Esc

1
1

1/2
1/2

Z →X
→Esc

1
1

1/2
1/2

Table 4: Handling the string ‘PXYZXY’ using
PPM with order 2.

tree has a branching of two, since two labels
have been used: Isnad and Matan. The la-
bel <I> (used for the Isnad model) and <M>
(used for the Matan model) show the trans-
formed sequences within each node. If a char-
acter switches from one model to the other,
the sentinel character is encoded. The com-
pression codelength is also calculated for the
transformed sequence, which it appears on the
right of each node and below the last nodes.
The smallest one, which is the best segmented,
is shown in bold font.

5 Evaluation Experiments

Two experiments were performed as part of the
evaluation of the compression-based method
(provided by Tawa) (Teahan, 2018) to automat-
ically separate Hadith into two components,
Isnad and Matan. In the first experiment we
used the NAH corpus for training models and
testing, and in the second experiment we used
the NAH corpus for training models and the
Leeds University and King Saud University
(LK) Hadith corpus, built by Altammami et al.
(2020), for testing PPM segmenter.

5.1 First Experiment

In this experiment, the first book in the NAH
corpus, N1, was chosen for training purposes.
This book is called the False, Disreputable, and
Well-known Hadith Texts ‘ ريكانملاوريهاشملاوليطابألا

يناقروجلل ’. It consists of 732 Hadiths and 121,080
words. Isnads and Matans were manually ex-
tracted from N1 for Isnad and Matan training
models, which were 52,221 and 33,489 words
long, respectively. The testing text was man-
ually extracted from the third book in NAH
corpus, N3_1, which contained just Isnad and
Matan and is 6,339 words long.

For automatic Hadith segmentation, differ-
ent orders of PPMD were performed, from or-
der 3 to order 10. As shown in Table 5, Order 7
obtained a higher accuracy of 92.76%, a higher
average recall of 0.9365, a higher average preci-
sion of 0.9231, and a higher average F-measure
of 0.9288. A sample output from the first ex-
periment is shown in Figure 4. Figure 5 shows
the last part of Isnad texts were predicted as
Matan such as ملسوهيلعهّللاىلصيبنلانعرباجنع ‘It
has been narrated on the authority of Jabir on
the authority of the Prophet, may God bless
him and grant him peace’(highlighted in blue).

We noticed that the structure of the Isnad
texts used in the training set and the testing
set differed, creating some confusion in the
result. The type of Hadith is given at the be-
ginning of each Hadith in N1, for example ثيدح

عوفرم ‘Marfo Hadith’, which was not labelled as

25

Figure 3: An illustrative example of the search tree for the text segmentation problem in the Tawa toolkit.

Orders Accuracy (%) Recall Precision F-measure
2 83.34 0.8580 0.8555 0.8568
3 87.20 0.8914 0.8801 0.8858
4 88.04 0.8996 0.8843 0.8919
5 87.02 0.8881 0.8800 0.8840
6 88.58 0.9022 0.8901 0.8961
7 92.76 0.9365 0.9231 0.9288
8 92.68 0.9356 0.9222 0.9345
9 92.67 0.9350 0.9215 0.9282
10 91.78 0.9275 0.9127 0.9200

Table 5: Hadith segmentation using PPMD.

Figure 4: Sample output using PPMD with Order
7.

Isnad (see Figure 6). In the N3_1 book, each
type of Hadith has been written at the end of
the Isnad (see Figure 7). Figure 8 shows that
Isnad and Matan are correctly predicted but
the word اعوفرم ‘Marfo’ was wrongly predicted

Figure 5: An example of confusion between an Is-
nad and a Matan using PPMD with Order 7.

as belonging to a Matan since it did not appear
in the Isnad training set (highlighted in blue).

Figure 6: An example of Hadith from N1 book
(Hadith’s type is in bold).

26

Figure 7: An example of Hadith from N3_1 book
(Hadith’s type is in bold).

Figure 8: An example of confusion between an Is-
nad and a Matan, from the first experiment, be-
cause of different Hadith structures in training and
testing sets.

We classified some Hadiths as hard Hadiths
owing to having a story in the Isnad or between
Isnad and Matan which makes the segmenta-
tion task more complex. There are two different
type of these stories: a narrative story and a
chronology story. The narrative story refers to
any story related to the narrator such as de-
scribing where did he live, his age, who did he
meet and so on. The chronology story means
telling a sequence of events in order (Sternberg,
1990) such as describing the first event which
is the prophet Muhammad and his compan-
ions’ scene, why did he say a certain Hadith
or the person/ group of people who came to
ask him and then the following event will be
the Matan. We labelled the narrative story
as Isnad and the chronology story as Matan.
Figure 9 shows an example of the narrative
story wrongly predicted as Matan.

5.2 Second Experiment
In this experiment, we used Isnad and Matan
training models that were produced from the
first experiment. The LK Hadith corpus was
chosen for testing purposes. It is a parallel
corpus of English-Arabic Hadith, containing
39,038 annotated Hadiths from the six canoni-
cal Hadith books.

From the LK corpus, we manually extracted

Figure 9: An example of the narrative story
wrongly predicted as Matan using PPMD with Or-
der 7 (highlighted in blue).

chapters two and three from the Sahih Al-
Bukhari book, comprising a testing file of
10,539 words. We noticed that the last part
of Isnads, such as لاقملسوهيلعهللاىلصيبنلا ‘the
Prophet, may God bless him and grant him
peace, said’, were labelled as Matan so we rela-
belled these parts as Isnad for consistency with
the labelling throughout. Then we removed
Arabic diacritics (Al-Tashkeel) and quotation
marks.

Order 7 was chosen since it had a higher
accuracy rate in the first experiment. The
Hadith segmentation using PPMD produced
an accuracy of 90.10%, an average precision
of 0.9249, an average recall of 0.8607, and an
average F-measure of 0.8914. Figure 10 shows
the confusion matrix of this experiment and
Figure 11 shows an example of the chronology
story correctly predicted as Matan from this
experiment.

Figure 10: Confusion matrix of the second experi-
ment’s results.

6 Conclusion and Future Work

In this paper, we evaluated PPM compression-
based method for automatic segmentation of

27

Figure 11: An example of the scene’s story cor-
rectly predicted as Matan from the second experi-
ment (highlighted in blue).

Arabic Hadith. The experiments showed that
PPMD is effective in segmenting Hadith into its
two main components (Isnad and Matan), hav-
ing been tested on Hadith corpora (NAH and
LK) that have different structures. The main
innovation in these experiments is their use of
a character-based text compression method to
segment Hadith.

For training Isnad and Matan models we
used the first book in the NAH corpus. In the
first experiment, we used the third book in the
NAH corpus, which lacks a clear structure, as
a testing set. We found that PPMD of order
7 obtained a higher accuracy (92.76%) than
other orders. In the second experiment, we
aimed to evaluate PPMD segmentation on a
different Hadith corpus so we used the Sahih
Al-Bukhari book of the LK Hadith corpus for
testing purposes, which produced an accuracy
of 90.10%.

The first experiment showed that the Ha-
dith’s type is not in the same place between the
training and testing set, which leads to some
confusion between Isnad and Matan. Possible
ways to reduce this confusion that could be
undertaken in future work may be to (1) ex-
tend the Isnad training set to have different
Isnads structured from different Hadith books,
(2) clean the testing set from all non-Isnad
words.

Acknowledgments

The first author is grateful to the Saudi gov-
ernment for their support.

References
Mohammed Altamimi and William Teahan. 2017.

Gender and authorship categorisation of arabic
text from twitter using ppm. International Jour-
nal of Computer Science and Information Tech-
nology, 9:131–140.

Shatha Altammami, Eric Atwell, and Ammar Al-
salka. 2019. Text segmentation using n-grams
to annotate hadith corpus. In Proceedings of
the 3rd Workshop on Arabic Corpus Linguistics,
pages 31–39, Cardiff, United Kingdom. Associa-
tion for Computational Linguistics.

Shatha Altammami, Eric Atwell, and Ammar Al-
salka. 2020. The arabic–english parallel corpus
of authentic hadith. International Journal on
Islamic Applications in Computer Science And
Technology, 8(2).

Aqil Azmi and Nawaf Bin Badia. 2010. itree - au-
tomating the construction of the narration tree
of hadiths (prophetic traditions). In Proceedings
of the 6th International Conference on Natural
Language Processing and Knowledge Engineer-
ing(NLPKE-2010), pages 1–7.

John Cleary and Ian Witten. 1984. Data com-
pression using adaptive coding and partial string
matching. IEEE Transactions on Communica-
tions, 32(4):396–402.

Fouzi Harrag. 2014. Text mining approach for
knowledge extraction in sahîh al-bukhari. Com-
puters in Human Behavior, 30:558–566.

Paul Glor Howard. 1993. The design and analy-
sis of e cient lossless data compression systems.
Diss. PhD thesis, Brown University.

Ahsan Mahmood, Hikmat Ullah Khan, Fawaz K
Alarfaj, Muhammad Ramzan, and Mahwish
Ilyas. 2018. A multilingual datasets repository
of the hadith content. International Journal of
Advanced Computer Science and Applications,
9(2).

Hajer Maraoui, Kais Haddar, and Laurent Romary.
2019. Segmentation tool for hadith corpus to
generate tei encoding. In Proceedings of the In-
ternational Conference on Advanced Intelligent
Systems and Informatics 2018, pages 252–260,
Cham. Springer International Publishing.

Alistair Moffat. 1990. Implementing the ppm data
compression scheme. IEEE Transactions on
Communications, 38(11):1917–1921.

Matthew S Ryan and Graham R Nudd. 1993. The
viterbi algorithm. University of Warwick. De-
partment of Computer Science.

Mohammad Arshi Saloot, Norisma Idris, Rohana
Mahmud, Salinah Ja’afar, Dirk Thorleuchter,
and Abdullah Gani. 2016. Hadith data mining

28

and classification: a comparative analysis. Arti-
ficial Intelligence Review, 46(1):113–128.

Meir Sternberg. 1990. Telling in time (i): Chronol-
ogy and narrative theory. Poetics Today,
11(4):901–948.

Taghreed Tarmom, Eric Atwell, and Mohammad
Alsalka. 2020a. Non-authentic hadith corpus:
Design and methodology. International Jour-
nal on Islamic Applications in Computer Science
And Technology, 8(3).

Taghreed Tarmom, William Teahan, Eric Atwell,
and Mohammad Ammar Alsalka. 2020b. Com-
pression versus traditional machine learning clas-
sifiers to detect code-switching in varieties and
dialects: Arabic as a case study. Natural Lan-
guage Engineering, page 1–14.

William John Teahan. 2000. Text classification
and segmentation using minimum cross-entropy.
In Content-Based Multimedia Information Ac-
cess - Volume 2, RIAO ’00, page 943–961, Paris,
FRA. Le Centre De Hautes Etudes Interna-
tionales D’informatique Documentaire.

William John Teahan. 2018. A compression-based
toolkit for modelling and processing natural lan-
guage text. Information, 9(12):294.

A. Viterbi. 1967. Error bounds for convolutional
codes and an asymptotically optimum decoding
algorithm. IEEE Transactions on Information
Theory, 13(2):260–269.

29

Proceedings of the 17th International Conference on Natural Language Processing, pages 30–39
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Using multiple ASR hypotheses to boost i18n NLU performance

Charith Peris Gokmen Oz Khadige Abboud Venkata sai Varada

Prashan Wanigasekara Haidar Khan

Alexa AI, Amazon
Cambridge MA

{perisc, ogokmen, abboudk, vnk, wprasha, khhaida}@amazon.com

Abstract

Current voice assistants typically use the best
hypothesis yielded by their Automatic Speech
Recognition (ASR) module as input to their
Natural Language Understanding (NLU) mod-
ule, thereby losing helpful information that
might be stored in lower-ranked ASR hypothe-
ses. We explore the change in performance
of NLU associated tasks when utilizing five-
best ASR hypotheses when compared to sta-
tus quo for two language datasets, German and
Portuguese. To harvest information from the
ASR five-best, we leverage extractive summa-
rization and joint extractive-abstractive sum-
marization models for Domain Classification
(DC) experiments while using a sequence-to-
sequence model with a pointer generator net-
work for Intent Classification (IC) and Named
Entity Recognition (NER) multi-task experi-
ments. For the DC full test set, we observe
significant improvements of up to 7.2% and
15.5% in micro-averaged F1 scores, for Ger-
man and Portuguese, respectively. In cases
where the best ASR hypothesis was not an
exact match to the transcribed utterance (mis-
matched test set), we see improvements of up
to 6.7% and 8.8% micro-averaged F1 scores,
for German and Portuguese, respectively. For
IC and NER multi-task experiments, when
evaluating on the mismatched test set, we see
improvements across all domains in German
and in 17 out of 19 domains in Portuguese
(improvements based on change in SeMER
scores). Our results suggest that the use of
multiple ASR hypotheses, as opposed to one,
can lead to significant performance improve-
ments in the DC task for these non-English
datasets. In addition, it could lead to signif-
icant improvement in the performance of IC
and NER tasks in cases where the ASR model
makes mistakes.

1 Introduction

Recent years have seen a dramatic increase in the
adoption of intelligent voice assistants such as
Amazon Alexa, Apple Siri and Google Assistant.
As use cases expand, these assistants are expected
to process ever more complex user utterances and
perform many different tasks. Some of the key com-
ponents that enable the performance of these tasks
are housed within the spoken language understand-
ing (SLU) system; one being the Automatic Speech
Recognition (ASR) module which transcribes the
users’ vocal sound wave into text and another be-
ing the Natural Language Understanding module
which performs a variety of downstream tasks that
help identify the actions requested by the user (Ram
et al., 2018; Gao et al., 2018). These modules per-
form in tandem and are crucial for the successful
processing of user utterances. Typical ASR models
generate multiple hypotheses for an input audio sig-
nal, that are ranked by their confidence scores (Li
et al., 2020). However, only the top ranked hy-
pothesis (referred to hereafter as the ASR 1-best)
is usually processed by the NLU module for down-
stream tasks (Li et al., 2020).

Three major tasks performed by the NLU mod-
ule are Domain Classification (DC), Intent Classifi-
cation (IC) and Named Entity Recognition (NER).
DC predicts the domain relevant to the utterance
(Weather, Shopping, Music etc.) and IC extracts
actions requested by users (some examples are, buy
an item, play a song or set a reminder). NER is
focused on identifying and extracting entities from
user requests (names, dates, locations, etc.). Cur-
rent NLU models usually take in the ASR 1-best
hypothesis as input to perform NLU recognition (Li
et al., 2020). However, the highest-scored ASR hy-
pothesis is not always correct and, at times, can lead
to downstream failures including incorrect NLU
hypotheses. These errors can be mitigated by uti-

30

lizing multiple top-ranked ASR hypotheses (ASR
n-best hypotheses) in NLU modeling, which have a
higher likelihood of containing the correct hypothe-
sis. Even in the case of all n-best hypotheses being
incorrect, the NLU models may be capable of re-
covering the correct hypothesis by integrating the
information contained within the n-best hypothe-
ses. Hence, the use of multiple hypotheses should
help obtain firmer predictions from ASR modules
for their corresponding NLU module and result in
improved performance.

In this study we focus on two non-English inter-
nal datasets, German and Portuguese, and evaluate
the use of ASR n-best hypotheses for improving
NLU modeling within these contexts. Given that
the ASR models we use in this experiment pro-
duce a maximum of five (or less) hypotheses per
input utterance, we utilize all available hypotheses
(referred to hereafter as the ASR 5-best) for our
work. We leverage two BERT-based summariza-
tion models (Devlin et al., 2019; Liu, 2019; Liu and
Lapata, 2019) and a sequence-to-sequence model
with a pointer generator network (Rongali et al.,
2020) to extract the information from the ASR
5-best hypotheses. We show that using multiple hy-
potheses, as opposed to just one, can significantly
improve the overall performance of DC, and the
performance of IC and NER in cases where the
ASR model makes mistakes. We describe relevant
work in Section 2 and present a description of our
data set and opportunity cost analysis in Section 3.
In Section 4 we describe the architecture of our
models. In Section 5, we present our experimental
results followed by our conclusions in Section 6.

2 Related work

Using deep learning models for summarization has
been an active area of research in the recent past.
Two popular types in current literature have been
extractive summarization and abstractive summa-
rization. Extractive summarization systems sum-
marize by identifying and concatenating the most
important sentences in a document whereas ab-
stractive summarization systems conceptualize the
task as a sequence-to-sequence problem and gen-
erate the summary by paraphrasing sections of the
source document. Extensive work has been done
on extractive summarization (Liu, 2019; Cheng
and Lapata, 2016; Nallapati et al., 2016a; Narayan
et al., 2018b; Dong et al., 2018; Zhang et al.,
2018; Zhou et al., 2018) and abstractive summa-

rization (Narayan et al., 2018a; See et al., 2017;
Rush et al., 2015; Nallapati et al., 2016b) used in
isolation. Furthermore, studies have shown im-
provement in summary quality when extractive and
abstractive objectives have been used in combina-
tion (Liu and Lapata, 2019; Gehrmann et al., 2018;
Li et al., 2018).

Liu (2019) proposed a simple, yet powerful,
variant of BERT for extractive summarization in
which they modified the input sequence of BERT
from its original two sentences to multiple sen-
tences. They used multiple classification tokens
([CLS]) combined with interval segment embed-
dings to distinguish multiple sentences within a
document. They appended several summarization
specific layers (either a simple classifier, a trans-
former or an LSTM) on top of the BERT outputs
to capture document level features relevant for ex-
tracting summaries. Following this work, Liu and
Lapata (2019) proposed a model that comprises
of the pre-trained BERT extractive summarization
model (Liu, 2019) as the encoder and a decoder
which consists of a 6-layered transformer (Vaswani
et al., 2017). The encoder was fine-tuned in two
stages, first on the extractive summarization task
and then again on an abstractive summarization
task resulting in a joint extractive-abstractive model
that showed improved performance on summariza-
tion tasks.

The utilization of multiple ASR hypotheses for
improved NLU model performance across DC, IC
tasks was first introduced by Li et al. (2020). They
proposed the use of 5-best ASR hypotheses to train
a BiLSTM language model, instead of using a sin-
gle 1-best hypothesis selected using either majority
vote, highest confidence score or a reranker. They
explored two methods to integrate the n-best hy-
pothesis: a basic concatenation of hypotheses text
and a hypothesis embedding concatenation using
max/avg pooling. The results show 14%-25% rela-
tive gains in both DC and IC accuracy.

In our work, we explore the performance im-
provement offered by utilizing the ASR 5-best hy-
potheses in previously unexplored languages, Ger-
man and Portuguese. We also differ from previ-
ous studies due to our use of the superior BERT-
based extractive (Liu, 2019) and joint extractive-
abstractive (Liu and Lapata, 2019) summarization
models to extract a summary hypothesis for the DC
task, from the ASR 5-best.

Voice assistants traditionally handle IC and NER

31

tasks using semantic parsing components which
typically comprise of statistical slot-filling systems
for simple queries and, in more recent time, shift-
reduce parsers (Gupta et al., 2018; Einolghozati
et al., 2019) for more complex utterances. Rongali
et al. (2020) proposed a unified architecture based
on sequence-to-sequence models and pointer gen-
erator networks to handle both simple and complex
IC and NER tasks with which they achieve state-
of-the-art results. In this work, we use a model
that expands this approach to consume the 5-best
ASR hypotheses and evaluate its performance on
IC/NER tasks for the two language datasets consid-
ered.

3 Data

Our experiments focus on two non-English inter-
nal datasets; German and Portuguese. We run all
utterances in each language through one language-
specific ASR model and take the top-ranked ASR
hypothesis for each utterance as ASR 1-best and
all available hypotheses for each utterance (a max-
imum of five in our models) as ASR 5-best. In
addition, we also obtain a human transcribed ver-
sion of each utterance. For German, we use 1.48
million utterances from 21 domains for training and
validation. We split the data randomly within each
domain, with 85% used for training and 15% for
validation. An independent set of 193K utterances
are used for testing. Within the independent test
set we find 17K utterances where the ASR 1-best
did not match the transcribed utterance exactly and
mark them as the “mismatched” test set. (Table 1).
For Portuguese, we use 890K utterances from 19
domains for training and validation, split the same
way as with German. Another 247K utterances are
used for testing. We find 41K utterances within
test, where the ASR 1-best did not match the tran-
scribed utterance exactly, and mark them as the
mismatched test set (Table 1).

3.1 Opportunity Cost Measurement

Li et al. (2020) showed improvement in NLU
model performance on English (en-US) upon uti-
lizing the ASR 5-best hypotheses instead of only
ASR 1-best. However, the impact of this on non-
English languages has not yet been explored. To
understand the opportunity of improvement that
the ASR 5-best hypotheses can lend to NLU model
performance in German and Portuguese datasets,
we analyze the ASR 5-best hypotheses in compar-

ison to the ground-truth human transcribed data
for each of the considered language datasets. First,
we calculate the number of exact matches to the
transcribed utterance occurring in each of the top 5-
best hypotheses. It should be mentioned that each
ASR hypothesis is different from the others and
only one hypothesis (if at all) can match the tran-
scribed utterance. Next we compute the amount of
exact matches found in the nth-best hypothesis set,
as a fraction of the volume of exact matches found
at 1-best. The results are shown in Table 2. We
find that the amount of exact matches that occur
in 2-5 best hypotheses, compared to the volume of
exact matches that occur in the top-ranked hypoth-
esis, is large for Portuguese (30.16%) and German
(20.83%) (see Table 2). This gives an indication of
the opportunity present in using hypotheses beyond
ASR 1-best for each language dataset.

In Table 3, we further illustrate the use of the
ASR 5-best hypotheses by showing three possi-
ble cases of stored information that we want our
NLU model to extract; selecting the best matching
hypothesis (first and second rows) and combining
hypotheses (third row).

4 Experimental Setup

4.1 DC models
For our DC experiments, we compare performance
across the following classification models:

• Baseline – A BERT-based classification base-
line model with MLP classifier trained on the
transcribed utterance and tested on the ASR
1-best

• BSUMEXT– A BERT-based extractive sum-
marization model trained and tested on the
ASR 5-best

• BSUMEXTABS– A BERT-based joint ex-
tractive and abstractive summarization model
trained and tested on the ASR 5-best

Standard testing on transcribed utterances under-
estimates the combined ASR and NLU errors. In
order to avoid this our test sets exclude transcribed
utterances and thus reflect the real situation.

In Section 3, we described the simple extractive
summarization model proposed by Liu (2019). We
adapt their extractive summarization model to take
the ASR 5-best hypotheses as input and output a
probability score per domain based on a summa-
rized hypothesis. Figure 1 shows the architecture

32

Table 1: Total data set sizes in terms of utterance counts

Language Train Validation Test (full) Test (mismatched)
German 1,255,402 221,543 192,697 16,672
Portuguese 756,148 133,438 246,638 40,896

Table 2: Exact Matches to the transcribed utterance
found in ASR n-best as a percentage of Exact Matches
found in ASR 1-best

n Portuguese (%) German (%)
2 16.55 10.26
3 7.1 5.01
4 3.92 3.33
5 2.59 2.23
total 30.16 20.83

of BSUMEXT with ASR 5-best input. The task
of the BSUMEXT model is to create an extractive
summary by picking from the class assigned to
each hypothesis. This summary is then fed into a
multi-layer perceptron classifier to perform the DC
task. As in the case of Liu (2019), vanilla BERT is
modified to include multiple [CLS] symbols. Each
symbol is used to obtained features of each of the
ASR n-best hypotheses preceding it. Alternating
hypotheses fed into the model are assigned a seg-
ment embedding (E A or E B), based on whether
it is an even or odd numbered hypothesis. For ex-
ample for a sentence “play music” :

1 ASR 1-best: play muse [E_A]
2 ASR 2-best: play mu chick [E_B]
3 ASR 3-best: play news [E_A]
4 ASR 4-best: play mus [E_B]
5 ASR 5-best: play my sick [E_A]

The model then takes the [CLS] representation
of each ASR 5-best utterance and performs multi-
headed attention to obtain the summary hypothesis.

For the BSUMEXTABS model, the BERT en-
coder is fine-tuned on an abstractive summarization
task and then further fine-tuned on the extractive
summarization task. In this model the summary
hypothesis fed into the multi-layer perceptron clas-
sifier, is generated token by token in a sequence-to-
sequence fashion. Similar to Liu and Lapata (2019),
a decoupled fine-tuning schedule which separates
the optimizers of the encoder and the decoder is
used.

We trained each of our models for up to 30
epochs and use the best performing model, based
on validation metrics, for evaluating the indepen-
dent test set.

4.2 IC/NER models

We compare the following models for the IC and
NER tasks:

• Baseline – A BERT-based classification base-
line model trained on the transcribed utter-
ance and tested on the ASR 1-best

• BERT S2S NBEST PTR – A BERT-based
sequence-to-sequence model which employs
a pointer generator network, trained on the
ASR 5-best + transcribed utterance and tested
on ASR 5-best

Instead of a typical sequence tagging prob-
lem, Rongali et al. (2020) propose a unified ar-
chitecture to handle IC and NER tasks as a se-
quence generation problem. We build upon that
approach. BERT S2S NBEST PTR is a sequence-
to-sequence model augmented with a pointer gen-
erator network which functions as a self-attention
mechanism. We expand the architecture proposed
by Rongali et al. (2020) to include multiple in-
put queries. The model task is to generate target
words which can be either intent or slot delimiters
or words that are from the source sequences. The
pointer generator network enables the model to
generate pointers to the source sequences (instead
of using a large vocabulary of tokens) within the
target sequence. An example of a source sequence
with two ASR hypotheses and a target sequence
looks as follows (we use spaces to delimit hypothe-
ses and & to delimit separate tokens within an
utterance):

1 Source: ply_&_madonna play_&_mad_&_owner
2 Target: PlaySongIntent(@ptr1_0

ArtistName(@ptr0_1)ArtistName)
PlaySongIntent

where @ptr0 1, for example, is a pointer to the
second word “madonna” in the first utterance of
the source query. One advantage of using pointers
instead of the actual tokens is the smaller target
vocabulary required for the decoder, resulting in a
more light-weight model.

The architecture consists of a pre-trained BERT
encoder and a transformer decoder (Devlin et al.,

33

Table 3: Illustrative examples in English that compares the 3-best ASR hypotheses to the transcribed utterance

Transcription 1- best hypothesis 2-best hypothesis 3-best hypothesis
buy movie mystery buy movie mystery buy my tree but move my tree
who is nelson how is my son who is nelson how samsung
play music pull music pull news play my muse

[CLS] ASR 1-best [CLS] ASR 2-best[SEP] [SEP] [CLS] ASR 5-best [SEP]ASR n-best

E[CLS]Embedding E[ASR] E[1-best] E[SEP] E[CLS] E[ASR] E[2-best] E[SEP] E[CLS] EASR E5-best E[SEP]

E[A] E[A] E[A] E[A] E[A] E[A] E[A] E[A]E[B] E[B] E[B] E[B]

E1 E2 E3 E4 E5 E6 E7 E8 E17 E18 E19 E20

+

+

………

………

………

………

T1 T2 T5

Summarization Layers

Segment
Embedding

Position
Embedding

BERT

T3

Y

T4

MLP

Probability per domain

Figure 1: A schematic of the architecture of the BSUMEXT

2019; Vaswani et al., 2017). The decoder is aug-
mented with a pointer generator network that func-
tions as a self-attention mechanism. Figure 2 shows
the high-level architecture. The Bert encoder pro-
cesses each ASR hypothesis separately. The en-
coder hidden states over all ASR hypotheses are
then concatenated and passed to the decoder. The
decoder hidden states are used to update the atten-
tion mechanism and the tagging vocabulary and
pointer distributions (see Rongali et al. (2020) for
detailed descriptions). These probability distribu-
tions of tags and pointers are used to determine the
next word and tag that is output by the decoder.
The model is trained by minimizing sequence cross
entropy loss over the training set.

These models are domain-specific multi-task
models which handle both IC and NER tasks si-
multaneously. We trained one model per domain
with all models trained for up to 50 epochs. The
best performing model based on validation metrics
was used for evaluating the independent test set.

5 Results and Discussion

5.1 Evaluation
We measure the success of our DC experiments
by comparing both micro- and macro-averaged F1

scores of our experimental models to those of the
baseline model. Micro- and macro-averaged F1
scores are defined as

F1micro = 2×P×R
P+R (1)

F1macro = 1
n

∑
i F1i = 1

n

∑
i
2×Pi×Ri
Pi+Ri

(2)

where P and R are overall precision and recall
respectively and Pi and Ri are the within class pre-
cisions and recalls respectively. We also calculate
the relative change in error of each experimental
model run with respect to baseline as shown in
equation 3. Note that “lower-is-better” for this met-
ric. In addition to these metrics calculated on the
full test data set, we also calculate these metrics on
the mismatched test set utterances where the ASR
1-best did not match the transcribed utterance.

∆err = 100× ((100−F1experiment)−(100−F1baseline))
(100−F1baseline))

(3)
For the IC and NER experiments, we use Se-

mantic Error Rate (SemER) (Su et al., 2018) as our
metric of choice. SemER is defined as follows:

SemER = D+I+S
C+D+S (4)

34

BERT Encoder

….

Concatenated encodings

ASR 1-best ASR 2-best ASR 5-best

Decoder

Attention
Distribution

Tagging Vocabulary
Distribution

[tokens] [intents/slots]

Transcription

PlaySongIntent(ArtistName(
@ptr0_1

)ArtistName?@ptr1_0

Figure 2: A schematic of the sequence-to-sequence model with attention. Each ASR hypothesis is encoded sepa-
rately. The encoder hidden states are then concatenated and passed to the decoder to have a cross-attention between
encoder and decoder outputs over all ASR hypotheses.

Table 4: Evaluation on the full and mismatched test sets
for DC. Relative change in error rate (∆err) measured
against baseline for each metric is shown in each suc-
ceeding column (negative is good).

Full set Mismatched set
Model f1 micro

(∆err)
f1 macro
(∆err)

f1 micro
(∆err)

f1 macro
(∆err)

German
BSUMEXT -1.60% -4% -5.40% -12%
BSUMEXTABS -7.20% -3.90% -6.70% -2.30%

Portuguese
BSUMEXT -12.60% 4.90% -6.30% -0.30%
BSUMEXTABS -15.50% -7.30% -8.80% -7.40%

where D=deletion, I=insertion, S=substitution
and C=correct-slots. The Intent is treated as a slot
in this metric and Intent error, considered as a sub-
stitution. We use the relative change in SemER
with respect to the baseline model (equation 5),
both overall and per domain in order to evaluate the
success of our models. Note that “lower-is-better”
for relative change in SemER as well.

∆sem = 100× (SemERexperiment−SemERbaseline)
SemERbaseline

(5)

5.2 DC experiments
Table 4 describes the performance of all the mod-
els defined in Section 4.1 on the full test set and
the mismatched test set (see Section 3 and Table 1).
The full test set enables us to understand the general
performance improvement that can be achieved by
using summarization models. Although utilizing
the full ASR 5-best hypotheses might offer some

improvement even in cases where the ASR 1-best
hypothesis is an exact match to the transcribed ut-
terance, much more value-add is expected when
using the ASR 5-best hypotheses in cases where
there is a mismatch between the transcribed utter-
ance and ASR 1-best. To study this use case, we
use the mismatched test set.

We observed that a majority of F1 scores across
all models for German exceeded their correspond-
ing values in Portuguese. Our opportunity cost anal-
ysis showed that exact matches between the tran-
scribed utterance and ASR 2-5-best for Portuguese
are higher than for German (see Section 3.1). This
suggests that the German ASR model tends to per-
form better than the Portuguese ASR model. In
this light, the smaller gains in relative change in
error observed for German when compared to Por-
tuguese are likely due to the German ASR model
being superior and therefore leaving smaller room
for improvement.

Figure 3 displays the relative changes of each
model against the baseline for each dataset.
When considering micro-averaged F1 scores, the
BSUMEXT and BSUMEXTABS models out-
perform the baseline in all cases, with the later
out-performing the former. This shows that the
use of ASR 5-best hypotheses can significantly
improve overall classification for both language
datasets. The BSUMEXTABS models also consis-
tently out-perform the baseline on macro-averaged
F1 scores, showing improvement in mean within-
class classification scores as well. This suggests
that BSUMEXTABS with additional fine-tuning

35

on the abstractive task, is in general more success-
ful at creating a firmer hypothesis for DC than
the pure extractive summarization of BSUMEXT.
For Portuguese, even with the relatively large
percentage of exact matches available for extrac-
tion within its ASR 2-5 hypotheses (see Sec-
tion 3), BSUMEXTABS consistently outperforms
BSUMEXT across all metrics and datasets.

5.3 IC and NER experiments

Table 5 describes the performance of all the models
defined in Section 4.2 on domain-level data from
the full test set and the mismatched test set. As
with the DC experiments, we use the full test set
to understand the general overall performance im-
provement, and use the mismatched test set to iden-
tify improvement in cases where the ASR 1-best
hypothesis is not an exact match to the transcribed
utterance.

When evaluating the BERT S2S NBEST PTR
model, we find that it tends improve performance
specifically on the mismatched test set. For Ger-
man, we find improved performance across every
domain on the mismatched test set (see Table 5)
with an overall SemER improvement of 11.6%
against baseline. However, we only observe im-
provement in three domains on the full set, while
other domains show degradation in SemER. It is
also interesting to note that the domains that im-
prove also had low utterance counts. For Por-
tuguese, testing on the mismatched test set yields
improved performance across 17 out of 19 domains
(see Table 5) with an overall SemER improvement
of 8.1% against baseline, while we see only three
domains show improvement on the full test set.
Our results suggest that the ASR 1-best hypothesis
works well for IC/NER tasks. The noise added by
additional hypotheses seem to degrade results in
the general use case. However, the additional hy-
potheses tend to be very helpful in cases where the
ASR model makes mistakes (i.e. mismatched set
data where the ASR 1-best is not an exact match to
the transcribed utterance).

Our full test set results show that the baseline
model appears to be a better choice for the IC/NER
tasks. However, if we could detect user utterances
where the ASR model might have made a mistake
in its top hypothesis, the ASR outputs (i.e. the
set of all hypotheses) of these utterances could
be channeled to a separate NLU model such as
BERT S2S NBEST PTR, that could build a better

Table 5: Joint evaluation on full and mismatched test
sets for IC/NER tasks. ∆sem (%) is the relative change
in SemER against baseline for each domain (negative
is good).

German
S2S NBEST PTRDomain Full Set ∆sem (%) Mismatched Set ∆sem (%)

domain A 14.79 -14.16
domain B 30.33 -10.27
domain C 25.25 -5.83
domain D 95.41 -7.3
domain E 16.38 -12.68
domain F 12.54 -18.9
domain G -33.51 -23.2
domain H 7.41 -14.2
domain I 12.96 -25.2
domain J 15.27 -3.72
domain K 32.02 -7.42
domain L 89.45 -18.63
domain M 643.85 -15.95
domain N 1.06 -7.21
domain O -34.8 -25.02
domain P 26.52 -8.74
domain Q 8.47 -6.13
domain R 69.35 -13.76
domain S 19.07 -2.12
domain T -4.25 -10.93
domain U 1.92 -7.33
Overall 19.17 -11.64
Portuguese

S2S NBEST PTRDomain Full Set ∆sem (%) Mismatched Set ∆sem (%)
domain A 2.89 -14.11
domain B 18.88 -7.94
domain C 46.86 -14.7
domain D 4.3 3.16
domain E -12.54 -30.65
domain F 5.87 -18.89
domain G 6.56 -3.7
domain H 24.64 -2.57
domain I 71.12 -24.42
domain J -7.69 -10.03
domain K 19.16 -5.45
domain L 11.15 -9.97
domain M 3.54 -10.58
domain N 48.85 -10.15
domain O -30.38 -59.98
domain P 6.84 -12.29
domain Q 0.11 -15.66
domain R 20.49 -8.94
domain V 1533.33 47.62
Overall 106.58 -8.09

36

Figure 3: Relative change in error rate measured against baseline for each metric on full and unmatched test sets
for DC experiments.

hypothesis than the baseline and improve overall
IC/NER performance.

We analyzed the confidence scores of our ASR
models on the full and mismatched test set hy-
potheses to explore the possibility of detecting a
mismatched set ASR output. For each ASR out-
put we obtain the mean confidence score across
all available hypotheses. We then compare the
frequency distributions of the mean confidence
scores in the full and mismatched test sets. Fig-
ure 4 shows the resulting distributions for two ex-
ample domains for each language dataset. We find
that the full set shows a strong peak at high con-
fidence scores while the mismatched set shows a
more uniform distribution. The pronounced differ-
ence in distribution shape suggests that a thresh-
olding mechanism based on the confidence score
output by the ASR model (or a simple classi-
fier trained on ASR outputs and scores) might be
used to predict mismatched test set outputs with
good confidence. Leveraging such a mechanism
might enable the use of a second model such as
BERT S2S NBEST PTR to improve performance
in these mismatched cases, and in turn improve
overall IC/NER performance.

6 Conclusions and future work

In this study, we explore the benefits of using ASR
5-best hypotheses for the NLU tasks in the German
and Portuguese datasets. We explore several mod-
els to perform DC and IC/NER tasks and evaluate
their performance against baseline models that use
ASR 1-best. We find significant overall improve-
ment in performance for the DC task. We also
find significant improvement in performance of the
jointly evaluated IC/NER tasks in cases where the
ASR 1-best hypothesis is not an exact match to

the transcribed utterance. For the DC task, our
results suggest that the use of ASR 5-best helps
produce better hypotheses and thereby greater im-
provements in the case of slight lower quality ASR
models.

Our next steps will include exploring how dif-
ferent data splits based on ASR confidence scores
might affect the sequence-to-sequence model per-
formance. Furthermore, we will explore perfor-
mance improvements in IC and NER tasks, using
different model architectures and training sched-
ules. We will also expand our study to a larger
set of languages in order to understand how the
use of multiple ASR hypotheses might affect lan-
guages with different lexical distributions. Lan-
guages which use multiple scripts (Japanese, Hindi,
Arabic etc.) or which are more opaque and likely to
have heterographs (e.g., “serial, “cereal”) and those
that have less standardized spelling systems (Hindi
etc) are more likely to have ASR errors. They may
have different levels of improvement with the use
of ASR 5-best hypotheses and we hope to analyze
this in our future work.

References

Jianpeng Cheng and Mirella Lapata. 2016. Neural
summarization by extracting sentences and words.
CoRR, abs/1603.07252.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

37

Figure 4: Frequency distributions of mean confidence score across all available hypotheses for each data point in
full and mismatched test sets. We show results for only two domains for each language due to space limitations.
The distributions show similar shape across all domains within each language dataset.

Yue Dong, Yikang Shen, Eric Crawford, Herke van
Hoof, and Jackie Chi Kit Cheung. 2018. Bandit-
Sum: Extractive summarization as a contextual ban-
dit. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 3739–3748, Brussels, Belgium. Association
for Computational Linguistics.

Arash Einolghozati, Panupong Pasupat, Sonal Gupta,
Rushin Shah, Mrinal Mohit, Mike Lewis, and Luke
Zettlemoyer. 2019. Improving semantic parsing for
task oriented dialog. CoRR, abs/1902.06000.

Ge Gao, Eunsol Choi, Yejin Choi, and Luke Zettle-
moyer. 2018. Neural metaphor detection in context.
CoRR, abs/1808.09653.

Sebastian Gehrmann, Yuntian Deng, and Alexander
Rush. 2018. Bottom-up abstractive summarization.
In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 4098–4109, Brussels, Belgium. Association
for Computational Linguistics.

S. Gupta, Rushin Shah, Mrinal Mohit, A. Kumar, and
M. Lewis. 2018. Semantic parsing for task ori-
ented dialog using hierarchical representations. In
EMNLP.

Mingda Li, Weitong Ruan, Xinyue Liu, Luca Soldaini,
W. Hamza, and Chengwei Su. 2020. Improving spo-
ken language understanding by exploiting asr n-best
hypotheses. ArXiv, abs/2001.05284.

Wei Li, Xinyan Xiao, Yajuan Lyu, and Yuanzhuo Wang.
2018. Improving neural abstractive document sum-
marization with explicit information selection mod-
eling. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 1787–1796, Brussels, Belgium. Association
for Computational Linguistics.

Yang Liu. 2019. Fine-tune BERT for extractive sum-
marization. CoRR, abs/1903.10318.

Yang Liu and Mirella Lapata. 2019. Text sum-
marization with pretrained encoders. CoRR,
abs/1908.08345.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou.
2016a. Summarunner: A recurrent neural network
based sequence model for extractive summarization
of documents. CoRR, abs/1611.04230.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
Çağlar GuÌ‡lçehre, and Bing Xiang. 2016b. Abstrac-
tive text summarization using sequence-to-sequence
RNNs and beyond. In Proceedings of The 20th
SIGNLL Conference on Computational Natural Lan-
guage Learning, pages 280–290, Berlin, Germany.
Association for Computational Linguistics.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018a. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797–1807, Brussels, Bel-
gium. Association for Computational Linguistics.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018b. Ranking sentences for extractive summariza-
tion with reinforcement learning. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 1747–1759, New Orleans, Louisiana.
Association for Computational Linguistics.

Ashwin Ram, Rohit Prasad, Chandra Khatri, Anu
Venkatesh, Raefer Gabriel, Qing Liu, Jeff Nunn,
Behnam Hedayatnia, Ming Cheng, Ashish Nagar,
Eric King, Kate Bland, Amanda Wartick, Yi Pan,
Han Song, Sk Jayadevan, Gene Hwang, and Art Pet-
tigrue. 2018. Conversational AI: the science behind
the alexa prize. CoRR, abs/1801.03604.

Subendhu Rongali, Luca Soldaini, Emilio Monti, and
Wael Hamza. 2020. Don’t parse, generate! a se-
quence to sequence architecture for task-oriented se-
mantic parsing. Proceedings of The Web Conference
2020.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. CoRR, abs/1509.00685.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. CoRR, abs/1704.04368.

Chengwei Su, Rahul Gupta, Shankar Ananthakrishnan,
and Spyros Matsoukas. 2018. A re-ranker scheme
for integrating large scale NLU models. CoRR,
abs/1809.09605.

38

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

Xingxing Zhang, Mirella Lapata, Furu Wei, and Ming
Zhou. 2018. Neural latent extractive document sum-
marization. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 779–784, Brussels, Belgium. Association
for Computational Linguistics.

Qingyu Zhou, Nan Yang, Furu Wei, Shaohan Huang,
Ming Zhou, and Tiejun Zhao. 2018. Neural doc-
ument summarization by jointly learning to score
and select sentences. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 654–
663, Melbourne, Australia. Association for Compu-
tational Linguistics.

39

Proceedings of the 17th International Conference on Natural Language Processing, pages 40–49
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Abstract

Asur belongs to North Munda sub-branch
of Austro-Asiatic languages which now
has less than 10,000 speakers. This is a
very first attempt at describing and
documenting Asur language, therefore the
approach of this paper is descriptive
rather than that of answering research
questions. The paper attempts to describe
the grammatical features such as number,
case, pronouns, tense-aspect-mood,
negation, question formation, etc. of Asur
language. It briefly touches upon the
morphosyntactic and typological features
of Asur, with the intent to present a
concise overview of the language, which
has so far remained almost untouched by
documentary linguistics.

1 Introduction

The population of Asur (ISO-639-3) speakers in
2007 was 7,000 (Ethnologue, 2018). UNESO
(Atlas of the World’s Languages in Danger, 2010)
has classified Asur language as a ‘definitely
endangered’ one. Asur is also known as Asuri and
Ashree. Asur, Ho and Mundari are mutually
intelligible as they belong from the group of
Kherwarian languages.

2 Data collection and Methodology

Data for the present work has been recorded from
native Asur speakers living in Bishunpur block,
Gumla district in Jharkhand in India. Data was
recorded mostly through interview method. Audio
recorders were used for data recording; the audio
files were segmented, transcribed and translated
using (SayMore) software, which was also used
for handling metadata related to Asur fieldwork
and data collection, for analysis of data
(Fieldworks) software was used (commonly
known as FLEx). For transcription IPA

(International Phonetic Alphabet); and interlinear
glossing was followed for annotation, along with
free translation in English.

3 Asur Morphosyntax

3.1 Word Order

Asur is a SOV (Subject Object Verb) language,
It is interesting to note that Munda languages
have departed from their non-verb final basic
word order that is found in majority Austro-
Asiatic languages (Jenny, Weber, & Waymuth,
2015) and have shifted to verb final basic word
order like Indo-Aryan languages (Subbārāo,
2012). Example (1) is an intransitive sentence in
Asur which shows the positioning of subject (S),
object (O) and verb (V) in Asur.

1. iŋ kadri ke lel-l=iŋ
1S Kadri ACC see-PST=1S
S O V
“I saw Kandri.”

In Asur the Indirect Object (IO) comes before
Direct Object (DO), but their positions are
interchangeable and shown in (2) and (3).

2. iŋ lamta ke kitab ema-l=iŋ
1S Lamta ACC book give-PST=1S
S IO DO V
“I gave book to Lamta.”

3. iŋ kitab lamta ke ema-l=iŋ
1S book Lamta ACC give-PST=1S
S DO IO V
“I gave book to Lamta.”

3.2 Pronouns, demonstratives and
pronominal clitics

Pronouns in Asur have three persons and three
numbers (Singular, dual and plural). In Asur

A Grammatical Sketch of Asur: A North Munda language

Zoya Khalid
Central University of Jharkhand

40

language 1st person pronouns for Dual and Plural
have two further categories- inclusive (including
the addressee) and exclusive (excluding the
addressee). The 2nd person singular has different
forms for non-honorific and honorific category,
i.e. /am/ and /ape/ respectively. Table (1) shows
the pronouns in Asur language.

Table 1: Pronouns in Asur

Persons Singular Dual Plural
1st iŋ alaŋ(inclusive) abu(inclusive)

aliŋ(exclusive) ale(exclusive)
2nd am aben ape
2nd Hon ape aben ape
3rd ae akin aku

Demonstratives are words in a language that are
used to indicate a referent’s spatial or temporal
distance from the spatial or temporal position of
the speaker. Table (2) shows the demonstratives
in Asur.

Table 2: Asur demonstratives

 Animacy Singular Dual Plural
Prox A nui nokin/nukin nuku

IA neʔa, nea,
niya

Dist A huni hokin/hukin huku
IA hona

Asur pronominal clitics attach to verbs or other
constituents; it bears information about the
subject and/or object of the sentence.

3.3 Number

Asur language distinguishes between animate
and inanimate nouns. Asur animate nouns take
the suffix /=ku/ or /=aku/ to pluralize as in
sentence (8). For inanimate nouns quantifiers are
used to show the sense of plurality. In Asur
plural marker is optionally attached to the noun,
it may also manifests on the verb as agreement
marker or pronominal marker, without appearing
on the noun.

3.4 Quantifiers

Quantifiers are used in a language to indicate
quantity. Some of the quantifiers used in Asur
are as follows:

1. /ɖʰer/ and /bagra/ “many” or “much”

2. /jama/ “all”
3. /miyaɖmin/ “even a single” or “even

one” (generally used in negative
sentences.)

4. /katiʔken/ “some/little” or “few” (may be
used with count or mass nouns)

3.5 Case and postposition

Asur, being a SOV (Subject Object Verb)
language is postpositional language like Indo-
Aryan languages. The following are case and
postpositional markers in Asur.

3.5.1 Nominative

Nominative case marks the Subject of the verb.
Asur does not overtly mark nominative case, as
can be seen in (1).

3.5.2 Accusative and Dative

Accusative and dative cases are cases given to
noun by the verb. Asur uses /ke/ to mark
accusative as well as dative as shown in
examples (2) and (4).

4. gʰoɽa ke cara eme-me
horse DAT fodder give-IMP
“Give fodder to the horse.”

3.5.3 Locative

Locative case is used to indicate location. Asur
locative markers appear as /re/ or /ɽe/.

5. kitab ʈebal re edana
book table LOC COP.PRS
“Book is on the table.”

3.5.4 Instrumental

Instrumental case is used most often to indicate
use of an instrument for completion of action; in
the following example, instrumental case is used
in Asur to indicate state of being hungry due to
hunger.

6. ram raŋek te edaniya
ram hunger INST COP.PRS
“Ram is hungry”

41

3.5.5 Comitative

Comitative is an indicator of accompaniment.
Sentence (7) exemplifies the use of comitative
marker /lo/ in Asur.

7. ceŋa bilai lo eneɁ tan=ae
child cat COM play Prog=3S
“The child is playing with the cat.”

3.5.6 Ablative

Asur language uses ablative case markers /hare/
or /hareʔ/ and /tara/ for instances where
separation of two people or things is implied, the
markers can be used interchangeably.

8. ceŋa=ku oɽaɁ tara bahir uɽuŋ-n=aku
child=3P house ABL outside come-

ITR=3P
“Children came out from the house.”

3.5.7 Genitive

Genitive markers have three forms in Asur i.e.- /-
ala/, /-ali/ and /-ra/ or /-rena/. The marker /-ra/ or
/rena/is used when the possessor is inanimate, /-
ala/ is used when the possessor is animate but the
object that is possessed is inanimate, /-ali/ is used
when the possessor as well as the possessed are
both animate as shown below.

9. kitab -ra/rena panna kalʈʰae -me
book -GEN page flip -IMP
“Turn pages of the book”

10. ram -ala oɽaɁ
Ram -GEN house
“Ram’s house.”

11. ram -ali behen
Ram GEN sister
“Ram’s sister ”

Another kind of genitive marker is /t/ which is
followed by the pronominal clitic, attaches to the
possessor whether the possessed object is
animate or animate.

12. mamu t=iŋ -ala oɽaʔ
maternal uncle GEN=1S GEN house
“My maternal uncle’s house”

3.6 Infinitives

Asur does not have a marker for infinitives. The
verb without any tense/aspect marker is an
indicator that the verb is infinitive. The verb for
‘sleep’ i.e /nindao/ is in infinitive form in the
example below.

13. iŋ nindao nanam-tan=iŋ
1S sleep want-Prog=1S
‘I want to sleep. (I am wanting to sleep)’

3.7 Tense Aspect Mood

3.7.1 Tense

All languages have ways of expressing time.
Tense and aspect markings in Asur cannot be
generated in a formulaic manner; it is
morphologically very complex and inconsistent
like Mundari; as described by Osada (2008) and
Langendoen (1963) .

[a] Present tense: In Asur language the
present tense is unmarked or it may be
said that it exists as null morpheme.

14. iŋ roj ul jom=iŋ
1S everyday mango eat=1S
“I eat mango every day.”

[b] Past tense: In Asur past tense is marked

by /l/, /ne/ and /ke/. Sentences (15) and
(16) are past tense sentences in Asur.

15. iŋ ul jom-l=iŋ
1S mango eat-PST=1S
“I ate mango.”

16. iŋ ul jom-ke-d=iŋ
1S mango eat-PST-TR=1S
“I ate mango.”

[c] Future tense: The future tense marker in
Asur is /-ke/ which is homophonous with
the past tense /-ke/ marker as shown in
(17).

17. iŋ gapa ul jom-ke=iŋ
1S tomorrow mango eat-FUT=1S
“I will eat mango tomorrow.”

42

3.7.2 Aspect

Aspect gives information about the inside of the
situation, or views the situation as a whole, or in
phases, or informs whether the action was
complete or not.

[a] Progressive aspect: Progressive aspect
describes the internal structure of
progression of a situation or event. In
Asur /-tan/ is a progressive aspect
marker for present tense, as in (13).

[b] Perfect aspect: Perfect aspect which, is
also called complete aspect has three
time points - the point of speech, the
point of event and the reference time.
The marker /-ta/ is used in Asur to mark
perfect aspect.

18. iŋ ul jom-ta-d=iŋ
1S mango eat-Perf-TR=1S
“I have eaten the mango.”

3.7.3 Mood

Mood expresses attitude; grammatical inflections
are used to convey the attitude related to what is
being said.

[a] Imperative mood performs the function
of forming command, request or advice.
In Asur /-e/ is the imperative marker.

19. sen-am-e
go-2S[-HON]-IMP
“Go [-HON].”

[b] Potential mood: This mood indicated
the speakers’ opinion about what he/she
considers likely. In Asur the potential
mood /hui/, appears after the verb as
shown below.

20. iŋ hola ul jom-tahi-l=iŋ hui
1S yesterday mango eat-Perf-

PST=1S
POT

“I might have eaten mango yesterday.”

3.8 Compound verb

Compound verb is a kind of complex verb in
which both polar and vector components are
verbs. In the following Asur example (28) the

polar verb is on the left and vector verb is on the
right and take all the inflections.

28
.

iŋ hoɽ=ku ke raɁ agu=ku=iŋ
1
S

person=3
P

AC
C

invit
e

bring=3P=1
S

“I will call and bring people.”
3.9 Question

In Asur language the polarity questions i.e.
questions that evoke a yes-no response can be
formulated by changing the intonation of a
declarative type sentence or with the help of
polar question particle (PQP) /ci/.

21. am buru sen=am ci
2S forest go=2S PQP
‘Did you go to the forest?’

The basic interrogative particle (Q) forms in
Asur are /oka/, /oke/ and /etan/, /eta/ which stand
for “who” and “what” respectively.

22. oke~oke bajar sen-ne-n=akun
Q~Q market Go-PST-ITR-P.INDF
“Who all went to the market?”

23. am etan likkʰa-tan=am
2S Q write-Prog=2S
“What are you writing?”

In Asur /ikin/ is an interrogative particle which is
used in relation to time.

24. ikin bajao-tana
Q time-Prog
“What is the time? (What time is happening?)”

3.10 Negation

Negation marker in Asur is /kae/, /kaeʔ/ or /ka/
and /ir/. Negation marker /kae/ or /ka/ can be
roughly translated as “do not” as shown in (25)
and /ir/ is used in the context of “will not” as
shown in (26).

25. kami ka huiyo-n-a
work NEG happen-ITR-IND
“Work did not happen.”

26. am ir=am jome=am
2S NEG=2S eat=2S
“You will not eat.”

43

Example (27) shows another form of negative
particle in Asur i.e. /kania/ which is mainly used
to negate adjectives.

27. bes kania koɽa
good NEG boy
“not good boy”

3.11 Conjunction

Conjunction is a word or morpheme that
conjoins or links words or larger constituents and
also expresses some semantic relation between
them. In Asur words /heʔ/ and /hetra/ are used as
connective “and”.

28. bariya pen heʔ/hetra miyaɖ kitab
two pen and.CONJ one book
“Two pens and one book.”

In Asur /kowando/ can be translated as “either”.
The phrase /eta lae ci/ is used as connective
“because” or “that is why” and the word /makil/
can be translated as “but” also functions as
conjunction.

4 Other Typological features of Asur

Asur has basic word order SOV. The knowledge
of constituent orderings in a language is essential
to form grammatical utterances in that language.

[a] Adjective precedes the noun it
modifies: In Asur adjective precedes the
noun it modifies as shown in (29).

29. bes bilai
good.Adj cat
“Good cat”

[b] Relative clauses precede noun it

modifies: In Asur language as well like
in most OV languages the relative clause
precedes the noun it modifies, as shown
below:

30. je kitab am kiriŋ-l=am
REL book 2S buy-PST=2S
“The book that you bought...”

[c] Standard of comparison precedes the
comparative adjective: Standard of
comparison in Asur precedes the
comparative adjective. In the following

sentence /tara bes/ is the comparative
adjective.

31.
.

sila suman tara bes kuɽ
i

hake

Seel
a

Suma
n

AB
L

goo
d

girl COP.PR
S

“Sheela is better girl than Suman.”

[d] Adverb precedes verb: In Asur
language, adverbs precede verbs, as
shown in example (32).

32. huni muruk jorse gul-l=ae
3S very.Adv loudly.Adv shout-PST=3S
“He shouted very loudly.”

5 Borrowing

Most of the native speakers of Asur are
multilingual. Asur speakers are in constant contact
with other family of languages like Indo Aryan
(Sadri and Hindi) and Dravidian (Kurux). Asur
speakers frequently use not only Hindi and Sadri
noun loan words, but also copular forms like
/heke/ or /hake/ (Kavita Kiran). Many Hindi and
Sadri verbs have been accommodated in Asur
lexicon. The sound /-ao/ is added to the borrowed
verb root to form Asur verb root or infinitive verb
in Asur (Khalid, 2020). As Asur is in close
proximity with other languages, the study of
contact situation and borrowings from other
languages into Asur would be interesting.

6 Conclusion

The paper is intended to put forth a brief sketch of
Asur grammar; there is significant scope for
further work on comprehensive grammar and
lexicon for the documentation of Asur language. A
comprehensive grammar and documentation work
would open up possibilities for further research
based on the existing Asur data and analysis. A
conclusive work on sociolinguistic variations
would require a larger number of native speakers
from different age groups, gender and regions.
There is scope for extensive study on linguistic
variation of Asur language. There is an immense
scope to investigate it historically in the context of
proto Munda reconstruction, and also to conduct a
comparative study of Asur with other neighboring
languages and Munda languages.

44

Acknowledgement

This sketch grammar is an outcome of a UGC
project entitled ‘Establishment of Centre for
Endangered Languages in Central Universities’
ongoing in Central University of Jharkhand. My
heartfelt gratitude goes to the native speakers of
Asur, especially Mr. Jogeshwar Asur for his
tireless cooperation. I would like to thank the
project team members Mr.Gunjal Ikir Munda, Ms
Shilpa, Ms. Rishika, Mr. Arun and also
Mr.Sudhanshu Shekhar and Prof.Subbarao for
their support.

References

Anderson, G. D. (2008). The Munda Languages.
Routlege.

Fieldworks. (2020). Retrieved from SIL Language
Software: https://software.sil.org/fieldworks/

Jenny, M., Weber, T., & Waymuth, R. (2015). 2 The
Austroasiatic Languages: A Typological Overview.
In The Handbook of Austroasiatic Languages (Vol.
2 vols, pp. 13-143). Brill.

Kavita Kiran, J. P. (n.d.). Sadani/Sadri.

Khalid, Z. (2020). A Phonological Sketch of Asur.
Language in India .

Langendoen, D. T. (1963). Mundari Phonology.
unpublished paper .

Munda, R. D. (1971). Aspects of Mundari Verb. (32).

Osada, T. (1992). A reference grammar of Mundari.
Institute for the Study of Languages and Cultures
of Asia and Africa, Tokyo University of Foreign
Studies.

Osada, T. (2008). Mundari. In G. D. Anderson (Ed.),
The Munda Languages. USA: Routledge.

SayMore. (2020). (SIL International) Retrieved from
SIL Language Software-SIL International:
https://software.sil.org/saymore/download/

Simons, Gary, F., & Charles, D. F. (2018).
Ethnologue, Twenty first. (SIL International)
Retrieved May 2, 2018, from Ethnologue:
Languages of the World:
http:/www.ethnologue.com

Subbārāo, K. V. (2012). South Asian languages: a
syntactic typology. Cambridge University Press.

UNESCO. Director General,2009-2017(Bokova, I.G),
writer of preface. (2010). Atlas of the World’s
Languages in Danger. (3. edn., Ed.) Paris:
UNESCO Publishing.

Appendix A. Basic Lexical Items of Asur

Sl.no. English
 Word

Asur
translation

1. I /iŋ/
2. you (singular) /am/
3. he /ae/
4. we /abu/
5. you (plural) /am/
6. they /aku/
7. this /niya/
8. that /hona/
9. here /noaʔɽe/
10. there /honaʔɽe/
11. who /oke/
12. what /etan/
13. where /okaɽe/
14. when /okahila/
15. how /etalakan/
16. not /kae/
17. all /jamma/
18. many /jameku/
19. some /kaʈi̟ʔ/
20. few /tʰoɽe/
21. one /miyaɖ/
22. two /bariya/
23. three /peya/
24. four /cair/
25. five /pac/
26. big /baɽe/
27. long /jiliŋ/
28. wide /cakeɽ/
29. thick /gaɽha/
30. heavy /bojʰ/
31. small /cʰoʈe/
32. tall /usul/
33. short /ʈʰepre/
34. narrow /sakuɽ/
35. thin /patla/
36. girl /kuɽi/
37. boy /koɽɑ/
38. man (human

being)
/hoɽ/

39. child /ceŋa/
40. wife /hoɽaʔ/

45

41. husband /hoɽ/
42. mother /aya/
43. father /baba/
44. animal /janwar/
45. fish /haku/
46. bird /oɽe/
47. dog /seta/
48. deer /saram/
49. rabbit /kulahi/
50. goat /merom/
51. pig /sukri/
52. louse /siku/
53. snake /biŋ/
54. tree /siŋ/
55. forest /buru/
56. stick /hapa/
57. fruit /joʔ/
58. mango /ul/
59. seed /bihin/
60. leaf /sekam/
61. root /jaiɽ/
62. bark (of a tree) /bakla/
63. flower /baha/
64. grass /gʰas/
65. rope /bayor/
66. skin /harta/
67. meat /sikar/
68. blood /mayom/
69. bone /jaŋ/
70. fat (noun) /itil/
71. egg /bili/
72. horn /diriŋ/
73. tail /calom/
74. hair /ub/
75. head /boho/
76. ear /lutur/
77. eye /meɖ/
78. nose /muhu/
79. mouth /aha/
80. lips /lucir/
81. tooth /ɖaʈa/
82. tongue (organ) /alaŋ/
83. fingernail /rama/
84. leg /jaŋga/
85. knee /mukɽi/
86. hand /ti/

87. wing /apaɽa/
88. belly /lahiʔg/
89. guts /poʈa/
90. neck /hoʈoʔ/
91. back /dea/
92. breast /cʰati/
93. heart /iyaʔ/
94. liver /karja/
95. to drink /nu/
96. to eat /jom/
97. to bite /hab/
98. to suck /cepeʔg/
99. to spit /beʔg/
100. to vomit /cʰaʈ/
101. to blow /om/
102. to breathe /sas/
103. to laugh /landa/
104. to see /nel/
105. to hear /ayum/
106. to know /paɽi/
107. to think /uihar/
108. to fear /bor/
109. to sleep /nind/
110. to live /jiuɖ/
111. to die /goeʔg/
112. to fight /jʰagɽa/
113. to hit /ɖʰesa/
114. to cut /geɖ/
115. to split /rupuɽ/
116. to stab /jobao/
117. to scratch /godar/
118. to dig /gotaʔ/
119. to swim /paurao/
120. to fly /otaŋ/
121. to walk /sen /
122. to come /hijoʔ/
123. to lie (as in a

bed)
/gitiʔg/

124. to sit /duɽuʔ /
125. to turn (intransiti

ve)
/muhaɖ/

126. to fall /uyuʔ/
127. to catch /sab/
128. to squeeze /cipuɖ/
129. to wash /dʰoao/
130. to wipe /joʔ/
131. to push /tukun/

46

132. to tie /tol/
133. to sew /roʔ/
134. to count /lekʰa/
135. to say /kahɽi/
136. to sing /siriŋ/
137. to play /eneʔg/
138. to float /capi/
139. to flow /tu/
140. to freeze /jamao/
141. to swell /mo/
142. sun /din boŋa/
143. moon /canu/
144. star /ipil/
145. water /daʔ/
146. rain /barkʰa/
147. river /nai/
148. pond /pokʰra/
149. salt /buluŋ/
150. stone /ʈuku/
151. sand /bitil/
152. dust /dʰuɽi/
153. earth /ot/
154. cloud /badri/
155. fog /dhʰudʰ/
156. wind /hoe/
157. ice /rataŋ/
158. smoke /sukul/
159. fire /seŋgel/
160. ash /toreʔg/
161. to burn /jul/
162. road/path /hora/
163. mountain/hill /buru/
164. red /lal/
165. green /hariar/
166. yellow /sasaŋ/
167. white /puɽi/
168. black /kaɽia/
169. night /nida/
170. day /din/
171. year /sal/
172. today /tisiŋ/
173. tomorrow /gapa/
174. yesterday /hola/
175. warm /lolo/
176. cold /tʰaɽ/
177. full /pereʔg/

178. new /nawa/
179. old /mari/
180. good /baɽʰiya/
181. bad /kʰarab/
182. rotten /sia/
183. dirty /gadus/
184. straight /sojʰ/
185. round /gutaɽ/
186. square /caukuʈ/
187. sharp (as a knife) /dʰar/
188. dull (as a knife) /bokʰa/
189. wet /lepa/
190. dry /rohoɽ/
191. correct /tʰik/
192. near /hinaɖ/
193. far /laŋka/
194. right /jom/
195. left /peŋka/
196. at /re/
197. in /re/
198. with /lo/
199. and /hetra/
200. name /numu/

Appendix B. Asur Phonology

Asur has consonant inventory similar to that of
Mundari. The main difference is that Asur does
not have voiced palatal nasal sound (Osada, 1992)
, (Osada, 2008) like Mundari. Asur language has
the following consonantsː (Khalid, 2020)

Plosives: /p/, /b/, / t/, / d/, /ʈ/, /ɖ/, /k/, /g/. (/t/ and /d/
here are dental plosives.)

Like Mundari and few other Munda languages
(Anderson, 2008) phoneme /g/ has an allophonic
variation [ʔ] and glottal followed by unreleased /g/
sound, i.e [g⸣].

Aspirated plosivesː /pʰ/, /bʰ/,/ t̪ʰ/, / d̪ʰ /, /ʈʰ/, /ɖʰ/,
/kʰ/, /gʰ/

Nasals: /m/, /n/, /ŋ/

Trill: /r/

Flap: /ɽ/

Fricative: /s/, /h/,

Approximants: /w/, /y/

47

Lateral approximants: /l/

Affricates: /ʧ/, /ʤ/ (written as /c/ and /j/ in the
peper)

Aspirated affricates: /ʧʰ/, /ʤʰ/

Vowels in Asur are as followsː (Khalid, 2020)

Rounded: /o/, /u/

Unrounded: /i/, /e/, /a/

There are five vowels in Asur which have several
allophonic variants, like /e/ may appear as [ԑ], /a/
may appear as [ǝ], [æ] or[ɑ] and /o/ may appear as
[ɔ]. Vowel length is not phonemic in Asur, i.e. the
change in vowel length does not affect the
meaning of the word in Asur.

In Asur nasalization is not phonemic. It occurs
usually on the vowels preceding or following
nasal consonants like Mundari (Osada, 2008).
Nasalization sound is also often heard in
onomatopoeic words like /cũ cũ/ “sound of rat”,
/kõ kõ/ “sound made by monkey” (Khalid, 2020).

Intra-syllabic consonant clusters are rarely seen in
Asur.

Appendix C. Some features of Asur

[a] Gender

The feminine and masculine categories of some
words in Asur are phonologically independent,
such as -“cow” /gae/ and “ox” /urik/; “hen” /sim/
and “rooster” /kʰokhro/. Mostly there is a generic
name for animals in Asur, but when the speaker
needs to specify the gender of the animal the
word /airra/ “male” or /eŋa/ “female” is used as
an adjective.

Table A: Natural gender terms

Sl.no. Words in
English

Asur words
Masculine Feminine

1. boy/girl /koɽa/ /kuɽi/
2. monkey /bandra/ /bandri/
3. ass /gadʰa/ /gadʰi/
4. wild cat /airra bʰa:ɽo/ /eŋa bʰaɽo/
5. dog /airra seta/ /eŋa seta/

Some typical Asur names have both male and
female versions. The male name often ends with
/a/ and the female names with /i/.

Table B: Male and female names of Asur people

Sl.No. Male names Female names
1. /kandra/ /kandri/
2. /lamta/ /lamti/
3. /birsa/ /birsi/

Feminine occupational terms in Asur are derived
from masculine occupational terms by suffixing
/-in/, although occupational terms are mostly
borrowed from Sadri. Occupation terms in Asur
are shown in Table (C).

Table C: Occupational terms (masculine and
feminine)

Sl.No Masculine Feminine
1. /masʈar/

Teacher(M)
/masʈarin/
Teacher(F)

2. /ɖraibʰar/
Driver(M)

/ɖraibʰarin/
Driver(F)

[b] Inclusive and Exclusive markers in
Asur

Inclusive markers are markers which are used
to include more to the noun phrase. It can be
translated as “also” in English. Indo-Aryan
languages very frequently have this marker. In
Hindi /bhi/ performs the function of inclusive
marker. Sentence (a) shows inclusive marker
/hoʔ/ in Asur.

i. iŋ hoʔ sen=iŋ
1S INC go=1S
“Shall I also go?”

Exclusive markers can be roughly translated as
“only” or “just”. Hindi also has Exclusive marker
i.e /hi/. In (b) the the Asur exclusive marker /gi/
is used to emphasize the exclusivity of the
subject.

b. iŋ gi ot sen=iŋ
1s EXM field go=1S
“Only I will go to the field.”

[c] Transitivity marker

Asur marks intransitive sentences with /-n/ and
transitive sentences with /-d/. Transitivity marker
is a common feature of North Munda languages.
This marker is also found in Mundari and has
been termed “subject focus marker” and “object

48

focus marker” (Munda, 1971). These markers are
not obligatorily present to mark transitivity and
intransitivity in Asur language.

ii. abu ghoʈo jom-ke-d=abu
1P Food eat-Perf-TR=1P
“We ate food.”

iii. iŋ hola nir-ke-n=iŋ
1S yesterday Run-PST-ITR=1S
“I was running yesterday.”

[d] Causatives

The causativization marker /-ci/ in Asur,
increases valency of the the verb by two,
therefore this is the second causative marker.

iv. iŋ ceŋa ke towa uyuɁ-ci-l=iŋ
1S child ACC milk Fall-CAUS-PST=1S
“I made the child spill milk.”

[e] Conjunctive Participle marker

A participle is a form of non-finite verb which
acts as adjective or adverb. Conjunctive
participles are present in most Indian languages,
and perform various functions. They may act like
time adverb, manner adverb, reason adverb; they
may also join clauses and give the sense of
sequential action. The conjunctive participle
marker in Asur is /kʰete/ or /kʰe/ which can be
used interchangeably, although /kʰete/ occurs
more frequently.

v. iŋ ɖiɽoɁ khet̯e hiʔ
1S walk CPM come.
“We came walking.”

49

Proceedings of the 17th International Conference on Natural Language Processing, pages 50–59
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

English to Manipuri and Mizo Post-Editing Effort and its
Impact on Low Resource Machine Translation

Loitongbam Sanayai Meetei1, Thoudam Doren Singh1, Sivaji Bandyopadhyay1,
Mihaela Vela2, and Josef van Genabith2,3

1Centre for Natural Language Processing (CNLP) & Dept. of CSE, NIT Silchar, India
2Dept. of Language Science and Technology, Saarland University, Saarbrücken, Germany

3DFKI, Saarbrücken, Germany
{loisanayai,thoudam.doren,sivaji.cse.ju}@gmail.com

m.vela@mx.uni-saarland.de, josef.van_genabith@dfki.de

Abstract
We present the first study on the post-
editing (PE) effort required to build a
parallel dataset for English-Manipuri and
English-Mizo, in the context of a project
on creating data for machine translation
(MT). English source text from a local
daily newspaper are machine translated
into Manipuri and Mizo using PBSMT sys-
tems built in-house. A Computer Assisted
Translation (CAT) tool is used to record
the time, keystroke and other indicators
to measure PE effort in terms of temporal
and technical effort. A positive correlation
between the technical effort and the num-
ber of function words is seen for English-
Manipuri and English-Mizo but a nega-
tive correlation between the technical effort
and the number of noun words for English-
Mizo. However, average time spent per to-
ken in PE English-Mizo text is negatively
correlated with the temporal effort. The
main reason for these results are due to
(i) English and Mizo using the same script,
while Manipuri uses a different script and
(ii) the agglutinative nature of Manipuri.
Further, we check the impact of training
a MT system in an incremental approach,
by including the post-edited dataset as ad-
ditional training data. The result shows an
increase in HBLEU of up to 4.6 for English-
Manipuri.

1 Introduction
In our increasingly globalized world, commu-
nication plays a vital role and with it, demand
for translation between different languages is
on the rise. Despite much progress, machine
translation (MT) on its own may not always
be sufficient to meet the demand. MT out-
put may sometimes be erroneous and needs to
be checked and corrected. The use of transla-
tion technology such as MT systems, transla-

tion memories (TM) and CAT tools can boost
translation productivity (Koehn, 2009; Plitt
and Masselot, 2010). However, limited num-
bers of professional translators for a language
pair can be a major challenge, especially for
low resource languages.
Raw MT output is not always exempt from

errors. Often post-editing MT output (where
a human translator reviews and where re-
quired corrects MT output) is the most pro-
ductive approach to translation. PE effort is
the amount of effort required to generate a
reasonable target text from MT output. Fol-
lowing Krings (2001) PE effort can be subdi-
vided into temporal effort, technical effort
and cognitive effort. Temporal effort rep-
resents the overall time taken to complete a
PE task. Technical effort can be measured
tracking keyboard and mouse interactions, in-
cluding insertion, deletion, mouse movement,
etc. Cognitive effort (considered the most dif-
ficult to measure) involves mental effort such
as reading and understanding the text, identi-
fying errors, and the decision making process
towards correcting errors.
To date, PE research has mainly concen-

trated on a few well-studied languages. In
this work, the same source data in English are
machine translated to low resource languages
to carry out a PE task. The dataset used in
the experiment consists of news articles col-
lected from a local daily newspaper, Imphal
Free Press1 in Manipur, a Northeastern state
of India with a population of around 3 mil-
lion2 and a geographic size of 22,327 sq. km.
The collected news corpus is originally in En-
glish and then machine translated into three

1https://ifp.co.in/
2http://censusindia.gov.in

50

English Manipuri Mizo Hindi
SVO SOV OSV SOV
Roman Bengali Roman Devanagari

Table 1: Typological Word Order and Script of
Languages in the Study.

Acronyms: O = Object, S = Subject, V = Verb.

target languages Manipuri, Mizo and Hindi re-
sulting in three parallel datasets. The basic
word order of the languages involved in our
experiment along with their scripts are listed
in Table 1.

We conduct a study on the PE effort re-
quired to produce reasonable target text in
English-Manipuri and English-Mizo. As there
is no commercially available machine transla-
tion system for these two languages, for com-
parison we also studied English-Hindi PE ef-
fort on commercial MT output on the same
dataset. Two levels of PE are generally distin-
guished: light and full. For our experiments,
we instruct our post-editors to carry out light
PE to achieve the desired level of output qual-
ity. With various PE effort indicators com-
puted using the data captured from the CAT
tool, we carry out an experiment to measure
the PE effort for English-Manipuri, English-
Mizo and English-Hindi MT systems. Lexical
words and function words are observed to have
a different impact on the PE effort on the MT
output for the three language pairs. We also
carry out an experiment to test the impact of
training a machine translation system for the
low resource language pairs English-Manipuri
and English-Mizo in an incremental manner,
i.e. by adding the PEed dataset to the origi-
nal MT training data. The rest of the paper is
structured as follows: Section 2 reviews previ-
ous research, Section 3 desrcibes the PE task
and the human PEers, Section 4 presents our
approach and system set up. Section 5 details
our findings. Section 6 summarizes our main
results and avenues for further research.

2 Related Work

Early studies on the correlation between PE ef-
fort and various aspects of PE include O’Brien
(2005). O’Brien studied the temporal, tech-
nical and cognitive effort involved in PE
by analyzing keyboard-data using Translog

and Choice Network Analysis (CNA). Several
studies investigated bi-lingual PE and mono-
lingual PE. In bilingual PE (Zampieri and
Vela, 2014) post editors have access to the
source text, while in monolingual PE (Nitzke,
2016) MT output is edited without the source
text. Zampieri and Vela (2014) studied the
use of TMs generated by MT output and their
effect on human translation. The authors
reported a significant increase in translation
speed while using the TM as compared to
translating from the scratch.

Similarly, Toral et al. (2018) show that post-
editing an MT dataset involves less effort than
translating from scratch. Post-editing MT out-
put increases the productivity of the transla-
tors. Zaretskaya et al. (2016) examine var-
ious types of MT errors and the challenges
they present for PE. Burchardt et al. (2013)
compile a corpus consisting of English to Ger-
man translation generated by different types
of MT systems. The dataset is then annotated
for translation errors using the MQM error ty-
pology, with only one error in each sentence.
As the dataset is already annotated, the post-
editors could skip the effort of identifying the
errors and concentrate only on the highlighted
error text segment in the PE process. Focus-
ing on how PE effort changes with the differ-
ent types of MT errors, the authors reported
a weak correlation between PE time and PE
effort. The authors also report that no direct
dependency was found between the temporal
and technical PE effort. Investigating the var-
ious types of PE operations for French to En-
glish and English to Spanish translation out-
puts, Popovic et al. (2014) reported lexical ed-
its as the main factor in PE time.

Koponen et al. (2012), study the cognitive
effort of post-editing MT output based on
measuring PE time and HTER (Snover et al.,
2006). HTER (Human-targeted Translation
Edit Rate), is an automatic metric that com-
putes the minimum number of edits required
to change MT output into the post-edited ver-
sion. The authors reported that the absolute
PE time increases with the number of print-
able keystrokes and sentence length while sec-
onds per word remain relatively constant. De-
spite the fact that HTER captures the dif-
ference between the final translation and raw

51

MT, it does not disclose much of the time and
keystroke effort required to produce the final
result. A similar study is also reported by
Moorkens et al. (2015) where the human (or
H-) variants of the reference based similarity
measure such as BLEU (Papineni et al., 2002)
is used to analyze PE effort.

Singh and Bandyopadhyay (2010a); Singh
(2013) focus on MT for English to Manipuri,
Pathak et al. (2019) on English to Mizo and
Singh et al. (2017); Meetei et al. (2019b) on En-
glish to Hindi, using different MT approaches.
But, to date there is no report on PE effort re-
quired to turn raw MT output for these target
languages into useful translations. To address
this gap in the literature, our paper investi-
gates different aspects that impact PE effort
and time spend to generate a reasonable target
text from MT into Manipuri, Mizo and Hindi.

3 Description of the PE Task

Two post-editors who are native speakers of
the target languages and also proficient with
the source language are employed for each
of the language pairs to carry out the PE
task. For English-Manipuri and English-Hindi,
the post-editors are undergraduate students
of Computer Science and Engineering and for
English-Mizo, the post-editors are postgrad-
uate students of Science. When PEing ma-
chine translated text, it is important to clearly
define what level of output quality is to be
achieved. Generally two PE levels are distin-
guished: light or complete. In our work, the
post-editors are asked to carry out light PE
with the following instructions: 1) Using the
maximum possible amount of raw MT text in
the output of PE. 2) Ensure no addition or
omission of source content. 3) Restructuring
output, where the meaning is inaccurate.

4 Methodology and Experimental
Design

We use an English language corpus collected
from a local daily newspaper as the source text.
We normalize the data in a pre-processing step.
The normalized text is then machine trans-
lated into three different target languages us-
ing different MT systems. After post-editing a
sample dataset of the machine translated text
using a CAT tool, we study the data collected

Sentences Tokens
Total Dataset, D 64976 1688440
Sample Dataset, DPE 200 5500

Table 2: Statistics of our collected dataset and
data partitioning.

from the CAT tool to analyze PE effort and
the time required to generate a reasonable tar-
get text. A pictorial representation of our ex-
perimental design is shown in Figure 1. The re-
mainder of this section details individual steps
in our approach.

Figure 1: Experimental design.

4.1 Data Collection
The dataset used in our experiment is collected
from a local daily newspaper based in Manipur,
Imphal Free Press3. The news articles are in
English. The complete dataset consists of 3770
news articles from the period July 2011 to Oc-
tober 2019 comprising 64976 sentences. We
randomly select 200 sentences (DPE) for our
PE experiment. The statistics of the dataset
and data partitioning are shown in Table 2.
The dataset is collected using a web-scrapper
built in-house.

4.2 Pre-processing
Data collected from the web is not free from
noise. The pre-processing step includes re-
moval of non-ascii special characters. Each of
the news articles in our dataset is split into
sentences using the Moses tokenizer (Koehn
et al., 2007).

4.3 Building Machine Translated
Target Text

We build a machine translated dataset using
MT systems resulting in three language pairs,

3https://ifp.co.in/

52

Sentences Tokens Types
en-mn 18070 en:390141; en:27891;

mn:358947 mn:54611
monomn 131755 2798317 270998
en-mz 7500 en:86353; en:4301;

mz:87511 mz:6151
monomz 1005675 29338218 312062

Table 3: Dataset for PBSMT systems.
en : English, mn : Manipuri, mz : Mizo.

namely, English-Manipuri, English-Mizo and
English-Hindi.

4.3.1 English to Manipuri and Mizo
MT

Manipuri and Mizo are the lingua francas
of Manipur and Mizoram, two neighbouring
north-eastern states of India. Both Manipuri
and Mizo are low resource languages. Lim-
ited availability of data in Manipuri and Mizo
is one of the main reasons that hamper the
development of NLP systems for the lan-
guage. The training datasets used for train-
ing the MT system for the languages are
shown in Table 3. On the same English-
Manipuri training dataset, we first examine
the performance of MT systems trained with
Phrase Based Statistical Machine Translation,
PBSMT (Koehn et al., 2003) and the RNN-
based NMT with attention mechanism (Bah-
danau et al., 2014). The trained MT sys-
tems are evaluated on a held-out test dataset
of 900 sentences. The result shows a BLEU
score of 6.45, (34.7/9.6/3.5/1.5) on the PB-
SMT system while the NMT system achieved
a BLEU score of 0.00, (11.8/0.3/0.0/0.0). For
this reason, we use PBSMT systems for both
English-Manipuri and English-Mizo MT sys-
tems as our parallel NMT results are substan-
tially worse in these low-resource scenarios. To
build language models for the target languages,
we used the dataset in (Singh and Bandyopad-
hyay, 2010b) and (Meetei et al., 2019a) for Ma-
nipuri and Mizo respectively. mgiza4 is used to
generate the phrase table and srilm5 to build
the language model.

4https://github.com/moses-smt/mgiza
5http://www.speech.sri.com/projects/srilm/

4.3.2 English to Hindi MT
In order to translate the English dataset to
Hindi, we use Google Translate which is a Neu-
ral Machine Translation (NMT) system.

4.4 Post-editing
To investigate PE effort, we randomly select a
subset of 200 sentences from the original En-
glish data and automatically translate it into
the three target languages. We create a trans-
lation memory (TM) for each of the language
pairs to prepare the source and MT output
data for use with a CAT tool. The resulting
TMs are uploaded in a commercial CAT tool6.

4.4.1 PE effort indicators
During the post-editing process using the CAT
tool, we record post-editing logs capturing Sec-
onds per Word, Time to Edit and Post-editing
Effort for each sentence. We measure:

1. Post Editing Time (PET): Total time
taken to edit a sentence in the target lan-
guage.

2. Post Editing Effort6 (PEE): Post-editing
effort expended on the machine translated
output to produce the desired target text
per sentence. PEE is computed based
on edit distance measured in words ob-
tained using a heavily customized ver-
sion of the Levenshtein distance algorithm
(Levenshtein, 1966).

3. Seconds per Word (SpW): The PET spent
by the translator to post-edit divided by
the number of tokens of the post-edited
translation.

4. Total number of tokens (TT): Total num-
ber of tokens per sentence in the source
language.

5. Noun Words (NN): The word content that
can be used to refer to a named entity,
quality or action.

6. Lexical Words (LW): Lexical words per
sentence in the source language. Lexical
words are the essential building blocks of
a language’s vocabulary. Lexical words
are nouns, adjectives, verbs, and adverbs.

6https://www.matecat.com

53

Figure 2: Distribution of Post-Editing Time (PET) for Manipuri, Mizo and Hindi

Figure 3: Distribution of Post-Editing Effort (PEE) for Manipuri, Mizo and Hindi

7. Function words (FT): Function words per
sentence in the source language. Func-
tion words are those words which are more
grammatical in nature, such as articles,
prepositions, etc. Here, FT = TT -LW .

Temporal effort is measured by the over-
all time taken PET while PEE represents the
technical effort.

4.4.2 Descriptive Statistics and
Correlation

We use mean, standard deviation as well
as box plots to capture descriptive statistics
of our datasets and results. To investigate
whether variables co-vary we measure the cor-
relation coefficient r with value between -1 to
1. A positive correlation shows the degree to
which variables increase or decrease in parallel,
while a negative correlation indicates that one
variable increases as the other decreases.

5 Results and Discussion
To measure PE effort, PE logs are collected
from the CAT tool after post-editing the raw
MT output (in Manipuri, Mizo and Hindi) of

the sample dataset, DPE . We compare the
general distribution of PET and PEE for each
of the 200 sentences in the language pairs in
the form of box plots. Mean and standard de-
viations for the rest of the source PE effort in-
dicators (TT, NN, LW, FT) and the target PE
effort indicators (PET, PEE, SpW) are com-
puted and we investigate correlations between
indicator variables.

5.1 Statistics and Correlation
Figure 2 and 3 show the distribution of post
editing time (PET) and post editing effort
(PEE) for the language pairs investigated.
The box plots show:
• the minimum value, maximum value, first,

second, third and fourth quartile of the ex-
perimental measures. The thick line rep-
resents the median.

• Outliers: these are the values that lie be-
yond the whiskers of a box plot. Out-
liers are marked by circles or asterisks
along with their observation number. A
circle represents an outlier (a value that
appears to be outside of what is expected

54

for the observations), while asterisks rep-
resent extreme outliers (a value which is
far away from what is expected).

Figure 2 shows that the PET of Manipuri
(PET_mn) deviates far from the PET of Mizo
(PET_mz) and Hindi (PET_hi). A likely
cause of this is the massive amount of post-
editing required in the output from English-
Manipuri MT system combined with time
spend on typing the Bengali script on the key-
board. Bengali scripts are used mostly by the
news reporters while for daily communication,
Roman scripts are used. To verify our findings,
the English-Manipuri post-editors typed a set
of randomly selected 50 English-Manipuri par-
allel sentences from the training corpus to mea-
sure the typing speed of Roman and Bengali
scripts. 3001 seconds are spend on typing
the English text consisting of 1153 tokens re-
sulting in an average typing speed of 2.6 sec-
onds per token. While for the Manipuri text
with 1148 tokens, 5610 seconds are spend on
typing, resulting in an average typing speed
of 4.8 seconds per token. This led our post-
editors to spend more time while post-editing
a large portion of the translated text. The
post-editing effort (PEE) for the three lan-
guages are shown in Figure 3. While the PEE
for Hindi (PEE_hi) is small, the PEE of Ma-
nipuri (PEE_mn) and Mizo (PEE_mz) are
very large with a maximum value of 100. This
shows that massive effort is required in the
post-editing task of Manipuri and Mizo result-
ing from low performance of the current state
of the art of English-Manipuri and English-
Mizo MT systems.

Mean and Standard Deviation (SD) of the
indicators in the source language (English) of
the dataset DPE are shown in Table 4. To
identify the lexical words (LW), we POS-tag
the data using the Stanford Log-linear Part-
Of-Speech Tagger7.
Table 5 summarizes the the descriptive

statistics, mean and SD of the indicators
(PET, PEE, SpW) for our Manipuri, Mizo and
Hindi experiments. Compared to Mizo and
Hindi, SpW for Manipuri is longer. The main
reason for this is the large portion of text post-
edited and because of the difficulty in writing
Bengali characters by the post-editors. The

7https://nlp.stanford.edu

NN LW FT TT
Mean 9.64 15.39 9.16 24.56
SD 6.06 7.51 5.28 11.85

Table 4: Descriptive Statistics of the source text
of dataset DPE .

Acronyms: NN : Nouns, LW : Lexical Words, FT :
Function words, TT : Total tokens

Mean SD
PEEmn 76.35 13.45
PEEmz 75.02 19.22
PEEhi 2.29 4.64
PETmn 400.78 378.93
PETmz 91.00 63.75
PEThi 72.48 168.14
SpWmn 16.14 13.55
SpWmz 3.51 2.57
SpWhi 2.93 6.14

Table 5: Descriptive Statistics of target text.
Subscripts- mn : Manipuri, mz : Mizo, hi : Hindi.

result in Table 5 shows a mean value ≈ 76.35
and ≈ 75.02 in the PEE for English-Manipuri
and English-Mizo dataset respectively. Much
of this is due to the current state of the art of
English-Manipuri and English-Mizo MT sys-
tems. We note that significant effort is re-
quired to improve the English-Manipuri and
English-Mizo MT system which requires a
PEE > 55 in all the cases.

5.2 Correlation
In our experiment, the correlation between PE
effort indicators is computed using Pearson’s
correlation coefficient to determine whether
there is a potential dependency between them.
The correlations among the indicators for the
three language pairs involved in our experi-
ment are shown in Table 6.
A Pearson’s r data analysis shows a signifi-

cant positive correlation between PEEmn and
FT (p<0.05, r= .16) and also between PEEmz

and FT (p<0.01, r= .27). The result also
shows a significant (p<0.01) negative correla-
tion between PEEmz and NN. The main rea-
son for the above result is because Mizo uses
the same script as the source text and the ag-
glutinative nature of the Manipuri text. In
Manipuri function words such as articles (a,
the), prepositions (on, at, in), etc. are suf-

55

NN LW FT TT

PEEmn 0.041 0.088 0.162* 0.128
PEEmz -0.300† -0.066 0.274† 0.080
PEEhi 0.049 -0.065 -0.047 -0.062
PETmn 0.344† 0.407† 0.405† 0.438†

PETmz 0.620† 0.646† 0.452† 0.611†

PEThi 0.234† 0.213† 0.256† 0.249†

SpWmn -0.038 -0.067 -0.043 -0.062
SpWmz -0.100 -0.202† -0.322† -0.271†

SpWhi -0.040 -0.106 -0.105 -0.114

Table 6: Correlation of source text and target text
indicators. Note: † significant at 0.01 level of sig-
nificance. * significant at 0.05 level of significance.

HBLEU 1-g 2-g 3-g 4-g Average
MTmn 33.8 10.0 4.0 2.0 7.16
MTmz 34.8 10.7 5.5 4.0 9.48
MThi 96.5 94.0 91.5 89.2 92.78

Table 7: Evaluation against post-edited dataset
DPE .

fixed to the noun words in most of the cases,
resulting in the formation of a new word.

The PET for all the language pairs involved
is observed to be positively correlated with all
the source text indicators.

In terms of seconds per word, SpW , only the
English-Mizo pair is significantly negatively
correlated with LW, FT and TT. With an in-
crease in the number of tokens in the source
text, the average time spent per token de-
creases. A likely cause is the use of same
script.

In addition to the computation of corre-
lations between indicator variables, we also
calculated automatic MT evaluation (4-gram
HBLEU) scores between the raw MT outputs
and their post-edited versions of dataset DPE

for each language pair as shown in Table 7.

5.3 A Control Experiment
As, to the best of our knowledge, this is the
first paper to report on PE research on Ma-
nipuri, Mizo and Hindi, it is not clear how
the results obtained compare with previous re-
search on well-resourced languages. Further-
more, as the PE for Manipuri, Mizo and Hindi
did not involve professional translators, but
students who are native speakers of our tar-

get languages with excellent command of En-
glish, we conducted a control PE experiment
with German as target language and profes-
sional translator trainees at Saarland Univer-
sity. Our data consists of the same dataset
selected for the Manipuri, Mizo and Hindi ex-
periments, translated into German by DeepL8,
and PEed by seven Translation Study MA stu-
dents with native German from the English to
German translation track of the degree. We
used the same CAT tool as in our Manipuri,
Mizo and Hindi experiments and collected the
same set of measurements.
For English-German we measure mean val-

ues of 48.94 in PET and 7.14 in PEE, com-
pared to 72.48 and 2.30 for Hindi (see Figures
2 and 3). As both German and Hindi are well
supported languages (both Google Translate
and DeepL are some of the strongest perform-
ing systems for the EN-Hi and EN-DE lan-
guage pairs), this provides additional support
that the Hindi PE results we report are reliable
and properly indicative of the task. Further,
and in turn, this “anchoring” of the Hindi PE
results through the German PE results, sup-
ports our belief that the large gap between the
Hindi and with that of Manipuri and Mizo re-
sults observed in our experiments is also reli-
able, and can be traced to the fact that Ma-
nipuri and Mizo are much less well supported
by language technologies and data (here ma-
chine translation) than Hindi or German.

5.4 Training English to Manipuri and
Mizo MT systems on additional
PEed data

Further, in an effort to improve the English-
Manipuri and English-Mizo MT systems, we
train the PBSMT systems for the language
pairs in an incremental approach. We use the
PEed dataset of (DPE) for each language pair
as additional training data to retrain our PB-
SMT systems (MT -Imn and MT -Imz). We
further increase the additional training data
of English-Manipuri [DPEed-2 = 200 (DPE)
+ 656] to retrain English-Manipuri PBSMT
system (MT -I2mn) but could not acquire the
same for English-Mizo due to the lack of post-
editors. In order to check the quality improve-
ment in the translated text, we compare the

8https://www.deepl.com/

56

Sentences Tokens Unique tokens
DPEed-2 856 20309 4884
DEv 50 434 293

Table 8: Dataset to retrain and evaluate MT systems. [DEv: Evaluation Dataset]

HBLEU 1-g 2-g 3-g 4-g Average
MTmn 21.9 4.6 0.6 0.3 2.14
MT -Imn 22.6 5.0 0.9 0.4 2.45
MT -I2mn 30.0 9.1 3.8 2.0 6.78
MTmz 47.6 20.3 9.0 3.4 11.83
MT -Imz 49.2 21.6 9.5 3.7 12.64

Table 9: Evaluation for English-Manipuri (mn) and English-Mizo (mz) MT systems on DEv.

Sentence

Source my stint as dc of tamenglong has been professionally and personally satisfying
: armstrong pame.

MTmn
ঐগী ওইনা stint মীৎেয়ং থমব্া অমিন ওফ tamenglong অিস professionally ৈল অমসুং personally arm-
strong pame satisfying :

MT -Imn
ঐগী ওইনা stint িদিস ওফ tamenglong অিস professionally ৈল অমসুং personally armstrong
pame মফমিন ।

MT -I2mn ঐগী stint তেমংেলাং িডিষ্টৰ্ক্টিক িডিস ওইনা অিস ৈল অমসুং ইশািগ ওইনা মফমিন : অরমসেতৰ্াং পােম

Reference ঐনা মতম খরা তেমংেলাংগী িডিস ওইবিস িশনফমগী ওইনা অমসুং ইশাগী ওইনা অেপনবা ফাওই : অরমসেতৰ্াং পােম

MTmz
my stint , dc te chuan tamenglong bana professionally leh personally satisfying
: armstrong pame

MT -Imz
my stint dc te an nei a , tamenglong professionally leh personally satisfying :
armstrong pame

Reference tamenglong dc ka nih chhung hian hnathawh dan leh mimal tak pawhin
hlawkna tam tak ka hmu : armstrong pame

Table 10: Sample Output of PBSMT systems.

HBLEU scores of the retrained PBSMT sys-
tems and the original PBSMT systems (MTmn

and MTmz). Table 8 and 9 summarize the
dataset used to evaluate the MT systems and
their evaluations in terms of HBLEU score.
Table 9 shows that the retrained MT systems
gives clearly better results than original MT
systems with an increase in HBLEU score of
up to 4.6. Sample outputs from the MT sys-
tems are shown in Table 10.

6 Conclusions

Using log-information gathered from our CAT
tool, an analysis of the PE effort and PE time
is carried out for three target languages: Ma-
nipuri, Mizo and Hindi with English as the
source language. To our knowledge, this is

the first PE analysis conducted on English-
Manipuri, English-Mizo and English-Hindi.
Our analysis shows that current state of the

art in commercially available MT for English-
Hindi requires small PE effort and PE time.
While MT systems for low resource languages
such as Manipuri and Mizo are under devel-
opment, MT training data for the languages
is very scarce. Using a PBSMT system built
in-house, a study on the PE effort and PE
time is carried out for English-Manipuri and
English-Mizo. Our findings show that, com-
pared to English-Manipuri and English-Mizo,
PEE is low for English-Hindi. By contrast, for
English-Manipuri and English-Mizo, the prob-
lems in MT output are far more serious requir-
ing heavy PE effort. Interestingly, while there
is a significant correlation between PEE and

57

FT for the language pair English-Manipuri
and English-Mizo, there is a significant neg-
ative correlation between PEE and NN for
the English-Mizo language pair. The PEE
for English-Mizo decreases with the increase in
noun words in the source text, which might be
because of Mizo sharing the same script as the
source language. Also, a significant negative
correlation is observed between SpW and TT
for English-Mizo. This suggests that with the
increase in the number of tokens in source text,
the average time taken per word decreases for
English-Mizo. We identify MT quality as well
as script and ease of typing script as a factor
in PE effort for languages like Manipuri and
Mizo.

We also made a first attempt to address the
scarcity of a parallel training data of English-
Manipuri and English-Mizo MT by training
the MT systems in an incremental manner us-
ing additional data created by the PE experi-
ment. The result indicates an improvement of
up to 4.6 in HBLEU for English-Manipuri.

7 Acknowledgments
This work is supported by Scheme for Pro-
motion of Academic and Research Collabo-
ration (SPARC) Project Code: P995 of No:
SPARC/2018-2019/119/SL(IN) under MHRD,
Govt of India.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2014. Neural machine translation by
jointly learning to align and translate. arXiv
preprint arXiv:1409.0473.

Aljoscha Burchardt, Arle Lommel, and Maja
Popovic. 2013. Tq error corpus. Technical re-
port, Technical Report Deliverable D 1.2. 1, QT
Launchpad Project.

Philipp Koehn. 2009. A process study of
computer-aided translation. Machine Transla-
tion, 23(4):241–263.

Philipp Koehn, Hieu Hoang, Alexandra Birch,
Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine
Moran, Richard Zens, et al. 2007. Moses: Open
source toolkit for statistical machine transla-
tion. In Proceedings of the 45th annual meeting
of the association for computational linguistics
companion volume proceedings of the demo and
poster sessions, pages 177–180.

Philipp Koehn, Franz Josef Och, and Daniel
Marcu. 2003. Statistical phrase-based transla-
tion. In Proceedings of the 2003 Conference of
the North American Chapter of the Association
for Computational Linguistics on Human Lan-
guage Technology-Volume 1, pages 48–54. Asso-
ciation for Computational Linguistics.

Maarit Koponen, Wilker Aziz, Luciana Ramos,
and Lucia Specia. 2012. Post-editing time as
a measure of cognitive effort. Proceedings of
WPTP, pages 11–20.

Hans P Krings. 2001. Repairing texts: empiri-
cal investigations of machine translation post-
editing processes, volume 5. Kent State Univer-
sity Press.

Vladimir I Levenshtein. 1966. Binary codes capa-
ble of correcting deletions, insertions, and rever-
sals. In Soviet physics doklady, volume 10, pages
707–710.

Loitongbam Sanayai Meetei, Thoudam Doren
Singh, and Sivaji Bandyopadhyay. 2019a. Ex-
traction and identification of manipuri and mizo
texts from scene and document images. In Inter-
national Conference on Pattern Recognition and
Machine Intelligence, pages 405–414. Springer.

Loitongbam Sanayai Meetei, Thoudam Doren
Singh, and Sivaji Bandyopadhyay. 2019b.
Wat2019: English-hindi translation on hindi vi-
sual genome dataset. In Proceedings of the 6th
Workshop on Asian Translation, pages 181–188.

Joss Moorkens, Sharon O’brien, Igor AL Da Silva,
Norma B de Lima Fonseca, and Fabio Alves.
2015. Correlations of perceived post-editing ef-
fort with measurements of actual effort. Ma-
chine Translation, 29(3-4):267–284.

Jean Nitzke. 2016. Monolingual post-editing: An
exploratory study on research behaviour and tar-
get text quality. Eyetracking and applied linguis-
tics, 2:83–108.

Sharon O’Brien. 2005. Methodologies for measur-
ing the correlations between post-editing effort
and machine translatability. Machine transla-
tion, 19(1):37–58.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. Bleu: a method for auto-
matic evaluation of machine translation. In Pro-
ceedings of the 40th annual meeting on associa-
tion for computational linguistics, pages 311–318.
Association for Computational Linguistics.

Amarnath Pathak, Partha Pakray, and Jereemi
Bentham. 2019. English–mizo machine
translation using neural and statistical ap-
proaches. Neural Computing and Applications,
31(11):7615–7631.

58

Mirko Plitt and François Masselot. 2010. A pro-
ductivity test of statistical machine translation
post-editing in a typical localisation context.
The Prague bulletin of mathematical linguistics,
93(1):7–16.

Maja Popovic, Arle Lommel, Aljoscha Burchardt,
Eleftherios Avramidis, and Hans Uszkoreit. 2014.
Relations between different types of post-editing
operations, cognitive effort and temporal effort.
In Proceedings of the 17th annual conference
of the european association for machine trans-
lation, pages 191–198. European Association for
Machine Translation Dubrovnik, Croatia.

Sandhya Singh, Ritesh Panjwani, Anoop
Kunchukuttan, and Pushpak Bhattacharyya.
2017. Comparing recurrent and convolutional
architectures for english-hindi neural machine
translation. In Proceedings of the 4th Work-
shop on Asian Translation (WAT2017), pages
167–170.

Thoudam Doren Singh. 2013. Taste of two differ-
ent flavours: Which manipuri script works bet-
ter for english-manipuri language pair smt sys-
tems? In Proceedings of the Seventh Workshop
on Syntax, Semantics and Structure in Statisti-
cal Translation, pages 11–18.

Thoudam Doren Singh and Sivaji Bandyopadhyay.
2010a. Manipuri-english bidirectional statistical
machine translation systems using morphology
and dependency relations. In Proceedings of the
4th Workshop on Syntax and Structure in Statis-
tical Translation, pages 83–91.

Thoudam Doren Singh and Sivaji Bandyopadhyay.
2010b. Web based manipuri corpus for multi-
word ner and reduplicated mwes identification
using svm. In Proceedings of the 1st Workshop
on South and Southeast Asian Natural Language
Processing, pages 35–42.

Matthew Snover, Bonnie Dorr, Richard Schwartz,
Linnea Micciulla, and John Makhoul. 2006. A
study of translation edit rate with targeted hu-
man annotation. In Proceedings of association
for machine translation in the Americas, volume
200.

Antonio Toral, Martijn Wieling, and Andy Way.
2018. Post-editing effort of a novel with statis-
tical and neural machine translation. Frontiers
in Digital Humanities, 5:9.

Marcos Zampieri and Mihaela Vela. 2014. Quan-
tifying the influence of mt output in the trans-
lators’ performance: A case study in technical
translation. In Proceedings of the EACL 2014
Workshop on Humans and Computer-assisted
Translation, pages 93–98.

Anna Zaretskaya, Mihaela Vela, Gloria Corpas Pas-
tor, and Miriam Seghiri. 2016. Measuring post-
editing time and effort for different types of ma-
chine translation errors.

59

Proceedings of the 17th International Conference on Natural Language Processing, pages 60–69
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Learning to Interact: An Adaptive Interaction Framework for
Knowledge Graph Embeddings

Chandrahas1 Nilesh Agrawal2∗ Partha Talukdar1
1Indian Institute of Science, Bangalore, 2Cohesity, Bangalore

(chandrahas, anilesh, ppt)@iisc.ac.in

Abstract

Knowledge Graph (KG) Embedding methods
have been widely studied in the past few years
and many methods have been proposed. These
methods represent entities and relations in the
KG as vectors in a vector space, trained to dis-
tinguish correct edges from the incorrect ones.
For this distinction, simple functions of vec-
tors’ dimensions, called interactions, are used.
These interactions are used to calculate the
candidate tail entity vector which is matched
against all entities in the KG. However, for
most of the existing methods, these interac-
tions are fixed and manually specified. In this
work, we propose an automated framework for
discovering the interactions while training the
KG Embeddings. The proposed method learns
relevant interactions along with other parame-
ters during training, allowing it to adapt to dif-
ferent datasets. Many of the existing methods
can be seen as special cases of the proposed
framework. We demonstrate the effectiveness
of the proposed method on link prediction task
by extensive experiments on multiple bench-
mark datasets.

1 Introduction

Knowledge Graphs (KGs) such as NELL (Mitchell
et al., 2015), Freebase (Bollacker et al., 2008),
YAGO (Suchanek et al., 2007), etc. have been very
popular in supporting many AI applications like
Web Search Query Recommendation (Huang et al.,
2016), Question Answering (Yao and Van Durme,
2014), Visual Question Answering (Shah et al.,
2019) etc. KGs are multi-relational graphs con-
taining entities as nodes and typed relations be-
tween entity pairs as edges. These graphs store
real-world facts such as (Lionel Messi, plays-for-
team, Argentina National Football Team) as edges,

∗Work done while at the Indian Institute of Science, Ban-
galore.

Additive
Interactions

Multiplicative
Interactions

Fully Connected Adaptive Interactions
(this paper)

w11a + w12b + w13x + w14y
<latexit sha1_base64="kpowiR2TDSJ4tVV+/NlBUiKbtI4=">AAACCHicbVDLSsNAFJ34rPUVdenCwSIIQknagi4LblxWsQ9oQ5hMp+3QySTMTNQQsnTjr7hxoYhbP8Gdf+MkzUJbLwzncM693LnHCxmVyrK+jaXlldW19dJGeXNre2fX3NvvyCASmLRxwALR85AkjHLSVlQx0gsFQb7HSNebXmZ+944ISQN+q+KQOD4aczqiGCktuebRvZvYdorOMqylXo719CHHRhq7ZsWqWnnBRWIXpAKKarnm12AY4MgnXGGGpOzbVqicBAlFMSNpeRBJEiI8RWPS15Qjn0gnyQ9J4YlWhnAUCP24grn6eyJBvpSx7+lOH6mJnPcy8T+vH6nRhZNQHkaKcDxbNIoYVAHMUoFDKghWLNYEYUH1XyGeIIGw0tmVdQj2/MmLpFOr2vVq7bpRad4UcZTAITgGp8AG56AJrkALtAEGj+AZvII348l4Md6Nj1nrklHMHIA/ZXz+AE+vmPA=</latexit>

w21a + w22b + w23x + w24y
<latexit sha1_base64="rwe75d76AhvV0BRHeTYMIF2rHbc=">AAACCHicbVDLSsNAFJ34rPUVdenCYBEEoSRpQZcFNy6r2Ae0IUymk3boZBJmJmoIWbrxV9y4UMStn+DOv3GSZqGtF4ZzOOde7tzjRZQIaZrf2tLyyuraemWjurm1vbOr7+13RRhzhDsopCHve1BgShjuSCIp7kccw8CjuOdNL3O/d4e5ICG7lUmEnQCOGfEJglJJrn5076a2lcGzHO3MK7CRPRTYzBJXr5l1syhjkVglqYGy2q7+NRyFKA4wk4hCIQaWGUknhVwSRHFWHcYCRxBN4RgPFGUwwMJJi0My40QpI8MPuXpMGoX6eyKFgRBJ4KnOAMqJmPdy8T9vEEv/wkkJi2KJGZot8mNqyNDIUzFGhGMkaaIIRJyovxpoAjlEUmVXVSFY8ycvkq5dtxp1+7pZa92UcVTAITgGp8AC56AFrkAbdAACj+AZvII37Ul70d61j1nrklbOHIA/pX3+AFX7mPQ=</latexit>

ax
<latexit sha1_base64="jBm20iSukP63wJArosz5NmpvmLg=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fjw4rEW+wFtKJvtpF262YTdjVhC/4EXD4p49R9589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/Pbj6g0j+WDmSToR3QoecgZNVZq0Kd+qexW3DnIKvFyUoYc9X7pqzeIWRqhNExQrbuemxg/o8pwJnBa7KUaE8rGdIhdSyWNUPvZ/NIpObfKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsbTLgCpkRE0soU9zeStiIKsqMDadoQ/CWX14lrWrFu6xU76/KtUYeRwFO4QwuwINrqMEd1KEJDEJ4hld4c8bOi/PufCxa15x85gT+wPn8AaSvjXs=</latexit>

by
<latexit sha1_base64="pYLZJzlg6mPQoZyUOKWx+pz3fVc=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF4+12A9oQ9lsJ+3SzSbsboRQ+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPJkvQj+hI8pAzaqzUDLJBueJW3QXIOvFyUoEcjUH5qz+MWRqhNExQrXuemxh/SpXhTOCs1E81JpRN6Ah7lkoaofani0tn5MIqQxLGypY0ZKH+npjSSOssCmxnRM1Yr3pz8T+vl5rw1p9ymaQGJVsuClNBTEzmb5MhV8iMyCyhTHF7K2FjqigzNpySDcFbfXmdtGtV76pae7iu1Jt5HEU4g3O4BA9uoA730IAWMAjhGV7hzZk4L86787FsLTj5zCn8gfP5A6e4jX0=</latexit>

a
<latexit sha1_base64="uGpWSZgpBTYehWHDKWObQSZW9gU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF4+t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTjm5n/8IRK81jem0mCfkSHkoecUWOlJu2XK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSrlW9i2qteVmp3+VxFOEETuEcPLiCOtxCA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHyXuM+Q==</latexit>

b
<latexit sha1_base64="a2DXzIRCO3pnrQ9QOWF26eyM8lM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF4+t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTjm5n/8IRK81jem0mCfkSHkoecUWOlZtAvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8vjKMIJnMI5eHAFdbiFBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPyv+M+g==</latexit>

x
<latexit sha1_base64="zrnJwUdSu8F61dZhG4l+p5lwBTA=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI8kXjyCkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1bssjjycwCmcgwdXUIVbqEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOxXjRA=</latexit>

y
<latexit sha1_base64="hb0O4C+uMWVCv5VLgOiYob6EGF4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF4+t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTjm5n/8IRK81jem0mCfkSHkoecUWOl5qRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpfHUYQTOIVz8OAK6nALDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f7duNEQ==</latexit>

a + x
<latexit sha1_base64="xd9Q4XWGlAoAOZiR3kR6C9V3A/Q=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMgCGE3CnoMePEYH3lAEkLvZDYZMju7zMyKYcknePGgiFe/yJt/4yTZgyYWNBRV3XR3+bHg2rjut5NbWV1b38hvFra2d3b3ivsHDR0lirI6jUSkWj5qJrhkdcONYK1YMQx9wZr+6HrqNx+Z0jySD2Ycs26IA8kDTtFY6R7PnnrFklt2ZyDLxMtICTLUesWvTj+iScikoQK1bntubLopKsOpYJNCJ9EsRjrCAWtbKjFkupvOTp2QE6v0SRApW9KQmfp7IsVQ63Ho284QzVAvelPxP6+dmOCqm3IZJ4ZJOl8UJIKYiEz/Jn2uGDVibAlSxe2thA5RITU2nYINwVt8eZk0KmXvvFy5vShV77I48nAEx3AKHlxCFW6gBnWgMIBneIU3RzgvzrvzMW/NOdnMIfyB8/kDC1yNsA==</latexit>

b + y
<latexit sha1_base64="SWNxRwiWpQ+JLN6PaZLPayeHYRU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBEEpSBT0WvHisaD+gDWWznbRLN5uwuxFC6U/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7GtzO//YRK81g+mixBP6JDyUPOqLHSQ3CR9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BOqDGcCp6VeqjGhbEyH2LVU0gi1P5mfOiVnVhmQMFa2pCFz9ffEhEZaZ1FgOyNqRnrZm4n/ed3UhDf+hMskNSjZYlGYCmJiMvubDLhCZkRmCWWK21sJG1FFmbHplGwI3vLLq6RVq3qX1dr9VaXO8ziKcAKncA4eXEMd7qABTWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QMVUY3J</latexit>

vector 1 vector 2

Figure 1: Some examples of interactions between two
vectors. While additive and multiplicative interactions
depend only on the input vectors, the fully connected
(FC) interactions have trainable weights, allowing it to
adapt to different datasets. In this example, additive
interaction a + x can be achived by FC interaction by
setting w11 = w13 = 1 and w12 = w14 = 0. Similarly,
the multiplicative interaction ax can be achieved by set-
ting w11 = 0.5x and w13 = 0.5a and other weights as
zero.

also called triples. In spite of their popularity, they
suffer from incompleteness (Dong et al., 2014), and
it becomes important to predict the missing edges
in the graph. The task of predicting missing edges
in a KG is called link prediction.

Knowledge Graph Embedding (KGE) methods
have been a popular approach for the link predic-
tion task. Most of these methods learn vectorial
representations for entities and relations in the KG.
A score function is then used to distinguish correct
triples from the incorrect ones. Given a triple of the
form (h, r, t) where h, r and t are the head entity,
relation, and the tail entity, a score function assigns
a real-valued score to the triple. These score func-
tions depend upon the interactions of dimensions

60

Figure 2: The block diagram of the Adaptive Interac-
tion Framework. The interaction layer extracts inter-
actions vhr from head entity vh and relation vector vr.
The prediction layer calculates a candidate tail entity
vector v̂t which is then matched with existing tail en-
tity vector vt using the matching layer to produce a real
valued score.

of vectors for h and r. Some examples of interac-
tions are given in Figure 1. TransE (Bordes et al.,
2013) uses the additive interactions while DistMult
(Yang et al., 2014) uses the multiplicative interac-
tions. However, these interactions are fixed for a
given method and are not learnable. This restricts
models’ capability to weigh entities and relations
differently, and hence, from adapting to different
datasets. For instance, relations in Freebase like
place of birth give much more information about
head and tail entities compared to relations like
similar to, hypernym in WordNet. Thus, learn-

ing these interactions while training can enable the
model to adapt to different datasets.

We address this issue in this paper and propose
a novel adaptive framework that allows learning
these interactions directly from the data during
training. The proposed framework is capable of
weighing entities and relations differently by using
a fully connected interaction layer. It allows the
proposed method to adapt to different datasets by
learning dataset-specific interactions. By extensive
experiments on multiple benchmark datasets, we
show the effectiveness of the proposed method on
the link prediction task. We also demonstrate that
the proposed method assigns different weights to
entities and relations by learning dataset-specific
interactions.

In summary, we make the following contribu-
tions:

• We propose an adaptive interaction framework

that can discover relevant interactions of em-
beddings from data. We show that many of
the existing methods can be seen as special
cases of the proposed framework.

• Based on this framework, we propose two new
models FCE and FCConvE which outperform
the baseline models on link prediction task
across commonly used benchmark datasets.

• We also present a method to analyse the fully
connected interactions and use it to compare
the interactions learned by FCConvE for dif-
ferent datasets.

Notations: A Knowledge Graph is represented by
G = (E ,R, T) where E is the set of entities, R
is the set of relations and T ⊂ E × R × E is the
set of triples stored in the graph. Most of the KG
embedding methods learn vectors ve ∈ Rde for
e ∈ E , and vr ∈ Rdr for r ∈ R. Some methods
also learn projection matrices Mr ∈ Rdr×de for
relations. The correctness of a triple is evaluated
using a model specific score function score : E ×
R× E → R. For learning the embeddings, a loss
function L(T , T ′; θ), defined over a set of positive
triples T , a set of (sampled) negative triples T ′,
and the parameters θ is optimized. Id denotes the
d × d identity matrix while 0d denotes the d × d
zero matrix. diag(v) denotes a diagonal matrix
created from vector v. All vectors are assumed to
be column vectors including the concatenation of
vectors [v1; v2; . . . vk]. In case of matrix, [M1;M2]
denotes the block matrix consisting of blocks M1

and M2.

2 Related Work

The problem of learning KG Embeddings for link
prediction has been very popular in the last few
years. Based on the score function, these meth-
ods can be broadly grouped into three categories,
namely Additive, Multiplicative and Neural mod-
els.

2.1 Additive Models

This is the class of methods where the vectors inter-
act via additive operations after an optional projec-
tion operation. One of the simple and popular addi-
tive models is TransE (Bordes et al., 2013) where
the entity and relation vectors lie in the same vec-
tor space. The relation vector acts as a translation
from the head entity vector to the tail entity vector.

61

Interaction
Layer

Reshape Convolution Projection

Score

vr
<latexit sha1_base64="rDUj21lAN7v+VZogVgY5V+2fviA=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWN85AHJEmYnvcmQ2dllZjYQlnyCFw+KePWLvPk3TpI9aGJBQ1HVTXdXkAiujet+O2vrG5tb24Wd4u7e/sFh6ei4qeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvjVFpHssnM0nQj+hA8pAzaqz0OO6pXqnsVtw5yCrxclKGHPVe6avbj1kaoTRMUK07npsYP6PKcCZwWuymGhPKRnSAHUsljVD72fzUKTm3Sp+EsbIlDZmrvycyGmk9iQLbGVEz1MveTPzP66QmvPEzLpPUoGSLRWEqiInJ7G/S5wqZERNLKFPc3krYkCrKjE2naEPwll9eJc1qxbusVO+vyrWHPI4CnMIZXIAH11CDO6hDAxgM4Ble4c0Rzovz7nwsWtecfOYE/sD5/AFxRo3z</latexit>

vh
<latexit sha1_base64="IPkBren0i0W+pAgOMK4TyqWDV/I=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWN85AHJEmYns8mQ2dllpjcQlnyCFw+KePWLvPk3TpI9aGJBQ1HVTXdXkEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbmd+a8y1EbF6wknC/YgOlAgFo2ilx3Fv2CuV3Yo7B1klXk7KkKPeK311+zFLI66QSWpMx3MT9DOqUTDJp8VuanhC2YgOeMdSRSNu/Gx+6pScW6VPwljbUkjm6u+JjEbGTKLAdkYUh2bZm4n/eZ0Uwxs/EypJkSu2WBSmkmBMZn+TvtCcoZxYQpkW9lbChlRThjadog3BW355lTSrFe+yUr2/Ktce8jgKcApncAEeXEMN7qAODWAwgGd4hTdHOi/Ou/OxaF1z8pkT+APn8wdiHo3p</latexit>

vhr
<latexit sha1_base64="wNQfSk4ESFxP5BjXiszvIoQh0zM=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqexWQY8FLx6r2Fpol5JNs21sNlmSbKEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZemAhurOd9o8La+sbmVnG7tLO7t39QPjxqGZVqyppUCaXbITFMcMmallvB2olmJA4FewxHNzP/ccy04Uo+2EnCgpgMJI84JdZJrXEvG+ppr1zxqt4ceJX4OalAjkav/NXtK5rGTFoqiDEd30tskBFtORVsWuqmhiWEjsiAdRyVJGYmyObXTvGZU/o4UtqVtHiu/p7ISGzMJA5dZ0zs0Cx7M/E/r5Pa6DrIuExSyyRdLIpSga3Cs9dxn2tGrZg4Qqjm7lZMh0QTal1AJReCv/zyKmnVqv5FtXZ3Wanf53EU4QRO4Rx8uII63EIDmkDhCZ7hFd6QQi/oHX0sWgsonzmGP0CfP/rUj3E=</latexit>

vt
<latexit sha1_base64="DCavD8zHzwImda4oiF5QL5co1LU=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWN85AHJEmYns8mQ2dllpjcQlnyCFw+KePWLvPk3TpI9aGJBQ1HVTXdXkEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbmd+a8y1EbF6wknC/YgOlAgFo2ilx3EPe6WyW3HnIKvEy0kZctR7pa9uP2ZpxBUySY3peG6CfkY1Cib5tNhNDU8oG9EB71iqaMSNn81PnZJzq/RJGGtbCslc/T2R0ciYSRTYzoji0Cx7M/E/r5NieONnQiUpcsUWi8JUEozJ7G/SF5ozlBNLKNPC3krYkGrK0KZTtCF4yy+vkma14l1WqvdX5dpDHkcBTuEMLsCDa6jBHdShAQwG8Ayv8OZI58V5dz4WrWtOPnMCf+B8/gB0To31</latexit>

v̂t
<latexit sha1_base64="314njFEcpUzoyMXbO9+GeH2pclY=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fjw4rGK/ZA2lM120y7dTcLupFBCf4UXD4p49ed489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKSLeQIGStxPNqQokbwWj25nfGnNtRBw94iThvqKDSISCUbTSU3dIMRtPe9grld2KOwdZJV5OypCj3it9dfsxSxWPkElqTMdzE/QzqlEwyafFbmp4QtmIDnjH0ogqbvxsfvCUnFulT8JY24qQzNXfExlVxkxUYDsVxaFZ9mbif14nxfDGz0SUpMgjtlgUppJgTGbfk77QnKGcWEKZFvZWwoZUU4Y2o6INwVt+eZU0qxXvslK9vyrXHvI4CnAKZ3ABHlxDDe6gDg1goOAZXuHN0c6L8+58LFrXnHzmBP7A+fwBQ4mQwg==</latexit>

Dot
Product

⌧(vhr)
<latexit sha1_base64="6PlIxKUPJkq4/vGoXcsw6vvSjAA=">AAAB83icbVBNSwMxEM3Wr1q/qh69BItQL2W3CnosePFYxX5AdynZNNuGZrNLMimUpX/DiwdFvPpnvPlvTNs9aOuDgcd7M8zMC1PBNbjut1PY2Nza3inulvb2Dw6PyscnbZ0YRVmLJiJR3ZBoJrhkLeAgWDdVjMShYJ1wfDf3OxOmNE/kE0xTFsRkKHnEKQEr+T4QU530s5GaXfbLFbfmLoDXiZeTCsrR7Je//EFCTcwkUEG07nluCkFGFHAq2KzkG81SQsdkyHqWShIzHWSLm2f4wioDHCXKlgS8UH9PZCTWehqHtjMmMNKr3lz8z+sZiG6DjMvUAJN0uSgyAkOC5wHgAVeMgphaQqji9lZMR0QRCjamkg3BW315nbTrNe+qVn+4rjQe8ziK6Aydoyry0A1qoHvURC1EUYqe0St6c4zz4rw7H8vWgpPPnKI/cD5/AOZqkaQ=</latexit>

(a) FCConvE

Interaction
Layer

Score

vr
<latexit sha1_base64="rDUj21lAN7v+VZogVgY5V+2fviA=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWN85AHJEmYnvcmQ2dllZjYQlnyCFw+KePWLvPk3TpI9aGJBQ1HVTXdXkAiujet+O2vrG5tb24Wd4u7e/sFh6ei4qeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvjVFpHssnM0nQj+hA8pAzaqz0OO6pXqnsVtw5yCrxclKGHPVe6avbj1kaoTRMUK07npsYP6PKcCZwWuymGhPKRnSAHUsljVD72fzUKTm3Sp+EsbIlDZmrvycyGmk9iQLbGVEz1MveTPzP66QmvPEzLpPUoGSLRWEqiInJ7G/S5wqZERNLKFPc3krYkCrKjE2naEPwll9eJc1qxbusVO+vyrWHPI4CnMIZXIAH11CDO6hDAxgM4Ble4c0Rzovz7nwsWtecfOYE/sD5/AFxRo3z</latexit>

vh
<latexit sha1_base64="IPkBren0i0W+pAgOMK4TyqWDV/I=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWN85AHJEmYns8mQ2dllpjcQlnyCFw+KePWLvPk3TpI9aGJBQ1HVTXdXkEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbmd+a8y1EbF6wknC/YgOlAgFo2ilx3Fv2CuV3Yo7B1klXk7KkKPeK311+zFLI66QSWpMx3MT9DOqUTDJp8VuanhC2YgOeMdSRSNu/Gx+6pScW6VPwljbUkjm6u+JjEbGTKLAdkYUh2bZm4n/eZ0Uwxs/EypJkSu2WBSmkmBMZn+TvtCcoZxYQpkW9lbChlRThjadog3BW355lTSrFe+yUr2/Ktce8jgKcApncAEeXEMN7qAODWAwgGd4hTdHOi/Ou/OxaF1z8pkT+APn8wdiHo3p</latexit>

vt
<latexit sha1_base64="DCavD8zHzwImda4oiF5QL5co1LU=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWN85AHJEmYns8mQ2dllpjcQlnyCFw+KePWLvPk3TpI9aGJBQ1HVTXdXkEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbmd+a8y1EbF6wknC/YgOlAgFo2ilx3EPe6WyW3HnIKvEy0kZctR7pa9uP2ZpxBUySY3peG6CfkY1Cib5tNhNDU8oG9EB71iqaMSNn81PnZJzq/RJGGtbCslc/T2R0ciYSRTYzoji0Cx7M/E/r5NieONnQiUpcsUWi8JUEozJ7G/SF5ozlBNLKNPC3krYkGrK0KZTtCF4yy+vkma14l1WqvdX5dpDHkcBTuEMLsCDa6jBHdShAQwG8Ayv8OZI58V5dz4WrWtOPnMCf+B8/gB0To31</latexit>

v̂t
<latexit sha1_base64="314njFEcpUzoyMXbO9+GeH2pclY=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fjw4rGK/ZA2lM120y7dTcLupFBCf4UXD4p49ed489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKSLeQIGStxPNqQokbwWj25nfGnNtRBw94iThvqKDSISCUbTSU3dIMRtPe9grld2KOwdZJV5OypCj3it9dfsxSxWPkElqTMdzE/QzqlEwyafFbmp4QtmIDnjH0ogqbvxsfvCUnFulT8JY24qQzNXfExlVxkxUYDsVxaFZ9mbif14nxfDGz0SUpMgjtlgUppJgTGbfk77QnKGcWEKZFvZWwoZUU4Y2o6INwVt+eZU0qxXvslK9vyrXHvI4CnAKZ3ABHlxDDe6gDg1goOAZXuHN0c6L8+58LFrXnHzmBP7A+fwBQ4mQwg==</latexit>

Dot
Product

(b) FCE

Figure 3: Architecture diagrams for FCConvE (left) and FCE (right). Please refer to Section 3.3 and Section 3.4
for more details.

SE (Bordes et al., 2011) is another model that uses
relation specific similarity between head and tail en-
tity vectors. Following the ideas of translation and
projection, many different methods have been de-
veloped. These include TransH (Wang et al., 2014),
TransR (Lin et al., 2015), STransE (Nguyen et al.,
2016), ITransF (Xie et al., 2017), etc. These meth-
ods can only extract a restricted set of interactions
from the vectors.

2.2 Multiplicative Models

In this class of methods, the vectors interact via a
multiplicative operation. One of the initial mod-
els in this category is RESCAL (Nickel et al.,
2011), which is based on tensor factorization. It
models entities as vectors while relations as ma-
trices. DistMult (Yang et al., 2014) is a special
case of RESCAL where the relations matrices are
restricted to be diagonal. However, DistMult score
function is symmetric and hence it can not handle
asymmetric relations. To alleviate this issue, HolE
(Nickel et al., 2016) was proposed which uses cir-
cular correlation operation between head and tail
entity vectors. ComplEx (Trouillon et al., 2016)
addresses the same issue by modelling vectors in
the complex domain. The asymmetry of complex
dot product allows it to handle symmetric, asym-
metric as well as anti-symmetric relations with the
same score function. SimplE (Kazemi and Poole,
2018) is a more recent model based on tensor fac-
torization which can express all types of relations.
RotatE (Sun et al., 2019) is another model which
uses complex vectors for representation. It models
relation vectors as rotations from head to tail entity
vector and then uses L1-norm based distance as
score function. Similar to additive models, multi-
plicative models are also restricted in terms of the

interactions they can extract.

2.3 Neural Models

There are many models that use various neural
network architectures for learning KG Embed-
dings. Some of these models are NTN (Socher
et al., 2013), ER-MLP (Dong et al., 2014), CONV
(Toutanova et al., 2015), ProjE (Shi and Weninger,
2017), R-GCN (Schlichtkrull et al., 2017), ConvE
(Dettmers et al., 2018), R-MLP-2n (Ravishankar
et al., 2017), KG-BERT (Yao et al., 2019), Inter-
actE (Vashishth et al., 2020), etc. Unlike other
methods, KG-BERT uses word embeddings for en-
coding entities and relations. Therefore, the interac-
tions of entity and relation vectors are not directly
clear. Among the rest of the models, ProjE can
extract interactions only from entity or relation vec-
tors but not both. ConvE can extract interactions
from both, entity as well as relation vectors, but
they are extracted using predefined permutations.
InteractE exploits more sophisticated interactions
using feature permutation, checkered reshaping,
and circular convolution resulting in improved per-
formance. However, these methods depend on a
fixed set of interactions defined by the model and
can not adaptively learn these interactions during
training.

As described in the next section, the models pro-
posed in this paper are neural models that can adap-
tively learn the interactions from the entity as well
well as relation vectors using a fully connected
interaction layer.

3 Proposed Method

3.1 The Adaptive Interaction Framework

As shown in Figure 2, it consists of the following
three components

62

Type Model Score Function σ(h, r, t) Interactions

Additive

SE (Bordes et al., 2011) −
∥∥M1

r vh −M2
r vt

∥∥
p

Manual

TransE (Bordes et al., 2013) −‖vh + vr − vt‖p Manual
TransR (Lin et al., 2015) −‖Mrvh + vr −Mrvt‖p Manual

STransE (Nguyen et al., 2016) −
∥∥M1

r vh + vr −M2
r vt

∥∥
p

Manual

Multiplicative

DistMult (Yang et al., 2014) 〈vr, (vh � vt)〉 Manual
HolE (Nickel et al., 2016) 〈vr, (vh ? vt)〉 Manual

ComplEx (Trouillon et al., 2016) Real(〈vr, (vh � v̄t)〉) Manual
RotatE (Sun et al., 2019) −‖vh � vr − vt‖p Manual

Neural ER-MLP (Dong et al., 2014) σ(〈β, σ(A× [vh; vr; vt])〉) Automatic
ConvE (Dettmers et al., 2018) 〈σ(vec(σ(τ(vhr) ∗ Ω))U), vt〉 Manual

Adaptive Interactions Models FCE (This paper) 〈σ(W × [vh; vr]), vt〉 Automatic
FCConvE (This paper) 〈σ(vec(σ(τ(σ(W × [vh; vr])) ∗ Ω))U), vt〉 Automatic

Table 1: Summary of various Knowledge Graph (KG) embedding methods mentioned in the paper. Here vh, vr, vt
denote the head entity, relation and tail entity vectors respectively. Mr,M

1
r ,M

2
r represent the relation specific

projection matrices. ‖·‖p denotes the L1-norm (p = 1) or L2-norm (p = 2). 〈·, ·〉, �, ? and ∗ represent the inner
product, the Hadamard product, circular correlation and convolution operations respectively. A and β represent
the first and second layer weight matrices in ER-MLP respectively. Ω represents the convolution filters while U
represents the final projection matrix in ConvE. τ(vhr) is a reshaped permutation of [vh; vr] with optional repetition.
vec denotes vectorization step followed by an activation function σ. Please refer to Section 2 for more details.

3.1.1 Interaction Layer
This layer extracts the interactions between the
head entity and relation vectors which are later
used for predicting tail entities. The interactions
are extracted using a fully-connected (FC) layer:

vhr = σ(Wr × [vh; vr]), (1)

where σ is an activation function. In the general
case, Wr is Rdi×(de+dr) where di is the dimension
of the interaction layer. A special case of interac-
tion layer is when Wr = W, ∀ r ∈ R which avoids
over-parameterization. We use this special case for
our experimentations.

3.1.2 Prediction Layer
This layer predicts a vector v̂t for the candidate tail
entity as

v̂t = g(vhr), (2)

where the function g depends on the method. Many
of the methods like TransE and DistMult use iden-
tity function. For our experiments, we use ConvE’s
(Dettmers et al., 2018) architecture for this step.

3.1.3 Matching Layer
This is the final layer where the predicted tail entity
is matched against a given tail entity producing
the final score for the triple. The score function is
given as

score(h, r, t) = f(v̂t, vt). (3)

Again, the matching function f is method depen-
dent. We use the vector dot product for matching.

3.2 Existing models as special case

In this section, we demonstrate how the proposed
framework generalizes many of the existing mod-
els. The score functions for these models can be
found in Table 1.
TransE: In TransE, the entities and relations lie
in the same de = dr = d dimensional space Rd.
The interaction matrix is Wr = [Id; Id] with iden-
tity activation while the tail prediction function
v̂t = g(vhr) = vhr is the identity function. The
matching function takes the form of a vector norm
−‖v̂t − vt‖p.
STransE: STransE (Nguyen et al., 2016) general-
izes many translation-based models like TransH
(Wang et al., 2014) and TransR (Lin et al., 2015)
by using two relation specific projection matrices,
M1

r for head and M2
r for tail entities. The inter-

action matrix is Wr = [M1
r ; Idr] while the acti-

vation and prediction functions are identity func-
tions. The matching function takes the form of
−
∥∥v̂t −M2

r vt
∥∥
p
.

DistMult: For DistMult (Yang et al., 2014), the
interaction matrix is Wr = [diag(vr), 0d] while
the activation and prediction functions are identity
functions. Vector dot product between v̂t and vt is
used as matching function.
ConvE: ConvE (Dettmers et al., 2018) is a recent

63

FB15K FB15K-237 WN18 WN18RR

#Entities 14,941 14,541 40,943 40,943
#Relations 1,345 237 18 11
#Train 483,142 272,115 141,441 86,835
#Validation 50,000 17,535 5,000 3,034
#Test 59,071 20,466 5,000 3,134

Table 2: Details of the datasets used in our experiments

model which uses a convolution network for ex-
tracting features from the interactions and then pre-
dicting the tail entity. Here, the interaction matrix
is a fixed and manually specified permutation ma-
trix, used for dimension shuffling in ConvE. Please
note that the interaction matrix is shared among all
relations. The prediction function is the 2D convo-
lution network applied on the interactions vector
vhr while dot product between v̂t and vt is used for
matching.

Based on the proposed framework, we present
two new models FCConvE and FCE in the follow-
ing sections. Their architecture can be found in
Figure 3.

3.3 FCConvE

One issue with the existing methods is that the inter-
actions are either fixed or it requires to be specified
manually. For example, in the case of ConvE the
permutations are specified by the user. This leaves
the choice of interactions to the user and also does
not specify which ones are better than others. Also,
the performance on the link prediction task varies
with different choices of permutations in ConvE.
Hence it will be useful if the optimal interactions
can be learned directly from the dataset.

FCConvE addresses this exact issue and allows
the model to learn the appropriate interactions
while training. It achieves this by using interac-
tion matrix Wr = W, ∀r ∈ R as model parame-
ter. Since many of the existing interactions can be
achieved using different W matrices, the proposed
model is capable of choosing the optimal interac-
tions by itself. The score function for FCConvE
can be given as follows:

score(h, r, t) = 〈σ(vec(σ(τ(vhr) ∗ Ω))U), vt〉,
(4)

where vhr is given by (1). As compared to ConvE,
FCConvE contains approximately O(di × (2de +
dr)) more parameters due to the interaction and
projection layers weights.

3.4 FCE
We experiment with a modification of DistMult
named DistMult-BCE which uses Binary Cross En-
tropy (BCE) loss instead of margin-based ranking
loss used in (Yang et al., 2014). We also introduce
its adaptive interactions variant FCE (Fully Con-
nected Embedding) which uses an FC layer as in
(1) for interactions instead of Hadamard product
between vh and vr. The score function for FCE
can be given as follows:

score(h, r, t) = 〈σ(W × [vh; vr]), vt〉. (5)

We use ReLU for the activation function σ. Please
note that, similar to DistMult, entity and relation
vectors lie in same de = dr = d dimensional space
Rd. The interaction vector vhr also lies in the
same space Rd (i.e. di = d). Unlike DistMult,
the interaction matrix W ∈ Rd×d is shared across
relations. In terms of model size, FCE contains
di × (de + dr) = 2d2 more parameters as com-
pared to DistMult.

3.5 Analysing Interactions using NAIW
In this section, we introduce a novel method to
analyse fully connected interactions. As mentioned
in previous sections, the interaction weight matrix
W in FCConvE as well as FCE is shared among
all relations i.e. Wr = W, ∀r ∈ R. This inter-
action weight matrix can be split into two parts,
W = [W E ;WR],W E ∈ Rdi×de ,WR ∈ Rdi×dr

corresponding to the head entity and the relation
vectors respectively. The equation for the interac-
tion layer can be re-written as follows:

vhr = σ(W Evh +WRvr). (6)

The values in W E and WR represent the im-
portance of various dimensions of the head entity
and relation vectors. We use the absolute values
of these weights for comparing the importance of
entity and relation. Specifically, we use the Nor-
malized Absolute Interaction Weights (NAIW) as
defined below for comparing the weights corre-
sponding to entities and relations.

V E =

de∑

j=1

AbsoluteValue(W E [:, j]),

NAIWE =
V E

max(V E)
,

(7)

where V E ∈ Rdi is a vector containing sum of
absolute interaction weights across dimensions of

64

FB15K-237 WN18RR

Model MR↓ MRR↑ Hits↑ MR↓ MRR↑ Hits↑
@1 @3 @10 @1 @3 @10

DistMult (Yang et al., 2014) 254 24.1 15.5 26.3 41.9 5110 43.0 39.0 44.0 49.0
ComplEx (Trouillon et al., 2016) 339 24.7 15.8 27.5 42.8 5261 44.0 41.0 46.0 51.0
R-GCN (Schlichtkrull et al., 2017) - 24.8 15.3 25.8 41.7 - - - - -
ConvE (Dettmers et al., 2018) 244 32.5 23.7 35.6 50.1 4187 43.0 40.0 44.0 52.0

DistMult-BCE 318 30.1 21.6 33.0 46.9 7037 41.0 38.6 41.6 46.0
FCE 331 30.6 21.7 33.7 48.6 4732 41.3 38.2 42.2 47.5
FCConvE 255 35.5 26.4 39.1 54.0 4103 46.1 42.8 47.7 52.7

FB15K WN18

Model MR↓ MRR↑ Hits↑ MR↓ MRR↑ Hits↑
@1 @3 @10 @1 @3 @10

TransE (Bordes et al., 2013) - 46.3 29.7 57.8 74.9 - 49.5 11.3 88.8 94.3
DistMult (Yang et al., 2014) 97 65.4 54.6 73.3 82.4 902 82.2 72.8 91.4 93.6
ComplEx (Trouillon et al., 2016) - 69.2 59.9 75.9 84.0 - 94.1 93.6 93.6 94.7
R-GCN (Schlichtkrull et al., 2017) - 69.6 60.1 76.0 84.2 - 81.4 69.7 92.9 96.4
ConvE (Dettmers et al., 2018) 51 65.7 55.8 72.3 83.1 374 94.3 93.5 94.6 95.6

DistMult-BCE 115 73.3 66.8 77.8 84.9 671 83.9 74.8 92.6 94.7
FCE 108 74.6 67.8 79.5 86.1 516 94.2 93.6 94.5 95.2
FCConvE 67 71.7 63.4 77.3 85.6 440 94.8 94.3 95.1 95.5

Table 3: Link prediction results on benchmark datasets. Here ↑ indicates higher values are better while ↓ indicates
lower values are better. The adaptive interaction versions of the models FCConvE and FCE outperform the cor-
responding baseline models ConvE and DistMult-BCE in all the datasets. They also outperform other methods
across all datasets. Results for the baseline models except TransE were taken from (Dettmers et al., 2018). For
TransE, we have taken the results from (Nickel et al., 2016). We have also included results for a modification of
DistMult called DistMult-BCE. Please refer to Section 4.2 for more details.

head entity. It denotes the importance of the head
entity for each unit in the interaction layer. We
normalize this vector such that the values lie in
[0, 1] range. This allows us to compare this value
across datasets. Similarly, we can calculate V R and
NAIWR which denote the importance of relation
for units in the interaction layer.

Each value in the NAIW vector represents the
importance of entities (for NAIWE) or relations
(for NAIWR) for the link prediction task. Thus,
comparing these values helps us understand the
relative importance of entities and relations for dif-
ferent datasets. Since a comparison of individual
interaction units may be inconclusive, we compare
their distributions. We estimate the distributions1

of NAIWE and NAIWR and compare them across
multiple datasets. These distributions allow us to
compare the importance of the entity and relation
for the link prediction task.

1We use gaussian kde function from SciPy library for
estimating distributions.

4 Experiment Results

In this section, we evaluate the proposed method
on the link prediction task and compare it against
the baselines. The details of the datasets used for
evaluation are given in Table 2. We provide the
implementation details followed by the results in
the following sections.

4.1 Implementation details

In our experiments, we use 200-dimension embed-
dings for both entity as well as relations. For select-
ing other hyper-parameters, we use cross-validation
using the MRR on validation split of the data. Sim-
ilar to ConvE, we use dropouts and batch normal-
ization at input, convolution and final projection
layer. The corresponding dropout probabilities are
selected from [0.1, 0.2, 0.3], [0.2, 0.3, 0.4] and [0.4,
0.5, 0.6] respectively. For the interaction layer, we
use 5000 dimensions reshaped to 25 × 10 × 20
before applying convolution. Unlike ConvE, FC-
ConvE uses depthwise group convolution. The

65

Figure 4: Distributions of the Normalized Absolute Interaction Weights for entities and relations learned by FC-
ConvE on different datasets. The means of these distributions are shown as a dashed (for Entity) or dotted (for
Relation) vertical lines along with their values. The datasets are arranged according to decreasing order of number
of relations from left to right. As we can see, for lower number of relations, the difference in weights for entities
and relations are much higher. Please refer to Section 4.3 for more details.

filter size for convolution is selected from [3× 3,
5× 5]. For optimization, we use Adam optimizer
with an initial learning rate of 0.001. We use early
stopping using MRR on validation split with the
maximum number of epochs set to 100. The best
model is then run for 1000 epochs2 and final per-
formance is reported. We use 500 negative samples
per correct triple. For head entity prediction, we
follow ConvE and use reversed relations during
training as well as evaluation. The embeddings are
trained using binary cross-entropy loss.

4.2 Link Prediction

Given a test or validation triple, we score the head
entity and relation against all entities and report the
rank of the correct tail entity. A similar strategy is
used for head entity prediction except that we use
reverse relation vectors. The model’s performance
is evaluated on both head as well as tail entity pre-
diction and the average performance is reported.
Similar to previous work, we use filtered setting,

2We pick the model from the epoch with the best validation
split MRR, and it need not be the final epoch.

i.e., we exclude all triples appearing in train, test
or validation split while ranking. We report Mean
Reciprocal Rank (MRR), Mean Rank (MR) and
Hits@k for k=1, 3, 10 on test split. The results can
be found in Table 3.

For comparison, we use a few representative
baselines from each category of the models. Specif-
ically, we use TransE for additive models, DistMult
and ComplEx for multiplicative models, and R-
GCN and ConvE for neural models. Please note
that our goal is to compare a model with its adap-
tive interaction version, instead of comparing all
available models.

We observe from the results that the proposed
adaptive interaction versions of the models out-
perform the corresponding baseline models in all
the datasets. FCConvE significantly outperforms
ConvE in all the datasets except WN18 where the
performance is comparable. Similarly, FCE signifi-
cantly outperforms DistMult-BCE in WN18 while
showing marginal improvements is other datasets.
Also, they outperform other methods on the link
prediction task across all the datasets suggesting

66

that the proposed approch is able to adapt to dif-
ferent datasets resulting in performance improve-
ments.

It should be noted that ConvE would struggle
to differentially weigh entity and relation vector
dimensions due to the sharing of convolution fil-
ters. Adding an FC interaction layer allows it to
prioritize between entity and relation vectors result-
ing in better performance of FCConvE. We also
observe that the DistMult-BCE model significantly
outperforms the DistMult model in FB15K and
FB15K-237 which suggests the BCE loss with mul-
tiple negative samples improves performance.

Among the metrics used in Table 3, MR is more
sensitive to outliers (i.e., large values of ranks) than
others. We observe that the proposed approaches
achieve improvements in MRR and Hits@k, but
not MR for many datasets. It suggests that the
proposed methods are effective in bringing more
cases into the high-rank region, which could be a
desirable property in many applications.

4.3 Interactions Analysis

In this section, we analyse the interactions learned
by FCConvE on different datasets. We use the
distributions of NAIWE and NAIWR, as defined
in Section 3.5 and compare them. The results are
shown in Figure 4.

As we can see from Figure 4, the distributions
of NAIWE and NAIWR varies across different
datasets. Furthermore, we make the following ob-
servations.

• The difference between the means of NAIWE

and NAIWR increases with decreasing num-
ber of relations. Among the datasets used,
FB15K has the most number of relations (i.e.
1,345) while WN18RR has the least number
of relations (i.e. 11). This number is cor-
related with the difference of the means of
NAIWE and NAIWR with WN18RR having
the highest difference, while FB15K having
the lowest difference. This suggests that when
a dataset has a small number of relations, enti-
ties have more distinguishing capability than
the relations.

• The relations in Freebase datasets (i.e. FB15K
and FB15K-237) have more distinguishing ca-
pability than relations in WordNet datasets
(i.e. WN18 and WN18RR). For example, rela-
tions like place of birth in Freebase restricts

candidate entity types for head and tail enti-
ties. On the other hand, relations in Wordnet
(e.g. similar to, hypernym) are not very spe-
cific to some type of entities. This behavior
is reflected in the distributions of NAIWE and
NAIWR with relations getting more weights
in Freebase datasets as compared to WordNet
datasets.

4.4 Effect of various interactions on ConvE

To further understand the advantages of adaptive
interactions, we compare its performance with var-
ious fixed interactions (as used in (Vashishth et al.,
2020)). As mentioned in Section 3.2, ConvE can
use a permutation matrix for generating interac-
tions. For demonstration, let’s assume a head entity
vector vh = [v1h, v

2
h, v

3
h, v

4
h, v

5
h, v

6
h] and a relation

vector vr = [v1r , v
2
r , v

3
r , v

4
r , v

5
r , v

6
r]. These vectors

are concatenated, permuted and then reshaped into
a 4× 3 matrix before passing it to the convolution
layer. As shown in Figure 5, the following are some
of the candidate permutations.
Plain: A plain concatenation and reshaping of the
vectors.
Alternate Rows: Alternate rows of head entity and
relation vectors dimensions.
Alternate: Strictly alternating dimensions of head
entity and relation vectors.

v1h v2h v3h
v4h v5h v6h
v1r v2r v3r
v4r v5r v6r

(a) Plain

v1h v2h v3h
v1r v2r v3r
v4h v5h v6h
v4r v5r v6r

(b) Alternate Rows

v1h v1r v2h
v2r v3h v3r
v4h v4r v5h
v5r v6h v6r

(c) Alternate

Figure 5: Some example permutations of two 6-
dimensional vectors vh and vr.

As we can see, Plain method allows entity-
relation interactions only at the boundary region
while Alternate Rows and Alternate allow deeper
interactions.

We run the best hyper-parameters settings of
ConvE with these three permutations on all the
datasets and compare the MRR of the link predic-
tion task. As seen from the results in Table 4, the
Alternate Rows and Alternate permutation schemes
achieve better results compared to Plain permuta-
tion scheme. However, since FCConvE can learn

67

Permutation FB15K FB15K-237 WN18 WN18RR

Plain 63.2 32.7 94.3 43.2
Alternate Rows 63.6 33.3 94.8 44.3
Alternate 63.9 33.3 94.8 44.4

FCConvE 71.7 35.5 94.8 46.1

Table 4: The effect of various permutation schemes on
the performance of ConvE. We report the MRR in link
prediction task across various datasets. As we can see,
the performance of ConvE is dependent on the choice
of permutation scheme and using Alternate or Alternate
Rows permutation improves the performance of ConvE.
Please refer to Section 4.4 for more details.

the interactions while training, it achieves better or
comparable MRR on all the datasets.

5 Conclusions and Future Work

We presented an adaptive interaction framework for
learning KG Embeddings and proposed two new
models based on the framework. We demonstrated
that the proposed models are capable of learning
relevant interactions across different datasets. We
also demonstrated how some of the existing KG
Embedding models can be seen as special cases of
the proposed framework.

In the future, we would like to further analyze
the interaction layer and its correlation with more
dataset properties.

Acknowledgments

We thank the anonymous reviewers for their con-
structive comments. This work is supported by
the Ministry of Human Resources Development
(Government of India).

References
Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim

Sturge, and Jamie Taylor. 2008. Freebase: a collab-
oratively created graph database for structuring hu-
man knowledge. In Proceedings of the 2008 ACM
SIGMOD international conference on Management
of data, pages 1247–1250. AcM.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in neural information
processing systems, pages 2787–2795.

Antoine Bordes, Jason Weston, Ronan Collobert, and
Yoshua Bengio. 2011. Learning structured embed-
dings of knowledge bases. In Twenty-Fifth AAAI
Conference on Artificial Intelligence.

Tim Dettmers, Minervini Pasquale, Stenetorp Pon-
tus, and Sebastian Riedel. 2018. Convolutional 2d
knowledge graph embeddings. In Proceedings of
the 32th AAAI Conference on Artificial Intelligence,
pages 1811–1818.

Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko
Horn, Ni Lao, Kevin Murphy, Thomas Strohmann,
Shaohua Sun, and Wei Zhang. 2014. Knowledge
vault: A web-scale approach to probabilistic knowl-
edge fusion. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 601–610. ACM.

Zhipeng Huang, Bogdan Cautis, Reynold Cheng, and
Yudian Zheng. 2016. Kb-enabled query recommen-
dation for long-tail queries. In Proceedings of the
25th ACM International on Conference on Informa-
tion and Knowledge Management, CIKM ’16, pages
2107–2112, New York, NY, USA. ACM.

Seyed Mehran Kazemi and David Poole. 2018. Simple
embedding for link prediction in knowledge graphs.
In Advances in Neural Information Processing Sys-
tems, pages 4284–4295.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and
Xuan Zhu. 2015. Learning entity and relation em-
beddings for knowledge graph completion. In AAAI,
pages 2181–2187.

T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, J. Bet-
teridge, A. Carlson, B. Dalvi, M. Gardner, B. Kisiel,
J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohamed,
N. Nakashole, E. Platanios, A. Ritter, M. Samadi,
B. Settles, R. Wang, D. Wijaya, A. Gupta, X. Chen,
A. Saparov, M. Greaves, and J. Welling. 2015.
Never-ending learning. In Proceedings of AAAI.

Dat Quoc Nguyen, Kairit Sirts, Lizhen Qu, and Mark
Johnson. 2016. STransE: a novel embedding model
of entities and relationships in knowledge bases. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 460–466, San Diego, California. Association
for Computational Linguistics.

Maximilian Nickel, Lorenzo Rosasco, and Tomaso A.
Poggio. 2016. Holographic embeddings of knowl-
edge graphs. In AAAI.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collective
learning on multi-relational data. In ICML, vol-
ume 11, pages 809–816.

Srinivas Ravishankar, Chandrahas, and Partha Pratim
Talukdar. 2017. Revisiting simple neural networks
for learning representations of knowledge graphs.
6th Workshop on Automated Knowledge Base Con-
struction (AKBC) at NIPS 2017.

M. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg,
I. Titov, and M. Welling. 2017. Modeling Relational
Data with Graph Convolutional Networks. ArXiv e-
prints.

68

Sanket Shah, Anand Mishra, Naganand Yadati, and
Partha Pratim Talukdar. 2019. Kvqa: Knowledge-
aware visual question answering. In AAAI.

Baoxu Shi and Tim Weninger. 2017. Proje: Embed-
ding projection for knowledge graph completion. In
Thirty-First AAAI Conference on Artificial Intelli-
gence.

Richard Socher, Danqi Chen, Christopher D Manning,
and Andrew Ng. 2013. Reasoning with neural ten-
sor networks for knowledge base completion. In
Advances in Neural Information Processing Systems,
pages 926–934.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowledge.
In WWW.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. Rotate: Knowledge graph embedding
by relational rotation in complex space. In Interna-
tional Conference on Learning Representations.

Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoi-
fung Poon, Pallavi Choudhury, and Michael Gamon.
2015. Representing text for joint embedding of text
and knowledge bases. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1499–1509, Lisbon, Portu-
gal. Association for Computational Linguistics.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In ICML.

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin,
Nilesh Agrawal, and Partha Talukdar. 2020. In-
teracte: Improving convolution-based knowledge
graph embeddings by increasing feature interactions.
In Proceedings of the 34th AAAI Conference on Ar-
tificial Intelligence, pages 3009–3016. AAAI Press.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph embedding by trans-
lating on hyperplanes. In AAAI, pages 1112–1119.
Citeseer.

Qizhe Xie, Xuezhe Ma, Zihang Dai, and Eduard Hovy.
2017. An interpretable knowledge transfer model
for knowledge base completion. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 950–962, Vancouver, Canada. Association for
Computational Linguistics.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng
Gao, and Li Deng. 2014. Embedding entities and
relations for learning and inference in knowledge
bases. arXiv preprint arXiv:1412.6575.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. Kg-
bert: Bert for knowledge graph completion. ArXiv,
abs/1909.03193.

Xuchen Yao and Benjamin Van Durme. 2014. Infor-
mation extraction over structured data: Question
answering with Freebase. In Proceedings of the
52nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 956–966, Baltimore, Maryland. Association
for Computational Linguistics.

69

Proceedings of the 17th International Conference on Natural Language Processing, pages 70–75
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Inducing Interpretability in Knowledge Graph Embeddings

Chandrahas1 Tathagata Sengupta2†∗ Cibi Pragadeesh3∗† Partha Talukdar1
1Indian Institute of Science, Bangalore, 2Adobe, Bangalore,

3University of California, Los Angeles
chandrahas@iisc.ac.in, tathagatasengupta3@gmail.com

cibi.pragadeesh@gmail.com, ppt@iisc.ac.in

Abstract

We study the problem of inducing inter-
pretability in Knowledge Graph (KG) embed-
dings. Learning KG embeddings has been an
active area of research in the past few years,
resulting in many different models. How-
ever, most of these methods do not address
the interpretability (semantics) of individual
dimensions of the learned embeddings. In this
work, we study this problem and propose a
method for inducing interpretability in KG em-
beddings using entity co-occurrence statistics.
The proposed method significantly improves
the interpretability, while maintaining compa-
rable performance in other KG tasks.

1 Introduction

Knowledge Graphs such as Freebase (Bollacker
et al., 2008) and NELL (Mitchell et al., 2015) have
become important resources for supporting many
AI applications like web search, Q&A, etc. They
store a collection of facts in the form of a graph.
The nodes in the graph represent real world entities
such as Roger Federer, Tennis, United States etc
while the edges represent relationships between
them.

These KGs have grown huge, but they are still
not complete (Toutanova et al., 2015). Hence the
task of inferring new facts becomes important. KG
embeddings have been a popular approach for this
task as they can perform the inference task effi-
ciently. This task has achieved significant attention
in the literature and many methods have been pro-
posed, such as, (Bordes et al., 2013; Riedel et al.,
2013; Yang et al., 2014; Toutanova et al., 2015;
Trouillon et al., 2016; Schlichtkrull et al., 2017;
Dettmers et al., 2018; Balazevic et al., 2019), etc.
These methods learn representations for entities

∗Contributed equally to the work.
†This research was conducted during the authors’ intern-

ships at Indian Institute of Science, Bangalore.

and relations as vectors in a vector space, capturing
global information about the KG. The task of KG
inference is then defined as operations over these
vectors. Some of these methods like (Riedel et al.,
2013) and (Toutanova et al., 2015) are capable of
exploiting additional text data apart from the KG,
resulting in better representations.

Although these methods have shown good per-
formance in the end task, they do not address the
interpretability, i.e., understanding semantics of in-
dividual dimensions of the KG embedding. Such
representations enable a better understanding of the
model and can be helpful for explaining a model’s
decision on an end application.

In this work, we focus on incorporating inter-
pretability in KG embeddings. Specifically, we aim
to learn interpretable embeddings for KG entities
by incorporating additional entity co-occurrence
statistics from text data. This work is motivated by
(Lau et al., 2014) who presented automated meth-
ods for evaluating topics learned via topic mod-
elling methods. We adapt these methods for KG
embedding models and propose a method to di-
rectly maximize them while learning KG embed-
ding. As demonstrated by the experiments, we
find that such modeling significantly improves in-
terpretability, supporting our choice of using topic
coherence for embedding dimensions. To the best
of our knowledge, this work presents the first reg-
ularization term which induces interpretability in
KG embeddings.

2 Related Work

Several methods have been proposed for learning
KG embeddings. They differ on the modeling of
entities and relations, usage of text data and inter-
pretability of the learned embeddings. We summa-
rize some of these methods in following sections.

70

2.1 KG Embedding models

Most of the KG embedding models represent enti-
ties and relations as vectors in Rde and Rdr respec-
tively (usually, de=dr). A score function uses these
vectors to calculate the correctness of a given triple.
Based on the score function, these methods can
be categorized as additive models (Bordes et al.,
2013; Lin et al., 2015; Xiao et al., 2015; Xie et al.,
2017), multiplicative models (Nickel et al., 2011;
Yang et al., 2014; Trouillon et al., 2016; Balaze-
vic et al., 2019) and nueral models (Dong et al.,
2014; Dettmers et al., 2018). There are other meth-
ods which are able to incorporate text data while
learning KG embeddings. For example, the method
proposed in (Riedel et al., 2013) assumes a com-
bined universal schema of relations from KG as
well as text. This method is further improved in
(Toutanova et al., 2015) using textual relation en-
coder allowing parameter sharing among similar
textual relations. However, none of these methods
address the interpretability of the embeddings.

2.2 Interpretability of Embeddings

While the KG embedding models perform well
in many tasks, the semantics of learned represen-
tations are not directly clear. This problem for
word embeddings has been addressed in (Murphy
et al., 2012; Faruqui et al., 2015; Subramanian et al.,
2018) where they apply a set of constraints induc-
ing interpretability. A similar task of learning se-
mantic features for entities and relations is KG was
addressed in (Xiao et al., 2016). However, their
approach is not applicable for the much popular
KG embedding methods. The model proposed in
(Xie et al., 2017) can generate interpretable em-
beddings for relations, but not entities. Another
approach, as proposed in (Gusmao et al., 2018), is
to generate weighted Horn rules as explanations
for link prediction. We refer the reader to Section 4
of (Bianchi et al., 2020) for further reading in this
direction.

Our method differs from the previous works in
the following aspects. Firstly, we focus on learn-
ing interpretable embeddings for KG entities rather
than relations. Second, we incorporate side infor-
mation about entities instead of constraints for in-
ducing interpretability. Third, we use vector space
modeling rather than probabilistic modelling (as in
(Xiao et al., 2016)) allowing the proposed method
to be applicable to many existing KG embedding
models.

3 Proposed Method

The proposed method is motivated by a measure of
coherence in topic modelling literature (Lau et al.,
2014). This measure allows an automated eval-
uation of the quality of topics learned by topic
modeling methods by using additional Point-wise
Mutual Information (PMI) for word pairs. It was
also shown to have high correlation with human
evaluation of topics.

Based on this measure of coherence, we propose
a regularization term. This term can be used with
existing KG embedding methods for inducing inter-
pretability. It is described in the following sections.

3.1 Coherence
In topic models, coherence of a topic can be deter-
mined by semantic relatedness among top entities
within the topic. This idea can also be used in
vector space models by treating dimensions of the
vector space as topics. With this assumption, we
can use a measure of coherence defined in follow-
ing section for evaluating interpretability of the
embeddings.

3.1.1 Coherence@k

Coherence for top k entities along dimension l is
defined as follows.

Coherence@k(l) =

k∑

i=2

i−1∑

j=1

pij (1)

where pij is PMI score between entities ei and ej
extracted from text data. It is given as follows

pij = log
(

Pr(ei, ej)

Pr(ei)× Pr(ej)

)
. (2)

Here, Pr(ei, ej) represents the joint probability of
co-occurrence of entities ei and ej , while Pr(ei)
and Pr(ej) represent the corresponding marginal
probabilities, pre-computed using an auxiliary cor-
pus.
Coherence@k has been shown to have high

correlation with human interpretability of topics
learned via various topic modeling methods(Lau
et al., 2014). Hence, we can expect interpretable
embeddings by maximizing it.
Coherence@k for the entity embedding matrix

θe is defined as the average over all dimensions.

Coherence@k =
1

d

d∑

l=1

Coherence@k(l). (3)

71

3.1.2 Inducing coherence while learning
embeddings

We want to learn an embedding matrix θe
which has high coherence (i.e., which maximizes
Coherence@k). Since θe changes during train-
ing, the set of top k entities along each dimension
varies over iterations. Hence, directly maximizing
Coherence@k may not be feasible.

An alternative approach could be to promote
higher values for entity pairs having high PMI
score pij . This will result in an embedding ma-
trix θe with a high value of Coherence@k since
high PMI entity pairs are more likely to be among
top k entities.

This idea can be captured by following coher-
ence term

C(θe, P) =
n∑

i=2

i−1∑

j=1

‖v(ei)ᵀv(ej)− pij‖2 (4)

where P is entity-pair PMI matrix and v(e) de-
note vector for entity e. This term can be used in
the objective function defined in (7).

3.2 Entity Model (Model-E)

We use the Entity Model proposed in (Riedel et al.,
2013) for learning KG embeddings. However, it
should be noted that the proposed regularizer can
be used along with any KG embedding model
which represents entities as vectors. Also, as
pointed in (Kadlec et al., 2017; Ruffinelli et al.,
2020; Jain et al., 2020), various KG embedding
models achieve similar performances when trained
properly. Therefore, we select Model-E which is
simple yet effective. This model assumes a vec-
tor v(e) for each entity and two vectors vs(r) and
vo(r) for each relation of the KG. The score for
the triple (es, r, eo) is given by,

f(es, r, eo) = v(es)
ᵀvs(r) + v(eo)

ᵀvo(r). (5)

Training these vectors requires incorrect triples.
So, we use the closed world assumption. For each
triple t ∈ T , we create two negative triples t−o
and t−s by corrupting the object and subject of the
triples respectively such that the corrupted triples
do not appear in training, test or validation data.
The loss for a triple pair is defined as loss(t, t−) =
− log(σ(f(t)− f(t−))). Then, the aggregate loss

function is defined as

L(θe, θr, T) =
1

|T |
∑

t∈T

(
loss(t, t−o) + loss(t, t−s)

)
.

(6)

3.3 Objective

The overall loss function can be written as follows

L(θe, θr, T) + λcC(θe, P) + λrR(θe, θr) (7)

where R(θe, θr) = 1
2

(
‖θe‖2 + ‖θr‖2

)
is the

L2 regularization term and λc and λr are hyper-
parameters controlling the trade-off among differ-
ent terms in the objective function.

4 Experiments and Results

4.1 Datasets

We use the FB15k-237 (Toutanova and Chen, 2015)
dataset, a factual KG, for experiments. It contains
14541 entities and 237 relations. The triples are
split into training, validation and test set having
272115, 17535 and 20466 triples respectively. For
extracting entity co-occurrences, we use the textual
relations used in (Toutanova et al., 2015). It con-
tains around 3.7 millions textual triples, which we
use for calculating PMI for entity pairs.

4.2 Experimental Setup

We use the method proposed in (Riedel et al.,
2013) as the baseline. Please refer to Section 3.2
for more details. For evaluating the learned em-
beddings, we test them on different tasks. All
the hyper-parameters are tuned using performance
(MRR) on validation data. We use 100 dimen-
sions after cross validating among 50, 100 and
200 dimensions. For regularization, we use λr =
0.01 (from 10, 1, 0.1, 0.01) and λc = 0.01 (from
10, 1, 0.1, 0.01) for L2 and coherence regulariza-
tion respectively. We use multiple random initial-
izations sampled from a Gaussian distribution. For
optimization, we use gradient descent and stop op-
timization when gradient becomes 0 upto 3 deci-
mal places. The final performance measures are
reported for test data.

4.3 Results

In following sections, we compare the performance
of the proposed method with the baseline method
in different tasks. Please refer to Table 1 for results.

72

Method Link Prediction
MRR↑ MR↓ Hits@10(%)↑

Baseline 31.6± 0.08 121.9± 1.80 48.3± 0.39

Proposed 30.4± 0.08 111.9± 1.12 46.8± 0.08

Triple Classification
AUC(%)↑ Accuracy(%)↑

Baseline 72.9± 0.16 63.2± 0.50

Proposed 73.2± 0.28 67.6± 0.17

Interpretability
AutoWI@5(%)↑ Coherence@5↑ Manual WI(%)↑

Baseline 6± 4.14 −47.4± 4.68 12

Proposed 66± 5.89 −12.5± 4.48 84

Table 1: Results of various tasks on FB15k-237 dataset.
Here ↑ indicates higher values are better while ↓ indi-
cates lower values are better. The proposed method sig-
nificantly improves interpretability while maintaining
comparable performance on KG tasks (4.3).

4.3.1 Interpretability
For evaluating the interpretability, we use
Coherence@k (3), automated and manual word
intrusion tests. In word intrusion test (Chang et al.,
2009), top k(= 5) entities along a dimension are
mixed with the bottom most entity (the intruder) in
that dimension and shuffled. Then multiple (3 in
our case) human annotators are asked to find out
the intruder. We use majority voting to finalize one
intruder. Amazon Mechanical Turk was used for
crowdsourcing the annotation task and we used 25
randomly selected dimensions for evaluation. Thus,
each of the three annotators evaluates 25 examples.
For automated word intrusion (Lau et al., 2014),
we calculate following score for all k + 1 entities

AutoWI(ei) =
k+1∑

j=1,j 6=i

pij (8)

where pij are the PMI scores. The entity having
least score is identified as the intruder. We report
the fraction of dimensions for which we were able
to identify the intruder correctly.

As we can see in Table 1, the proposed method
achieves better values for Coherence@5 as a
direct consequence of the regularization term,
thereby maximizing coherence between appropri-
ate entities. Performance on the word intrusion task
also improves drastically as the intruder along each
dimension is a lot easier to identify owing to the
fact that the top entities for each dimension group
together more conspicuously.

4.3.2 Link Prediction
In this experiment, we test the model’s ability to
predict the best object entity for a given subject

Top 5
Baseline

-Jurist, Pipe organ, USA, Lions Gate Entertainment, UK
-Guitar, 71st Academy Awards, Jurist, Piano, Bass guitar
-Actor, Official Website, Screenwriter, Film Producer, USA
-Jurist, USA, Marriage, Male, UK
-Pipe organ, Official Website, Actor, Film Producer, Screenwriter

Proposed Method
-Juris Doctor, Business Administration, Biology, Psychology, BS
-Bachelor of Arts, PhD, Bachelor’s degree, BS, MS
-European Union, Europe, Netherlands, Portugal, Government
-UK, Hollywood, DVD, London, Europe
-Hollywood, Academy Awards, USA, DVD, Los Angeles

Table 2: Top 5 entities for randomly selected dimen-
sions. As we see, the proposed method produces more
coherent entities compared to the baseline. Incoherent
entities are marked in bold face. 1

entity and relation. For each of the triples, we fix
the subject and the relation and rank all entities
(within same category as true object entity) based
on their score according to (5). We report Mean
Rank (MR) and Mean Reciprocal rank (MRR) of
the true object entity and Hits@10 (the number of
times true object entity is ranked in top 10) as per-
centage. A good model should have higher values
for MRR and Hits@10, and lower value for MR.

The coherence regularization term’s objective,
being tangential to that of the original loss function,
is not expected to affect the link prediction task’s
performance. However, the results show a trivial
drop of 1.2 in MRR. Upon further inspection, we
found that the coherence term gives credibility to
certain triples otherwise deemed incorrect by the
closed world assumption. These triples appear in
the text corpus and contain entity pairs with high
PMI values.

4.3.3 Triple Classification
In this experiment, we test the model on classifying
correct and incorrect triples. For finding incorrect
triples, we corrupt the object entity with a randomly
selected entity within the same category. For clas-
sification, we use validation data to find the best
threshold for each relation by training an SVM clas-
sifier and later use this threshold for classifying test
triples. We report the mean accuracy and mean
AUC over all relations.

We observe that the proposed method achieves
slightly better performance for triple classification

1We have used abbreviations for BS (Bachelor of Science),
MS (Master of Science), UK (United Kingdom) and USA
(United States of America). They appear as full form in the
data.

73

improving the accuracy by 4.4. The PMI informa-
tion adds more evidence to the correct triples which
are related in text data, generating a better thresh-
old that more accurately distinguishes correct and
incorrect triples.

4.4 Qualitative Analysis of Results
Since our aim is to induce interpretability in rep-
resentations, in this section, we evaluate the em-
beddings learned by the baseline as well as the pro-
posed method. For both methods, we select some
dimensions randomly and present top 5 entities
along those dimensions. As we can see from the
results in Table 2, the proposed method produces
more coherent entities than the baseline method.

5 Conclusion and Future Works

In this work, we proposed a method for inducing in-
terpretability in KG embeddings using a coherence
regularization term. We evaluated the proposed
and the baseline method on the interpretability of
the learned embeddings. We also evaluated the
methods on different KG tasks and compared their
performance. We found that the proposed method
achieves better interpretability while maintaining
comparable performance on KG tasks. As next
steps, we plan to evaluate and compare the general-
izability of the proposed method across various KG
embedding models. Understanding the mapping
between dimensions and latent categories could be
another direction for future works.

Acknowledgments

We thank the anonymous reviewers for their con-
structive comments. This work is supported by
the Ministry of Human Resources Development
(Government of India).

References
Ivana Balazevic, Carl Allen, and Timothy Hospedales.

2019. TuckER: Tensor factorization for knowledge
graph completion. In EMNLP-IJCNLP, pages 5184–
5193, Hong Kong, China. ACL.

Federico Bianchi, Gaetano Rossiello, Luca Costabello,
Matteo Palmonari, and Pasquale Minervini. 2020.
Knowledge graph embeddings and explainable ai.
arXiv preprint arXiv:2004.14843.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a collab-
oratively created graph database for structuring hu-
man knowledge. In Proceedings of the 2008 ACM

SIGMOD international conference on Management
of data, pages 1247–1250. AcM.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in neural information
processing systems, pages 2787–2795.

Jonathan Chang, Jordan L Boyd-Graber, Sean Gerrish,
Chong Wang, and David M Blei. 2009. Reading tea
leaves: How humans interpret topic models. In Nips,
volume 31, pages 1–9.

Tim Dettmers, Minervini Pasquale, Stenetorp Pon-
tus, and Sebastian Riedel. 2018. Convolutional 2d
knowledge graph embeddings. In Proceedings of
the 32th AAAI Conference on Artificial Intelligence,
pages 1811–1818.

Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko
Horn, Ni Lao, Kevin Murphy, Thomas Strohmann,
Shaohua Sun, and Wei Zhang. 2014. Knowledge
vault: A web-scale approach to probabilistic knowl-
edge fusion. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 601–610. ACM.

Manaal Faruqui, Yulia Tsvetkov, Dani Yogatama, Chris
Dyer, and Noah A. Smith. 2015. Sparse overcom-
plete word vector representations. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1491–1500, Beijing,
China. Association for Computational Linguistics.

Arthur Colombini Gusmao, Alvaro Henrique Chaim
Correia, Glauber De Bona, and Fabio Gagliardi
Cozman. 2018. Interpreting embedding models of
knowledge bases: a pedagogical approach.

Prachi Jain, Sushant Rathi, Soumen Chakrabarti, et al.
2020. Knowledge base completion: Baseline strikes
back (again). arXiv preprint arXiv:2005.00804.

Rudolf Kadlec, Ondrej Bajgar, and Jan Kleindienst.
2017. Knowledge base completion: Baselines strike
back. In Proceedings of the 2nd Workshop on Rep-
resentation Learning for NLP, pages 69–74, Vancou-
ver, Canada. Association for Computational Linguis-
tics.

Jey Han Lau, David Newman, and Timothy Baldwin.
2014. Machine reading tea leaves: Automatically
evaluating topic coherence and topic model quality.
In EACL, pages 530–539.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and
Xuan Zhu. 2015. Learning entity and relation em-
beddings for knowledge graph completion. In AAAI,
pages 2181–2187.

T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, J. Bet-
teridge, A. Carlson, B. Dalvi, M. Gardner, B. Kisiel,
J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohamed,

74

N. Nakashole, E. Platanios, A. Ritter, M. Samadi,
B. Settles, R. Wang, D. Wijaya, A. Gupta, X. Chen,
A. Saparov, M. Greaves, and J. Welling. 2015.
Never-ending learning. In Proceedings of AAAI.

Brian Murphy, Partha Pratim Talukdar, and Tom
Mitchell. 2012. Learning effective and interpretable
semantic models using non-negative sparse embed-
ding. In International Conference on Computa-
tional Linguistics (COLING 2012), Mumbai, India.
http://aclweb.org/anthology/C/C12/C12-1118.pdf.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collective
learning on multi-relational data. In ICML, vol-
ume 11, pages 809–816.

Sebastian Riedel, Limin Yao, Andrew McCallum, and
Benjamin M Marlin. 2013. Relation extraction with
matrix factorization and universal schemas. NAACL
HLT 2013, pages 74–84.

Daniel Ruffinelli, Samuel Broscheit, and Rainer
Gemulla. 2020. You can teach an old dog new
tricks! on training knowledge graph embeddings.
In International Conference on Learning Represen-
tations.

M. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg,
I. Titov, and M. Welling. 2017. Modeling Relational
Data with Graph Convolutional Networks. ArXiv e-
prints.

Anant Subramanian, Danish Pruthi, Harsh Jhamtani,
Taylor Berg-Kirkpatrick, and Eduard Hovy. 2018.
Spine: Sparse interpretable neural embeddings. The
Thirty-Second AAAI Conference on Artificial Intelli-
gence (AAAI-18).

Kristina Toutanova and Danqi Chen. 2015. Observed
versus latent features for knowledge base and text
inference. In 3rd Workshop on Continuous Vector
Space Models and Their Compositionality. ACL –
Association for Computational Linguistics.

Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoi-
fung Poon, Pallavi Choudhury, and Michael Gamon.
2015. Representing text for joint embedding of text
and knowledge bases. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1499–1509, Lisbon, Portu-
gal. Association for Computational Linguistics.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In ICML.

Han Xiao, Minlie Huang, Yu Hao, and Xiaoyan
Zhu. 2015. Transg: A generative mixture model
for knowledge graph embedding. arXiv preprint
arXiv:1509.05488.

Han Xiao, Minlie Huang, and Xiaoyan Zhu. 2016.
Knowledge semantic representation: A generative
model for interpretable knowledge graph embed-
ding. arXiv preprint arXiv:1608.07685.

Qizhe Xie, Xuezhe Ma, Zihang Dai, and Eduard Hovy.
2017. An interpretable knowledge transfer model
for knowledge base completion. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 950–962, Vancouver, Canada. Association for
Computational Linguistics.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng
Gao, and Li Deng. 2014. Embedding entities and
relations for learning and inference in knowledge
bases. arXiv preprint arXiv:1412.6575.

75

Proceedings of the 17th International Conference on Natural Language Processing, pages 76–84
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Solving Arithmetic Word Problems with Transformers and Preprocessing
of Problem Text

Kaden Griffith and Jugal Kalita
University of Colorado

1420 Austin Bluffs Parkway
Colorado Springs CO 80918

kadengriffith@gmail.com and jkalita@uccs.edu

Abstract

This paper outlines the use of Transformer net-
works trained to translate math word problems
to equivalent arithmetic expressions in infix,
prefix, and postfix notations. We compare
results produced by many neural configura-
tions and find that most configurations outper-
form previously reported approaches on three
of four datasets with significant increases in
accuracy of over 20 percentage points. The
best neural approaches boost accuracy by 30%
when compared to the previous state-of-the-art
on some datasets.

1 Introduction

Students are exposed to simple arithmetic word
problems starting in elementary school, and most
become proficient in solving them at a young age.
However, it has been challenging to write programs
to solve such elementary school level problems
well. Even simple word problems, consisting of
only a few sentences, can be challenging to under-
stand for an automated system.

Solving a math word problem (MWP) starts with
one or more sentences describing a transactional
situation. The sentences are usually processed to
produce an arithmetic expression. These expres-
sions then may be evaluated to yield a numerical
value as an answer to the MWP.

Recent neural approaches to solving arithmetic
word problems have used various flavors of recur-
rent neural networks (RNN) and reinforcement
learning. However, such methods have had dif-
ficulty achieving a high level of generalization.
Often, systems extract the relevant numbers suc-
cessfully but misplace them in the generated ex-
pressions. They also get the arithmetic operations
wrong. The use of infix notation also requires pairs
of parentheses to be placed and balanced correctly,
bracketing the right numbers. There have been
problems with parentheses placement.

Figure 1: Possible generated expressions for an MWP.

Question:
At the fair Adam bought 13 tickets. After rid-
ing the ferris wheel he had 4 tickets left. If
each ticket cost 9 dollars, how much money did
Adam spend riding the ferris wheel?

Some possible expressions that can be pro-
duced:
(13�4)⇤9, 9⇤13�4, 5⇤13�4, 13�4⇤9, 13� (4⇤9),

(9 ⇤ 13� 4), (9) ⇤ 13� 4, (9) ⇤ 13� (4), etc.

To start, correctly extracting the numbers in the
problem is necessary. Figure 1 gives examples of
some infix representations that a machine learning
solver can potentially produce from a simple word
problem using the correct numbers. Of the expres-
sions shown, only the first one is correct. The use
of infix notation may itself be a part of the prob-
lem because it requires the generation of additional
characters, the open and closed parentheses, which
must be placed and balanced correctly.

The actual numbers appearing in MWPs vary
widely from problem to problem. Real numbers
take any conceivable value, making it almost impos-
sible for a neural network to learn representations
for them. As a result, trained programs sometimes
generate expressions that have seemingly random
numbers. For example, in some runs, a trained
program could generate a potentially inexplicable
expression such as (25.01� 4) ⇤ 9 for the problem
given in Figure 1, with one or more numbers not
in the problem sentences. To obviate this issue,
we replace the numbers in the problem statement
with generic tags like hii, hqi, and hxi and save
their values as a preprocessing step. This approach
does not take away from the generality of the solu-
tion but suppresses fertility in number generation
leading to the introduction of numbers not present
in the question sentences. We extend the prepro-

76

cessing methods to ease the understanding through
simple expanding and filtering algorithms. For ex-
ample, some keywords within sentences are likely
to cause the choice of operators for us as humans.
By focusing on these terms in the context of a word
problem, we hypothesize that our neural approach
will improve further.

In this paper, we use the Transformer model
(Vaswani et al., 2017) to solve arithmetic word
problems as a particular case of machine transla-
tion from text to the language of arithmetic expres-
sions. Transformers in various configurations have
become a staple of NLP in the past three years.
We do not augment the neural architectures with
external modules such as parse trees or deep rein-
forcement learning. We compare performance on
four individual datasets. In particular, we show that
our translation-based approach outperforms state-
of-the-art results reported by (Wang et al., 2018;
Hosseini et al., 2014; Kushman et al., 2014; Roy
et al., 2015; Robaidek et al., 2018) by a large mar-
gin on three of four datasets tested. On average,
our best neural architecture outperforms previous
results by almost 10%, although our approach is
conceptually more straightforward.

We organize our paper as follows. The sec-
ond section presents related work. Then, we dis-
cuss our approach. We follow by an analysis of
baseline experimental results and compare them to
those of other recent approaches. We then take our
best performing model and train it with motivated
preprocessing, discussing changes in performance.
We follow with a discussion of our successes and
shortcomings. Finally, we share our concluding
thoughts and end with our direction for future work.

2 Related Work

Past strategies have used rules and templates to
match sentences to arithmetic expressions. Some
such approaches seemed to solve problems im-
pressively within a narrow domain but performed
poorly otherwise, lacking generality (Bobrow,
1964; Bakman, 2007; Liguda and Pfeiffer, 2012;
Shi et al., 2015). Kushman et al. (Kushman et al.,
2014) used feature extraction and template-based
categorization by representing equations as expres-
sion forests and finding a close match. Such meth-
ods required human intervention in the form of fea-
ture engineering and the development of templates
and rules, which is not desirable for expandability
and adaptability. Hosseini et al. (Hosseini et al.,

2014) performed statistical similarity analysis to
obtain acceptable results but did not perform well
with texts that were dissimilar to training examples.

Existing approaches have used various forms of
auxiliary information. Hosseini et al. (Hosseini
et al., 2014) used verb categorization to identify
important mathematical cues and contexts. Mitra
and Baral (Mitra and Baral, 2016) used predefined
formulas to assist in matching. Koncel-Kedziorski
et al. (Koncel-Kedziorski et al., 2015) parsed the
input sentences, enumerated all parses, and learned
to match, requiring expensive computations. Roy
and Roth (Roy and Roth, 2017) performed searches
for semantic trees over large spaces.

Some recent approaches have transitioned to
using neural networks. Semantic parsing takes
advantage of RNN architectures to parse MWPs
directly into equations, or expressions in a math-
specific language (Shi et al., 2015; Sun et al., 2019).
RNNs have shown promising results, but they have
had difficulties balancing parentheses. Sometimes
RNN models incorrectly choose numbers when
generating equations. Rehman et al. (Rehman
et al., 2019) used part-of-speech tagging and clas-
sification of equation templates to produce systems
of equations from third-grade level MWPs. Most
recently, Sun et al. (Sun et al., 2019) used a bi-
directional LSTM architecture for math word prob-
lems. Huang et al. (Huang et al., 2018) used a deep
reinforcement learning model to achieve character
placement in both seen and new equation templates.
Wang et al. (Wang et al., 2018) also used deep re-
inforcement learning. We take a similar approach
to (Wang et al., 2019) in preprocessing to prevent
ambiguous expression representation.

This paper builds upon (Griffith and Kalita,
2019), extending the capability of similar Trans-
former networks and solving some common issues
found in translations. Here, we simplify the tag-
ging technique used in (Griffith and Kalita, 2019),
and apply preprocessing to enhance translations.

3 Approach

We view math word problem solving as a sequence-
to-sequence translation problem. RNNs have ex-
celled in sequence-to-sequence problems such as
translation and question answering. The introduc-
tion of attention mechanisms has improved the per-
formance of RNN models. Vaswani et al. (Vaswani
et al., 2017) introduced the Transformer network,
which uses stacks of attention layers instead of

77

recurrence. Applications of Transformers have
achieved state-of-the-art performance in many NLP
tasks. We use this architecture to produce charac-
ter sequences that are arithmetic expressions. The
models we experiment with are easy and efficient
to train, allowing us to test several configurations
for a comprehensive comparison. We use several
configurations of Transformer networks to learn
the prefix, postfix, and infix notations of MWP
equations independently.

Prefix and postfix representations of equations
do not contain parentheses, which has been a
source of confusion in some approaches. If the
learned target sequences are simple, with fewer
characters to generate, it is less likely to make mis-
takes during generation. Simple targets also may
help the learning of the model to be more robust.

3.1 Data
We work with four individual datasets. The datasets
contain addition, subtraction, multiplication, and
division word problems.

1. AI2 (Hosseini et al., 2014). AI2 is a collec-
tion of 395 addition and subtraction problems
containing numeric values, where some may
not be relevant to the question.

2. CC (Roy and Roth, 2015). The Common
Core dataset contains 600 2-step questions.
The Cognitive Computation Group at the Uni-
versity of Pennsylvania1 gathered these ques-
tions.

3. IL (Roy et al., 2015). The Illinois dataset
contains 562 1-step algebra word questions.
The Cognitive Computation Group compiled
these questions also.

4. MAWPS (Koncel-Kedziorski et al., 2016).
MAWPS is a relatively large collection, pri-
marily from other MWP datasets. MAWPS
includes problems found in AI2, CC, IL, and
other sources. We use 2,373 of 3,915 MWPs
from this set. The problems not used were
more complex problems that generate systems
of equations. We exclude such problems be-
cause generating systems of equations is not
our focus.

We take a randomly sampled 95% of examples
from each dataset for training. From each dataset,

1https://cogcomp.seas.upenn.edu/page/
demos/

MWPs not included in training make up the testing
data used when generating our results. Training
and testing are repeated three times, and reported
results are an average of the three outcomes.

3.2 Representation Conversion
We take a simple approach to convert infix expres-
sions found in the MWPs to the other two rep-
resentations. Two stacks are filled by iterating
through string characters, one with operators found
in the equation and the other with the operands.
From these stacks, we form a binary tree structure.
Traversing an expression tree in preorder results in
a prefix conversion. Post-order traversal gives us a
postfix expression. We create three versions of our
training and testing data to correspond to each type
of expression. By training on different representa-
tions, we expect our test results to change.

3.3 Metric Used
We calculate the reported results, here and in later
sections as:

modelavg =
1

R

RX

r=1

✓
1

N

NX

n=1

C 2 Dn

P 2 Dn

◆
(1)

where R is the number of test repetitions, which is
3; N is the number of test datasets, which is 4; P is
the number of MWPs; C is the number of correct
equation translations, and Dn is the nth dataset.

4 Experiment 1: Search for
High-Performing Models

The input sequence for a translation is a natural lan-
guage specification of an arithmetic word problem.
We encode the MWP questions and equations using
the subword text encoder provided by the Tensor-
Flow Datasets library. The output is an expression
in prefix, infix, or postfix notation, which then can
be manipulated further and solved to obtain a final
answer. Each expression style corresponds to a
model trained and tested separately on that specific
style. For example, data in prefix will not intermix
with data in postfix representation.

All examples in the datasets contain numbers,
some of which are unique or rare in the corpus.
Rare terms are adverse for generalization since the
network is unlikely to form good representations
for them. As a remedy to this issue, our networks
do not consider any relevant numbers during train-
ing. Before the networks attempt any translation,
we preprocess each question and expression by a

78

number mapping algorithm. We consider numbers
found to be in word form also, such as “forty-two”
and “dozen.” We convert these words to numbers
in all questions (e.g., “forty-two” becomes “42”).
Then by algorithm, we replace each numeric value
with a corresponding identifier (e.g., hji, hxi) and
remember the necessary mapping. We expect that
this approach may significantly improve how net-
works interpret each question. When translating,
the numbers in the original question are tagged and
cached. From the encoded English and tags, a pre-
dicted sequence resembling an expression presents
itself as output. Since each network’s learned
output resembles an arithmetic expression (e.g.,
hji+ hxi ⇤ hqi), we use the cached tag mapping to
replace the tags with the corresponding numbers
and return a final mathematical expression.

We train and test three representation mod-
els: Prefix-Transformer, Postfix-Transformer, and
Infix-Transformer. For each experiment, we use
representation-specific Transformer architectures.
Each model uses the Adam optimizer with beta1 =
0.95 and beta2 = 0.99 with a standard epsilon of
1 ⇥ e�9. The learning rate is reduced automati-
cally in each training session as the loss decreases.
Throughout the training, each model respects a
10% dropout rate. We employ a batch size of 128
for all training. Each model is trained on MWP
data for 300 iterations before testing. The networks
are trained on a machine using 4 Nvidia 2080 Ti
graphics processing unit (GPU).

We compare medium-sized, small, and minimal
networks to show if a smaller network size can
increase training and testing efficiency while re-
taining high accuracy. Networks over six layers
have shown to be non-effective for this task. We
tried many configurations of our network models
but report results with only three configurations of
Transformer.

- Transformer Type 1: This network is a
small to medium-sized network consisting of
4 Transformer layers. Each layer utilizes 8
attention heads with a depth of 512 and a feed-
forward depth of 1024.

- Transformer Type 2: The second model is
small in size, using 2 Transformer layers. The
layers utilize 8 attention heads with a depth of
256 and a feed-forward depth of 1024.

- Transformer Type 3: The third type of
model is minimal, using only 1 Transformer

layer. This network utilizes 8 attention heads
with a depth of 256 and a feed-forward depth
of 512.

Objective Function We calculate the loss in
training according to a mean of the sparse cate-
gorical cross-entropy formula. Sparse categorical
cross-entropy (De Boer et al., 2005) is used for
identifying classes from a feature set, assuming a
large target classification set. The performance met-
ric evaluates the produced class (predicted token)
drawn from the translation classes (all vocabulary
subword tokens). During each evaluation, target
terms are masked, predicted, and then compared to
the masked (known) value. We adjust the model’s
loss according to the mean of the translation accu-
racy after predicting every determined subword in
a translation.

4.1 Experiment 1 Results

This experiment compares our networks to recent
previous work. We count a given test score by
a simple “correct versus incorrect” method. The
answer to an expression directly ties to all of the
translation terms being correct, which is why we do
not consider partial precision. We compare average
accuracies over 3 test trials on different randomly
sampled test sets from each MWP dataset. This cal-
culation more accurately depicts the generalization
of our networks.

We present the results of our various outcomes
in Table 1. We compare the three representations
of target equations and three architectures of the
Transformer model in each test.

4.1.1 Experiment 1 Analysis

All of the network configurations used were very
successful for our task. The prefix representation
overall provides the most stable network perfor-
mance. We note that while the combined averages
of the prefix models outperformed postfix, the post-
fix representation Transformer produced the high-
est average for a single model. The type 2 postfix
Transformer received the highest testing average
of 87.2%. To highlight the capability of our most
successful model (type 2 postfix Transformer), we
present some outputs of the network in Figure 2.

The models respect the syntax of math expres-
sions, even when incorrect. For most questions, our
translators were able to determine operators based
solely on the context of language.

79

Table 1: Test results for Experiment 1 (* denotes averages on present values only).

(Type) Model AI2 CC IL MAWPS Average
(Hosseini et al., 2014) 77.7 – – – ⇤77.7

(Kushman et al., 2014) 64.0 73.7 2.3 – ⇤46.7

(Roy et al., 2015) – – 52.7 – ⇤52.7

(Robaidek et al., 2018) – – – 62.8 ⇤62.8

(Wang et al., 2018) 78.5 75.5 73.3 – ⇤75.4

(1) Prefix-Transformer 71.9 94.4 95.2 83.4 86.3

(1) Postfix-Transformer 73.7 81.1 92.9 75.7 80.8

(1) Infix-Transformer 77.2 73.3 61.9 56.8 67.3

(2) Prefix-Transformer 71.9 94.4 94.1 84.7 86.3

(2) Postfix-Transformer 77.2 94.4 94.1 83.1 87.2
(2) Infix-Transformer 77.2 76.7 66.7 61.5 70.5

(3) Prefix-Transformer 71.9 93.3 95.2 84.1 86.2

(3) Postfix-Transformer 77.2 94.4 94.1 82.4 87.0

(3) Infix-Transformer 77.2 76.7 66.7 62.4 70.7

Figure 2: Successful postfix translations.

AI2
A spaceship traveled 0.5 light-year from earth to planet

x and 0.1 light-year from planet x to planet y. Then it

traveled 0.1 light-year from planet y back to Earth. How

many light-years did the spaceship travel in all?

Translation produced:

0.5 0.1 + 0.1 +

CC
There were 16 friends playing a video game online when

7 players quit. If each player left had 8 lives, how many

lives did they have total?

Translation produced:

8 16 7 - *

IL
Lisa flew 256 miles at 32 miles per hour. How long did

Lisa fly?

Translation produced:

256 32 /

MAWPS
Debby’s class is going on a field trip to the zoo. If each

van can hold 4 people and there are 2 students and 6

adults going, how many vans will they need?

Translation produced:

2 6 + 4 /

Table 1 provides detailed results of Experiment 1.
The numbers are absolute accuracies, i.e., they cor-
respond to cases where the arithmetic expression
generated is 100% correct, leading to the correct
numeric answer. Results by (Wang et al., 2018;
Hosseini et al., 2014; Roy et al., 2015; Robaidek
et al., 2018) are sparse but indicate the scale of
success compared to recent past approaches. Pre-
fix, postfix, and infix representations in Table 1
show that network capabilities are changed by how
teachable the target data is.

While our networks fell short of Wang, et al.
AI2 testing accuracy (Wang et al., 2018), we
present state-of-the-art results for the remaining
three datasets in Table 1. The AI2 dataset is tricky
because its questions contain numeric values that
are extraneous or irrelevant to the actual computa-
tion, whereas the other datasets have only relevant
numeric values. Following these observations, we
continue to more involved experiments with only
the type 2 postfix Transformer. The next sections
will introduce our preprocessing methods. Note
that we start from scratch in our training for all
experiments following this section.

5 Experiment 2: Preprocessing for
Improved Results

We use various additional preprocessing methods
to improve the training and testing of MWP data.
One goal of this section is to improve the notably
low performance on the AI2 tests. We introduce
eight techniques for improvement and report our
results as an average of 3 separate training and

80

testing sessions. These techniques are also tested
together in some cases to observe their combined
effects.

5.1 Preprocessing Algorithms

We take note of previous pitfalls that have pre-
vented neural approaches from applying to general
MWP question answering. To improve English to
equation translation further, we apply some trans-
formation processes before the training step in our
neural pipeline. First, we optionally remove all
stop words in the questions. Then, again optionally,
the words are transformed into a lemma to prevent
easy mistakes caused by plurals. These simple
transformations can be applied in both training and
testing and require only base language knowledge.

We also try minimalistic manipulation ap-
proaches in preprocessing and analyze the results.
While in most cases, the tagged numbers are rele-
vant and necessary when translating; in some cases,
there are tagged numbers that do not appear in
equations. To avoid this, we attempt three differ-
ent methods of preprocessing: Selective Tagging,
Exclusive Tagging, and Label-Selective Tagging.

When applying Selective Tagging, we iterate
through the words in each question and only re-
place numbers appearing in the equation with a
tag representation (e.g., hji). In this method, we
leave the original numeric values in each sentence,
which have do not collect importance in network
translations. Similarly, we optionally apply Exclu-
sive Tagging, which is nearly identical to Selective
Tagging, but instead of leaving the numbers not
appearing in the equation, we remove them. These
two preprocessing algorithms prevent irrelevant
numbers from mistakenly being learned as relevant.
These methods are only applicable to training.

It is common in MWPs to provide a label or in-
dication of what a number represents in a question.
For example, if we observe the statement “George
has 2 peaches and 4 apples. Lauren gives George
5 of her peaches. How many peaches does George
have?” we only need to know quantifiers for the
label “peach.” We consider “peaches” and “apples”
as labels for the number tags. For the most basic
interpretation of this series of mathematical prose,
we know that we are supposed to use the number of
peaches that George and Lauren have to formulate
an expression to solve the MWP. Thus, determin-
ing the correct labels or tags for the numbers in an
MWP is likely to be helpful. Similar to Selective

Tagging and Exclusive Tagging, we avoid tagging
irrelevant numbers when applying Label-Selective
Tagging. Here, the quantity we need to ignore for
a reliable translation is: “4 apples.” This is as if we
are associating each number with the appropriate
unit notation, like “kilogram” or “meter.”

The Label-Selective Tagging method iterates
through every word in an MWP question. We first
count the occurrence of words in the question sen-
tences and create an ordered list of all terms. In
our example, we note that the word “peaches” oc-
curs three times in the sentence. Compared to the
word “apples” (occurring only once), we reduce
our search for numbers to only the most common
terms in each question. We impose a check to
verify that the most common term appears in the
sentence ending in a question mark, and if it is not,
the Label-Selective Tagging fails and produces tags
for all numbers.

If we can identify the label reliably, we then look
at each number. We assume that labels for quanti-
ties are within a window of three (either before the
number or after). When we detect a number, we
then look at four words before the number and four
words after the number, and before any punctua-
tion for the most common word we have previously
identified. If we find the assumed label, we tag
the number, indicating it is relevant. Otherwise,
we leave the word as a number, which indicates
that it is irrelevant. This method can be applied
in training and testing equally because we do not
require any knowledge about our target translation
equation. We could have performed noun phrase
chunking and some additional processing to iden-
tify nouns and their numeric quantifiers. However,
our heuristic method works very well.

In addition to restrictive tagging methods, we
also try replacing all words with an equivalent part-
of-speech denotation. The noun, “George,” will
appear as “NN,” for example. There are two ways
we employ this method. The first substitutes the
word with its part-of-speech counterpart, and the
second adds on the part-of-speech tag like “(NN
George),” for each word in the sentence. These
two algorithms can be applied both in training and
testing since the part-of-speech tag comes from the
underlying English language.

We also try reordering the sentences in each
MWP. For each of the questions, we sort the sen-
tences in random order, not requiring the question
within the MWP to appear last, as it typically does.

81

The situational context is not linear in most cases
when applying this transformation. We check to
see if the network relies on the linear nature of
MWP information to be successful.

The eight algorithms presented are applied solo
and in combination, when applicable. For a sum-
mary of the preprocessing algorithms, refer to Ta-
ble 2.

Table 2: Summary of Algorithms.

Name Abbreviation
Remove Stop Words SW

Lemmatize L

Selective Tagging ST

Label-Selective Tagging LST

Exclusive Tagging ET

Part of Speech POS

Part of Speech w/ Words WPOS

Sentence Reordering R

5.1.1 Experiment 2 Results and Analysis
We present the results of Experiment 2 in Table
3. From the results in Table 3, we see that Label-
Selective Tagging is very successful in improving
the translation quality of MWPs. Other methods,
such as removing stop words, improve accuracy
due to the reduction in the necessary vocabulary,
but fail to outperform LST for three of the four
datasets. Using a frequency measure of terms to
determine number relevancy is a simple addition
to the network training pipeline and significantly
outperforms our standalone Transformer network
base.

The LST algorithm was successful for two rea-
sons. The first reason LST is more realistic in this
application is its applicability to inference time
translations. Because the method relies only on
each question’s vocabulary, there are no restric-
tions on usability. This method reliably produces
the same results in the evaluation as in training,
which is a unique characteristic of only a subset of
the preprocessing algorithms tested. The second
reason LST is better for our purpose is that it pre-
vents unnecessary learning of irrelevant numbers
in the questions. One challenge in the AI2 dataset
is that some numbers present in the questions are
irrelevant to the intended translation. Without some
preprocessing, we see that our network sometimes
struggles to determine irrelevancy for a given num-
ber. LST also reduces compute time for other areas

Figure 3: Example of an unsuccessful translation using
type 2 postfix Transformer and LST.

MAWPS
There were 73 bales of hay in the barn. Jason stacked

bales in the barn today. There are now 96 bales of hay

in the barn . How many bales did he store in the barn?

Translation produced:

96 73 -

Expected translation:

73 96 +

of the data pipeline. Only a fraction of the num-
bers in some questions need to be tagged for the
network, which produces less stress on our number
tagging process. Still some common operator infer-
ence mistakes were made while using LST, shown
in Figure 3.

The removal of stop words is a common practice
in language classification tasks and was somewhat
successful in translation tasks. We see an improve-
ment on all datasets, suggesting that stop words
are mostly ignored in successful translations and
paid attention to more when the network makes
mistakes. There is a significant drop in reliability
when we transform words into their base lemmas.
Likely, the cause of this drop is the loss of informa-
tion by imposing two filtering techniques at once.

Along with the successes of the tested prepro-
cessing came some disappointing results. Raw part-
of-speech tagging produces slightly improved re-
sults from the base model, but including the words
and the corresponding part-of-speech denotations
fail in our application.

Reordering of the question sentences produced
significantly worse results. The accuracy differ-
ence mostly comes from the random position of
the question, sometimes appearing with no context
to the transaction. Some form of limited sentence
reordering may improve the results, but likely not
the degree of success of the other methods.

By incorporating simple preprocessing tech-
niques, we grow the generality of the Transformer
architecture to this sequence-to-sequence task.

5.1.2 Overall Results
Table 3 shows that the Transformer architecture
with simple preprocessing outperforms previous
state-of-the-art results in all four tested datasets.
While the Transformer architecture has been well-
proven in other tasks, we show that applying the

82

Table 3: Test results for Experiment 2 (* denotes averages on present values only). Rows after the top 5 indicate
type 2 postfix Transformer results.

Preprocessing Method AI2 CC IL MAWPS Average
(Hosseini et al., 2014) 77.7 – – – ⇤77.7

(Kushman et al., 2014) 64.0 73.7 2.3 – ⇤46.7

(Roy et al., 2015) – – 52.7 – ⇤52.7

(Robaidek et al., 2018) – – – 62.8 ⇤62.8

(Wang et al., 2018) 78.5 75.5 73.3 – ⇤75.4

Type 2 Postfix-Transformer

None 77.2 94.4 94.1 83.1 87.2

SW 73.7 100.0 100.0 94.0 91.9

L 63.2 86.7 80.9 68.1 74.7

SW + L 61.4 60.0 57.1 66.4 61.2

ST 80.7 93.3 100.0 84.3 89.6

SW + ST 71.9 93.3 100.0 83.5 87.2

SW + L + ST 50.9 63.3 48.8 64.1 56.8

LST 82.5 100.0 100.0 93.7 94.0
SW + LST 70.2 100.0 100.0 92.6 90.7

SW + L + LST 54.4 71.1 50.0 68.1 60.9

ET 80.7 93.3 100.0 84.0 89.5

SW + ET 70.2 93.3 100.0 84.0 86.9

SW + L + ET 59.6 63.3 53.6 66.1 60.7

POS 79.0 100.0 73.8 91.5 86.1

WPOS 40.4 0.0 84.5 53.0 44.5

R 38.0 59.6 58.7 42.3 49.6

attention schema here improves MWP solving.
With our work, we show that relatively small

networks are more stable for our task. Postfix and
prefix both are a better choice for training neural
networks, with the implication that infix can be
re-derived if it is preferred by the user of a solver
system. The use of alternative mathematical repre-
sentation contributes greatly to the success of our
translations.

6 Conclusions and Future Work

In this paper, we have shown that the use of Trans-
former networks improves automatic math word
problem-solving. We have also shown that post-
fix target expressions perform better than the other
two expression formats. Our improvements are
well-motivated but straightforward and easy to use,
demonstrating that the well-acclaimed Transformer
architecture for language processing can handle
MWPs well, obviating the need to build special-
ized neural architectures for this task.

In the future, we wish to work with more com-
plex MWP datasets. Our datasets contain basic
arithmetic expressions of +, -, *, and /, and only up

to 3 of them. For example, datasets such as Dol-
phin18k (Huang et al., 2016), consisting of web-
answered questions from Yahoo! Answers, require
a wider variety of language to be understood by the
system.

We wish to use other architectures stemming
from the base Transformer to maximize the accu-
racy of the system. For our experiments, we use
the 2017 variation of the Transformer (Vaswani
et al., 2017), to show that generally applicable neu-
ral architectures work well for this task. With that
said, we also note the importance of a strategically
designed architecture to improve our results.

To further the interest in automatic solving of
math word problems, we have released all of the
code used on GitHub.2

References
Yefim Bakman. 2007. Robust understanding of

word problems with extraneous information. arXiv
preprint math/0701393.

2https://github.com/kadengriffith/
MWP-Automatic-Solver

83

Daniel G Bobrow. 1964. Natural Language Input for
a Computer Problem Solving System. Ph.D. thesis,
Massachusetts Institute Of Technology.

Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and
Reuven Y Rubinstein. 2005. A tutorial on the cross-
entropy method. Annals of operations research,
134(1):19–67.

K. Griffith and J. Kalita. 2019. Solving arithmetic word
problems automatically using transformer and un-
ambiguous representations. In 2019 International
Conference on Computational Science and Compu-
tational Intelligence (CSCI), pages 526–532.

Mohammad Javad Hosseini, Hannaneh Hajishirzi,
Oren Etzioni, and Nate Kushman. 2014. Learning
to solve arithmetic word problems with verb catego-
rization. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 523–533.

Danqing Huang, Jing Liu, Chin-Yew Lin, and Jian Yin.
2018. Neural math word problem solver with rein-
forcement learning. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 213–223, Santa Fe, New Mexico, USA. Asso-
ciation for Computational Linguistics.

Danqing Huang, Shuming Shi, Chin-Yew Lin, Jian Yin,
and Wei-Ying Ma. 2016. How well do comput-
ers solve math word problems? large-scale dataset
construction and evaluation. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
887–896.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish
Sabharwal, Oren Etzioni, and Siena Dumas Ang.
2015. Parsing algebraic word problems into equa-
tions. Transactions of the Association for Computa-
tional Linguistics, 3:585–597.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. Mawps:
A math word problem repository. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1152–1157.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. 2014. Learning to automatically
solve algebra word problems. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
271–281.

Christian Liguda and Thies Pfeiffer. 2012. Modeling
math word problems with augmented semantic net-
works. In International Conference on Application
of Natural Language to Information Systems, pages
247–252. Springer.

Arindam Mitra and Chitta Baral. 2016. Learning to use
formulas to solve simple arithmetic problems. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2144–2153.

Tayyeba Rehman, Sharifullah Khan, Gwo-Jen Hwang,
and Muhammad Azeem Abbas. 2019. Automat-
ically solving two-variable linear algebraic word
problems using text mining. Expert Systems,
36(2):e12358.

Benjamin Robaidek, Rik Koncel-Kedziorski, and Han-
naneh Hajishirzi. 2018. Data-driven methods for
solving algebra word problems. arXiv preprint
arXiv:1804.10718.

Subhro Roy and Dan Roth. 2015. Solving gen-
eral arithmetic word problems. arXiv preprint
arXiv:1608.01413, pages 1743–1752.

Subhro Roy and Dan Roth. 2017. Unit dependency
graph and its application to arithmetic word problem
solving. In Thirty-First AAAI Conference on Artifi-
cial Intelligence.

Subhro Roy, Tim Vieira, and Dan Roth. 2015. Reason-
ing about quantities in natural language. Transac-
tions of the Association for Computational Linguis-
tics, 3:1–13.

Shuming Shi, Yuehui Wang, Chin-Yew Lin, Xiaojiang
Liu, and Yong Rui. 2015. Automatically solving
number word problems by semantic parsing and rea-
soning. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
pages 1132–1142.

Ruiyong Sun, Yijia Zhao, Qi Zhang, Keyu Ding, Shijin
Wang, and Cui Wei. 2019. A neural semantic parser
for math problems incorporating multi-sentence in-
formation. ACM Transactions on Asian and Low-
Resource Language Information Processing (TAL-
LIP), 18(4):37.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Lei Wang, Dongxiang Zhang, Lianli Gao, Jingkuan
Song, Long Guo, and Heng Tao Shen. 2018. Math-
dqn: Solving arithmetic word problems via deep re-
inforcement learning. In Thirty-Second AAAI Con-
ference on Artificial Intelligence.

Lei Wang, Dongxiang Zhang, Jipeng Zhang, Xing Xu,
Lianli Gao, Bing Tian Dai, and Heng Tao Shen.
2019. Template-based math word problem solvers
with recursive neural networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 7144–7151.

84

Proceedings of the 17th International Conference on Natural Language Processing, pages 85–89
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Clickbait in Hindi News Media : A Preliminary Study

Vivek Kaushal
International Institute of

Information Technology, Hyderabad
India

vivek.kaushal@research.iiit.ac.in

Kavita Vemuri
International Institute of

Information Technology, Hyderabad
India

kvemuri@iiit.ac.in

Abstract
A corpus of Hindi news headlines shared on
Twitter was created by collecting tweets of 5
mainstream Hindi news sources for a period
of 4 months. 7 independent annotators were
recruited to mark the 20 most retweeted news
posts by each of the 5 news sources on its click-
bait nature. The clickbait score hence gener-
ated was assessed for its correlation with in-
teractions on the platform (retweets, favorites,
reader replies), tweet word count, and normal-
ized POS (part-of-speech) tag counts in tweets.
A positive correlation was observed between
readers’ interactions with tweets and tweets’
clickbait score. Significant correlations were
also observed for POS tag counts and click-
bait score. The prevalence of clickbait in main-
stream Hindi news media was found to be sim-
ilar to its prevalence in English news media.
We hope that our observations would provide
a platform for discussions on clickbait in main-
stream Hindi news media.

1 Introduction

A news headline provides a brief introduction to
the news story and perhaps more importantly, lays
emphasis on the focus and scope of the accompa-
nying news article. A common journalistic advice
is to present a clear attention-grabbing headline but
to not exaggerate and misreport the news story or
mislead the reader. With the advent of social me-
dia and news aggregators, newsreaders are encoun-
tering headlines from a variety of sources – estab-
lished traditional publishers, up-and-coming on-
line news sources, individual writers, among oth-
ers – some of which apply questionable tactics to
attract the attention of readers. This bombardment
of information has led to an overload and hence
readers gravitate towards sensationalism as a valid
filter (Molek-Kozakowska, 2013).
In the digital media space, catchy headlines that

lure readers to click on them and link to accompa-

nying articles are called ‘clickbait’ (Chakraborty
et al., 2016; Chen et al., 2015b). The social media
site Facebook has defined clickbait as an imple-
mentation of forward referencing – “when a pub-
lisher posts a link with a headline that encourages
people to click to see more, without telling them
much information about what they will see”(El-
Arini and Tang, 2014). There is a growing fear that
the line between traditional headlines, predatory
clickbait and fake news is rapidly blurring (Chen
et al., 2015a). While there is agreement that not
all catchy headlines are malicious, provided the
corresponding article satisfies the information gap
in the headline with factual reporting (Rony et al.,
2017), the concern raised in journalistic circles is
the intent tomisuse literary techniques andmislead
readers for mere profit. Additionally, one needs
to look into whether the traffic generated by click-
bait headlines with minimal or untrue information
leads to social distrust and affects cognitive pro-
cesses. That is, are clickbait akin in nature to ru-
mors and half-truths and more importantly, what is
the impact of headline-only-readers (as reported by
the satirical news site Science Post, which posted
a catchy headline with nonsensical article content
and found that nearly 46,000 shared the article –
without even opening the article linked to the head-
line)1 who could propagate misinformation by fill-
ing in the knowledge gaps by unverified intuitions
and information from uncertified sources.
The existing body of research on clickbait is

overwhelmingly focused on the English language,
except a few notable studies (Orosa et al., 2017;
Gabielkov et al., 2016). This includes research on
clickbait’s reach, impact and its detection. In this
preliminary study, we extend the English language
clickbait headlines analysis to Hindi. The inter-
est is to understand whether journalists from non-

1http://thesciencepost.com/study-70-of-facebook-
commenters-only-read-the-headline/

85

English papers apply clickbait as strategy, as was
found in a study of 28 EU news sources (Orosa
et al., 2017). By also considering the sharing be-
havior of headline readers, the aim is to understand
relations between the demand-supply of clickbait
headlines.
We have reported the findings of a pilot study

conducted on news headlines shared by five main-
stream Hindi news sources on Twitter. In the coun-
try where the study was conducted, approximately
40% of the population’s mother tongue is Hindi2.
All the recruited annotators had Hindi as their na-
tive tongue and English as a secondary language.
The large and rapidly growing reader-base which
is increasingly present on social media, places the
relevance of this study.
We have annotated the most retweeted news

headlines of the five selected news sources on its
clickbait-nature and have done POS tagging of
tweets’ text. Through a detailed correlation analy-
sis of the ‘clickbait-score’ generated through man-
ual annotation, with tweets’ interaction parameters
(likes, retweets, replies), text word count and nor-
malized POS tag counts, we hope to understand
the existence and reach of clickbait in Hindi news
media. The need to understand reader’s reading be-
havior is important for a deeper discussion on the
proliferation of clickbait, as studies have shown
the impact of clickbait in causing higher stress lev-
els and lowering productivity (Mark, 2014).

2 Methodology

2.1 Preparing the Corpus

Hindi news publishers with text as their primary
mediumwere selected based on their popularity on
social media. The selected news sources included:
BBC Hindi, Dainik Jagran, Dainik Bhaskar, Hin-
dustan and Navbharat Times. The tweets from
the respective publishers’ Twitter handles were
scraped for a period of 4 months (May, 2020 till
the end of August, 2020). Besides the tweeted text,
information was also collected on each tweet’s in-
teractions on the platform, quantified by the num-
ber of readers’ replies, retweets and favorites. The
usage of mentions and hashtags in the tweets were
also recorded. The scraped tweets were filtered to
remove instances of polls, cartoons, images and
videos. Tweets that were replies to other users

2https://www.thehindu.com/data/what-
percentage-of-people-prefer-to-speak-hindi-across-
states/article27451589.ece

Table 1: Most retweeted news item for each news
source in our dataset.

were also excluded from the corpus. After filtering,
the generated corpus had around 52,000 tweets of
definite news headlines invariably accompanied
by a link to a news article on the publisher’s web-
site 3. The corpus was further processed to remove
mentions and hashtags used at the end of tweets to
promote them on the platform. The few instances
where mentions or hashtags were used in running
text of headlines were not removed as doing so
would have disrupted the semantic structure of the
tweet. This corpus was sorted according to the
number of retweets and 20 top tweets were selected
for each of the 5 news publishers. No particular fil-
ter was applied on the topic of the news headline,
in this preliminary study.

2.2 Clickbait Annotation
7 independent bi-lingual annotators (age: μ = 31.6
years, σ = 13.5 years) with Hindi as their native
tongue and English as a secondary language were
provided with standard English definitions and En-
glish examples of clickbait and non-clickbait head-
lines. The annotators were provided with only the
Devanagari script text of the 100 most retweeted
Hindi news headlines presented in a random or-
der and asked to rate each of them on a 5-point
linear scale – [0, 0.25, 0.5, 0.75, 1] where 0 im-
plies not clickbait at all and 1 implies strongly

3The dataset of scraped hindi new media tweets is
open and available at https://github.com/kaushalvivek/hindi-
media-tweets

86

clickbait. The annotation setup was similar to ex-
isting research on English news tweets (Potthast
et al., 2018), as standard definitions and examples
of clickbait were provided to the annotators before
they assigned a clickbait-score to presented head-
lines based on their own perception. The responses
were saved and mean of all the 7 annotators’ re-
sponse was taken to generate a ‘clickbait score’ for
each tweet.

2.3 Data Analysis

Post annotation, correlation of the generated click-
bait score with different parameters of tweets, in-
cluding the number of replies, retweets, favorites
and text word count were studied. A POS tagger
based on the Hidden Markov Model was used to
assign part of speech tags following the Viterbi al-
gorithm (Ekbal et al., 2007). POS tag counts in
tweets were normalized for tweets’ word count to
isolate the relation between POS tags’ occurrence
and clickbait score. The correlation between nor-
malized POS tag counts and clickbait score was
studied and reported.
The D’Agostino-Pearson Test was conducted on

all distributions in the dataset to check for normal-
ity, a pre-condition for correlation analysis. All
the distributions in our assessment were found to
be normal, hence Pearson’s test was conducted
to evaluate correlation between different variables.
The number of annotators were low, but the Cron-
bach’s alpha was calculated for the 7 independent
annotators to check for internal consistency and the
annotations were found to be consistent (α ≥ 0.8).

3 Results

The average clickbait score for all the annotated
Hindi news tweets was μ = 0.433, σ = 0.30. BBC
Hindi had the highest average clickbait score (μ =
0.59, σ = 0.30), while Dainik Bhaskar had the low-
est average clickbait score (μ = 0.22, σ = 0.21).
Clickbait scores of all the news sources in the
dataset are illustrated (in figure 1). 21 out of the
100 most retweeted news headlines had a click-
bait score ≥ 0.75, whereas 36 out of the 100 most
retweeted news headlines had a clickbait score ≤
0.25.
A positive correlation was observed between

clickbait score of tweets and all their interaction
parameters on Twitter - replies (r = 0.25), retweets
(r = 0.19) and favorites (r = 0.18). While the cor-
relation was strongly negative (r = -0.39) between

Figure 1: Boxplot of the clickbait score for each news
source in our dataset. BBC Hindi (μ = 0.59, σ = 0.30),
Dainik Bhaskar (μ = 0.22, σ = 0.21), Dainik Jagran (μ
= 0.44, σ = 0.27), Hindustan (μ = 0.47, σ = 0.29) and
Navbharat Times (μ = 0.44, σ = 0.29).

Tweets’ Pa-
rameter

Correlation
with Click-
bait Score
(r)

Significance
of Cor-
relation
(p)

Replies 0.25 <0.05
Retweets 0.19 0.05
Favorites 0.18 0.07
Word Count -0.39 <0.001

Table 2: Pearson’s r (correlation) between clickbait
score and tweets’ parameters.

the word count of tweets and their clickbait score.
As would make intuitive sense, the interaction pa-
rameters in themselves were very strongly corre-
lated with each other (r ≥ 0.7). The findings are
illustrated in table 2.
Upon normalizing POS tag counts in each tweet

and assessing its correlation with clickbait score,
VAUX (r = 0.18), WQ (r = 0.44), NNP (r = 0.17)
and QO (r = 0.10) were found to be positively cor-
related with clickbait score, while INJ (r = -0.18),
DEM (r = -0.21) and SYM (r = -0.25) were found
to be negatively correlatedwith clickbait score. No
significant correlation was found for other POS
tags. The results are illustrated in table 3 in a cat-
egorization of POS tags based on correlation with
clickbait score.

4 Discussion

Against common perception that clickbait is used
largely by fringe players who do not post main-
stream newsmaterial, Rony et al. (2017) had found
that 33.54% of social media posts by mainstream
English media was clickbait in nature. The ra-

87

Correlation POS Tags
Positive (>0.1) VAUX, WQ, NNP, QO
Negative
(<-0.1)

INJ, DEM, SYM

Not Signifi-
cant

JJ, RP, PRP, INTF, VM,
NEG, NN, RB, QF, NST,
PSP, CC, XC, QC

Table 3: Correlation of POS Tags normalized for tweet
word-count and clickbait score.

tio was even more alarming at 47.56% for main-
stream broadcast media. The trend is reflected in
our study, where we found that 21% of the most
retweeted news headlines by mainstream Hindi
print news media had a high clickbait score (click-
bait score ≥ 0.75), which is fairly close to the
24.12% clickbait-content ratio for English print
news media found by Rony et al. (2017). The
similarities between the ratio of clickbait content
posted bymainstreamEnglish andHindi news pub-
lishers is an indication that proliferation of click-
bait is not limited to English. This points to a
need to replicate suitable measures for AI-based
detection andmanagement of clickbait as are being
developed for the English language (Chakraborty
et al., 2016; Agrawal, 2016; Biyani et al., 2016;
Zhou, 2017; Venneti and Alam, 2018).
Clickbait score for our Hindi corpus was pos-

itively correlated with interaction parameters on
Twitter, hence indicating that clickbait content is
shared more widely and attracts higher reader at-
tention. This observation is in agreement with
existing clickbait research in the English lan-
guage(Chakraborty et al., 2017) . A strong nega-
tive correlation observed between clickbait-score
and word-count indicates that clickbait headlines
in Hindi are shorter than traditional non-clickbait
headline. This is an interesting result that needs
to be further examined to isolate effects from
language-structure, as similar research studies in
the English language have found non-clickbait
headlines to be significantly shorter than clickbait
headlines (Chakraborty et al., 2016).
The strong positive correlation observed be-

tween normalized WQ (question word) counts and
clickbait score is expected, as forward-reference –
a clickbait technique which involves the omission
of a key piece of information in the headline, fre-
quently relies on framing headlines as questions.
E.g. “पा क तान म 15 पए स ता आ पे ोल, भारत म

य नह ?” – which translates to “Petrol prices
reduced by Rs.15 in Pakistan, why not in India?”
This headline does not provide any information on
why petrol prices are not being reduced in India
but generates curiosity by framing the headline as a
question, and possibly the emotional/political con-
notations of the countries being compared. A posi-
tive correlation was observed between normalized
counts of VAUX (Auxiliary Verb), NNP (Proper
Noun), QO (Ordinals) and clickbait score, and a
negative correlation was found between INJ (In-
terjection), DEM (Demonstrative), SYM (Symbol)
and clickbait score. These findings require further
study and analysis to fully understand the role of
each POS tag in evoking curiosity and grabbing
attention. Journalistic guidelines suggest that aux-
iliary verbs are not necessary for perfect passive
structures, a proper noun contextualizes and ordi-
nals convey a position or rank which are recom-
mended. Hence, the positive correlation of the two
latter POS with clickbait scores is explicable. The
negative correlation with interjection is unantici-
pated as emotional valence attached is considered
to be a strong bait for human attention. The similar-
ities between the prevalence of clickbait content in
mainstream Hindi news media with recorded ob-
servations in English news media is insightful as
the research to counter such content in Hindi is
fairly primitive. The authors of this paper arework-
ing to understand the impact of clickbait on the
credibility of news media as perceived by readers
(Kaushal and Vemuri, 2020) and plan on scaling
their work to news headlines in the Hindi language.
We hope that our work would provide a platform
for discussion about clickbait in mainstream Hindi
news media.

5 Limitations

The preliminary study and the inferences drawn is
limited by the low number of annotators (7) and the
filter applied to study only 100 headlines. Further,
cross-reference to article content of a headline was
not included in this study, thus limiting the scores
from only the headlines. The length of the head-
lines was not controlled, though not shown to af-
fect the clickbait score, it could weigh the attention
score.

References
A. Agrawal. 2016. Clickbait detection using deep learn-
ing. In 2016 2nd International Conference on Next

88

Generation Computing Technologies (NGCT), pages
268–272.

Prakhar Biyani, Kostas Tsioutsiouliklis, and John
Blackmer. 2016. ”8 amazing secrets for getting
more clicks”: Detecting clickbaits in news streams
using article informality. In Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence,
AAAI’16, page 94–100. AAAI Press.

A. Chakraborty, B. Paranjape, S. Kakarla, and N. Gan-
guly. 2016. Stop clickbait: Detecting and preventing
clickbaits in online news media. In 2016 IEEE/ACM
International Conference on Advances in Social Net-
works Analysis and Mining (ASONAM), pages 9–16.

Abhijnan Chakraborty, Rajdeep Sarkar, Ayushi Mrigen,
and Niloy Ganguly. 2017. Tabloids in the era of so-
cial media? understanding the production and con-
sumption of clickbaits in twitter. Proc. ACM Hum.-
Comput. Interact., 1(CSCW).

Yimin Chen, Nadia K. Conroy, and Victoria L. Rubin.
2015a. News in an online world: The need for an
“automatic crap detector”. Proceedings of the As-
sociation for Information Science and Technology,
52(1):1–4.

Yimin Chen, Niall J. Conroy, and Victoria L. Rubin.
2015b. Misleading online content: Recognizing
clickbait as ”false news”. In Proceedings of the 2015
ACM on Workshop on Multimodal Deception Detec-
tion, WMDD ’15, page 15–19, New York, NY, USA.
Association for Computing Machinery.

Asif Ekbal, Samiran Mandal, and Sivaji Bandyopad-
hyay. 2007. Pos tagging using hmm and rule-based
chunking. Shallow Parsing for South Asian Lan-
guages, page 25.

Khalid El-Arini and Joyce Tang. 2014. Click-baiting.
About Facebook.

Maksym Gabielkov, Arthi Ramachandran, Augustin
Chaintreau, and Arnaud Legout. 2016. Social clicks:
What and who gets read on twitter? In Proceed-
ings of the 2016 ACM SIGMETRICS International
Conference on Measurement and Modeling of Com-
puter Science, SIGMETRICS ’16, page 179–192,
New York, NY, USA. Association for Computing
Machinery.

Vivek Kaushal and Kavita Vemuri. 2020. Clickbait -
trust and credibility of digital news. IEEE Interna-
tional Symposioum on Technology and Society (un-
der review, accepted with changes).

Gloria Mark. 2014. You won’t believe what happened
next. The New York Times.

Katarzyna Molek-Kozakowska. 2013. Towards a
pragma-linguistic framework for the study of sensa-
tionalism in news headlines. Discourse amp Com-
munication, 7:173–197.

B Gracia Orosa, S Gallur Santorun, and X Lopez Gra-
cia. 2017. Use of clickbait in the online news media
of the 28 eu member countries. Revista Latina de
Comunicación Social, 72:1.261–1.277.

Martin Potthast, Tim Gollub, Matthias Hagen, and
Benno Stein. 2018. The clickbait challenge 2017:
Towards a regression model for clickbait strength.
CoRR, abs/1812.10847.

Md Main Uddin Rony, Naeemul Hassan, and Moham-
madYousuf. 2017. Diving deep into clickbaits: Who
use them to what extents in which topics with what
effects? In Proceedings of the 2017 IEEE/ACM In-
ternational Conference on Advances in Social Net-
works Analysis and Mining 2017, ASONAM ’17,
page 232–239, NewYork, NY, USA. Association for
Computing Machinery.

Lasya Venneti and Aniket Alam. 2018. How curios-
ity can be modeled for a clickbait detector. CoRR,
abs/1806.04212.

Yiwei Zhou. 2017. Clickbait detection in tweets using
self-attentive network. CoRR, abs/1710.05364.

89

Proceedings of the 17th International Conference on Natural Language Processing, pages 90–100
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Self Attended Stack Pointer Networks for Learning Long Term
Dependencies

Salih Tuç
Hacettepe University

Department of Computer Engineering
Ankara, Turkey

salihtuc0@gmail.com

Burcu Can
University of Wolverhampton

Research Institute of
Information and Language Processing

Wolverhampton, UK
b.can@wlv.ac.uk

Abstract
We propose a novel deep neural architec-
ture for dependency parsing, which is built
upon a Transformer Encoder (Vaswani et al.,
2017) and a Stack Pointer Network (Ma et al.,
2018). We first encode each sentence using
a Transformer Network and then the depen-
dency graph is generated by a Stack Pointer
Network by selecting the head of each word
in the sentence through a head selection pro-
cess. We evaluate our model on Turkish and
English treebanks. The results show that our
trasformer-based model learns long term de-
pendencies efficiently compared to sequential
models such as recurrent neural networks. Our
self attended stack pointer network improves
UAS score around 6% upon the LSTM based
stack pointer (Ma et al., 2018) for Turkish sen-
tences with a length of more than 20 words.

1 Introduction

Dependency Parsing is the task of finding the gram-
matical structure of a sentence by identifying syn-
tactic and semantic relationships between words.
Dependency parsing has been utilized in many
other NLP tasks such as machine translation (Car-
reras and Collins, 2009; Chen et al., 2017), relation
extraction (Fundel-Clemens et al., 2007; Zhang
et al., 2018), named entity recognition (Jie et al.,
2017; Finkel and Manning, 2009), information ex-
traction (Angeli et al., 2015; Peng et al., 2017), all
of which involve natural language understanding
to an extent. Each dependency relation is identified
between a head word and a dependent word that
modifies the head word in a sentence. Although
such relations are considered syntactic, they are nat-
urally built upon semantic relationships between
words. For example, each dependent has a role
in modifying its head word, which is a result of a
semantic influence.

Within the context of dependency parsing, re-
lations between heads and dependents are also la-

beled by specifying the type of the grammatical
relation between words. In the Universal Depen-
dencies (de Marneffe et al., 2014) tagset, there are
37 dependency relation types defined. In the lat-
est Universal Dependencies (UD v2.0) tagset, re-
lations are split into four main categories (Core
Arguments, Non-core dependents, Nominal depen-
dents and Other) and nine sub-categories (Nom-
inals, Clauses, Modifier Words, Function Words,
Coordination, MWE, Loose Special and Other).

One way to illustrate the grammatical structure
obtained from dependency parsing is a dependency
graph. An example dependency graph is given
below:

Thank you , Mr. Poettering .

ROOT

obj
punct

vocative

flat

punct

Here, the relations are illustrated by the links
from head words to dependent words along with
their dependency labels. Every sentence has a
global head word, which is the ROOT of the sen-
tence.

There are two main difficulties in dependency
parsing. One is the long term dependencies in
especially long sentences that are difficult to be
identified in a standard Recurrent Neural Network
due to the loss of the information flow in long se-
quences. Another difficulty in parsing is the out-
of-vocabulary (OOV) words. In this work, we try
to tackle these two problems by using Transformer
Networks (Vaswani et al., 2017) by introducing
subword information for OOV words in especially
morphologically rich languages such as Turkish.
For that purpose, we integrate character-level word
embeddings obtained from Convolutional Neural
Networks (CNNs). The morphological complexity

90

in such agglutinative languages makes the parsing
task even harder because of the sparsity problem
due to the number of suffixes that each word can
take, which brings more problems in syntactic pars-
ing. Dependencies in such languages were also
defined between morphemic units (i.e. inflectional
groups) rather than word tokens (Eryiğit et al.,
2008), however this is not in the scope of this work.

In this work, we introduce a novel two-level
deep neural architecture for graph-based depen-
dency parsing. Graph-based dependency parsers
build dependency trees among all possible trees,
therefore the final dependency tree has the highest
score globally. However, in transition-based depen-
dency parsers, each linear selection in a sentence
is made based on a local score which may lead
to erroneous trees at the end of parsing. For this
reason, we prefer graph-based dependency parsing
in our approach to be able to do global selections
while building dependency trees. In the first level
of our deep neural architecture, we encode each
sentence through a transformer network (Vaswani
et al., 2017), which shows superior performance
in long sequences compared to standard recurrent
neural networks (RNNs). In the second level, we
decode the dependencies between heads and de-
pendents using a Stack Pointer Network (Ma et al.,
2018), which is extended with an internal stack
based on pointer networks (Vinyals et al., 2015).
Since stack pointer networks benefit from the full
sequence similar to self attention mechanism in
transformer networks, they do not have left-to-right
restriction as in transition based parsing. Hence, we
combine the two networks to have a more accurate
and efficient dependency parser.

We evaluate our model on Turkish which is a
morphologically rich language and on English with
a comparably poorer morphological structure. Al-
though our model does not outperform other recent
model, it shows competitive performance among
other neural dependency parsers. However, our
results show that our self attended stack pointer
network improves UAS score around 6% upon the
LSTM based stack pointer (Ma et al., 2018) for
Turkish sentences with a length of more than 20
words.

The paper is organized as follows: Section 2 re-
views the related work on both graph-based and
transition-based dependency parsing, Section 3 ex-
plains the dependency parsing task briefly, Section
4 describes the proposed deep neural architecture

Figure 1: An example to graph-based dependency pars-
ing with a maximum spanning tree.

based on Transformer Networks and Stack Pointer
Networks, and finally Section 5 presents the ex-
perimental results of the proposed model for both
English and Turkish.

2 Related Work

Dependency parsing is performed by two differ-
ent approaches: graph-based and transition-based
parsing. We review related work on both of these
approaches.

Graph-based Dependency Parsing: Graph-
based approaches are generally based on perform-
ing the entire parsing process as graph operations
where the nodes in the graph represent the words in
a sentence. For the sentence, ”John saw Mary”, we
can illustrate its parse tree with a weighted graph
G with four vertices where each of them refers
to a word including the ROOT . Edges store the
dependency scores between the words. The main
idea here is to find the maximum spanning tree
of this graph G. The parse tree of the sentence is
given in Figure 1. The dependencies are between
ROOT and saw, saw and John; and saw and
Mary where the first ones are the heads and the
latter ones are the dependents.

When the parsing structure is represented as a
graph, finding dependencies becomes easier to vi-
sualize, and moreover the task becomes finding
the highest scored tree among all possible trees.
Edge scores in the graphs represent the dependency
measures between word couples.

Neural architectures have been used for graph-
based dependency parsing extensively in the last
decade. Li et al. (2018) introduce a seq2seq model
using bi-directional LSTMs (BiLSTMs) (Hochre-
iter and Schmidhuber, 1997), where an attention
mechanism is involved between the encoder and
decoder LSTMs. Kiperwasser and Goldberg (2016)
propose another model using BiLSTMs, where the
right and left arcs in the dependency trees are iden-
tified through the BiLSTMs. Dozat and Manning
(2016) proposes a parser that uses biaffine attention
mechanism, which is extended based on the models

91

of Kiperwasser and Goldberg (2016), Hashimoto
et al. (2017), and Cheng et al. (2016). The bi-
affine parser (Dozat and Manning, 2016) provides
a baseline for other two models introduced by Zhou
and Zhao (2019) and Li et al. (2019), which forms
trees in the form of Head-Driven Phase Structure
Grammar (HPSG) and uses self-attention mecha-
nism respectively. Ji et al. (2019) propose a Graph
Neural Network (GNN) that is improved upon the
biaffine model. Another LSTM-based model is
introduced by Choe and Charniak (2016), where
dependency parsing is considered as part of lan-
guage modelling (LM) and each sentence is parsed
with a LSTM-LM architecture which builds parse
trees simultaneously with the language model.

The recent works generally focus on the encoder
in seq2seq models because a better encoding of an
input eliminates most of the cons of the sequence
models. For example, Hewitt and Manning (2019)
and Tai et al. (2015) aim to improve the LSTM-
based encoders while Clark et al. (2018) introduce
an attention-based approach to improve encoding,
where they propose Cross-View Training (CVT).

In this work, we encode each sentence through a
transformer network based on self-attention mech-
anism (Vaswani et al., 2017) and learn the head
of each word using a stack pointer network as a
decoder (Ma et al., 2018) in our deep neural ar-
chitecture. Our main aim is to learn long term de-
pendencies efficiently with a transformer network
by removing the recurrent structures from encoder.
Transformer networks (Vaswani et al., 2017) and
stack pointer networks (Ma et al., 2018) have been
used for dependency parsing before. However, this
will be the first attempt to combine these two meth-
ods for the dependency parsing task.

Transition-based Dependency Parsing: In
transition-based dependency parsing, local selec-
tions are made for each dependency relationship
without considering the complete dependency tree.
Therefore, globally motivated selections are nor-
mally not performed in transition-based parsing
by contrast with graph-based dependency parsing.
For this purpose, two stacks are employed to keep
track of the actions made during transition-based
parsing.

Similar to graph-based parsing, neural ap-
proaches have been used extensively for transition-
based parsing. Chen and Manning (2014) intro-
duce a feed forward neural network with various
extensions by utilizing single-word, word-pair and

three-word features. Weiss et al. (2015) improve
upon the model by Chen and Manning (2014) with
a deeper neural network and with a more structured
training and inference using structured perceptron
with beam-search decoding. Andor et al. (2016)
use also feed forward neural networks similar to
others and argue that feed forward neural networks
outperform RNNs in case of a global normalization
rather than local normalizations as in Chen and
Manning (2014), which apply greedy parsing.

Mohammadshahi and Henderson (2019) utilize
a transformer network, in which graph features
are employed as input and output embeddings to
learn graph relations, thereby their novel model,
Graph2Graph transformer, is introduced.

Fernández-González and Gómez-Rodrı́guez
(2019) propose a transition-based algorithm that
is similar to the stack pointer model by Ma et al.
(2018); however, left-to-right parsing is adopted on
the contrary to Ma et al. (2018), where top-down
parsing is performed. Hence, each parse tree is
built in n actions for an n length sentence without
requiring any additional data structure.

In addition to these models, there are some
works such as the greedy parser of Ballesteros et al.
(2016) and Kuncoro et al. (2016), and the high-
performance parser by Qi and Manning (2017).

Nivre and McDonald (2008) indicate that graph-
based and transition-based parsers can be also com-
bined by integrating their features. And several
works follow this idea (Goldberg and Elhadad,
2010; Spitkovsky et al., 2010; Ma et al., 2013;
Ballesteros and Bohnet, 2014; Zhang and Clark,
2008).

3 The Formal Definition of Dependency
Parsing

Dependency parsing is the task of inferring the
grammatical structure of a sentence by identifying
the relationships between words. Dependency is a
head-dependent relation between words and each
dependent is affected by its head. The dependen-
cies in a dependency tree are always from the head
to the dependents.

The parsing, no matter which approach is used,
creates a dependency tree or a graph, as we men-
tioned above. There are some formal conditions of
this graph:

• Graph should be connected.

– Each word must have a head.

92

Figure 2: An example projective tree

Figure 3: An example non-projective tree

• Graph must be acyclic.

– If there are dependencies w1→ w2 and
w2 → w3; there must not be a depen-
dency such as w3→ w1.

• Each of the vertices must have one incoming
edge.

– Each word must only have one head. A
graph that includesw1→ w2 andw3→
w2 is not allowed in a dependency graph.

A dependency tree is projective if there are no
crossing edges on the dependency graph. Figure 2
illustrates a projective tree and Figure 3 illustrates
a non-projective dependency graph.

4 Dependency Parsing with Self
Attended Stack Pointer Network

4.1 Overview

Self Attended Stack Pointer Network is extended
on a standard Stack Pointer Network (STACKPTR)
(Ma et al., 2018) along with a self attention mecha-
nism. In STACKPTR, input word embeddings are
processed via a BiLSTM-CNN encoder, where a
BiLSTM is utilized to encode each word and a
CNN is utilized to learn character-based encod-
ing of each word. All words are stored in a stack
structure and each encoded word on the top of
the stack is decoded using an LSTM decoder to
discover their heads by utilizing high-order infor-
mation such as siblings and grandparents. Finally,
each dependency relation is predicted through a
Deep BiAffine Parser Dozat and Manning (2016)
in a standard Pointer Network architecture.

Our model deviates from the STACKPTR model
with a transformer network that encodes each word
with a self-attention mechanism, which will allow
to learn long-term dependencies since every word’s
relation to all words in a sentence can be effec-
tively processed in a transformer network on the

contrary to recurrent neural networks. In sequen-
tial recurrent structures such as RNNs or LSTMs,
every word’s encoding contains information about
only previous words in a sentence and there is al-
ways a loss in the information flow through the
long sequences in those structures.

In our transformer network, we adopt a multi-
head attention and a feed-forward network. Once
we encode a sequence with a transformer network,
we decode the sequence to predict the head of each
word in that sequence by using a stack pointer net-
work.

4.2 Transformer Encoder

In RNNs, each state is informed by the previous
states with a sequential information flow through
the states. However, in longer sequences, informa-
tion passed from earlier states loses its effect on
the later states in RNNs by definition. Transformer
networks are effective attention-based neural net-
work architectures (Vaswani et al., 2017). The main
idea is to replace the recurrent networks with a sin-
gle transformer network which has the ability to
compute the relationships between all words in a
sequence with a self-attention mechanism without
requiring any recurrent structure. Therefore, each
word in a sequence will be informed by all other
words in the sequence.

Learning long term dependencies in especially
long sentences is still one of the challenges in de-
pendency parsing. We employ transformer net-
works in order to tackle with the long term depen-
dencies problem by eliminating the usage of recur-
rent neural networks while encoding each sentence
during parsing. Hence, we use transformer network
as an encoder to encode each word by feeding our
transformer encoder with each word’s pretrained
word embeddings (Glove (Pennington et al., 2014)
or Polyglot (Al-Rfou’ et al., 2013) embeddings),
part-of-speech (PoS) tag embeddings, character-
level word embeddings obtained from CNN, and
the positional encodings of each word.

Positional encoding (PE) is used to inject posi-
tional information for each encoded word, since
there is not a sequential recurrent structure in a self
attention mechanism. With the positional encoding,
some relative or absolute positions of words in a
sentence are utilized. The cos function is used for
the odd indices and the sin function is used for
even indices. The injection of the position infor-
mation is performed with the sinus waves. The

93

Figure 4: Overview of the Self-Attended Pointer Network Model. After concatenating word embeddings, POS tag
embeddings, and char-embeddings obtained from CNN, the final embedding is fed into the self-attention encoder
stack. Then, embedding of the word at the top of the stack, its sibling and grandparent vectors are summed-up in
order to predict the dependency head.

sin function for the even indices is computed as
follows:

PE(x, 2i) = sin

(
x

100002i/dmodel

)
(1)

where dmodel is the dimension of the word embed-
dings, i ∈ [0, dmodel/2), and x is the position of
each word where x ∈ [0, n] in the input sequence
s = (w0, w1 . . . wn). The cos function for the odd
indices is computed analogously.

The positional encoding is calculated for each
embedding and they are summed. So the dimen-
sion dmodel does not change. Concatenation is also
possible theoretically. However, in the input and
output embeddings, the position information is in-
cluded in the first few indices in the embedding.
Thus, when the dmodel is large enough, there is no
need to concatenate. The summation also meets
the requirements.

The Encoder stack contains a Multi-Head At-
tention and a Feed-Forward Network. A Layer
Normalization is applied after each of these two
layers. There could be more than one encoder in
the encoder stack. In this case, all of the outputs
in one encoder is fed into the next encoder in the
encoder stack. In our model, we performed several
experiments with different number of encoder lay-
ers in the encoder stack to optimize the number of
encoder layers for parsing.

Multi-Head Attention is evolved from Self-
Attention Mechanism, which enables encoding all
words using all of the words in the sentence. So it
learns better relations between words compared
to recurrent structures. The all-to-all encoding
in self-attention mechanism is performed through

query, key and value matrices. There are multiple
sets of queries, keys and values that are learned
in the model. Self-attention is calculated for each
of these sets and a new embedding is produced.
The new embeddings for each set are concatenated
and multiplied with Z matrix which is a randomly-
initialized matrix in order to compute the final em-
beddings. Z matrix is trained jointly and multiplied
with the concatenated weight matrix in order to re-
duce the embeddings into a single final embedding
for each set. In other words, the final embedding is
learnt from different contexts at the same time. It is
multi-head because it learns from the head of each
set. The head of each set is calculated by using
self-attention.

Finally, a Feed Forward Neural Network which
is basically a neural network with two linear layers
and ReLU activation function is used to process the
embeddings obtained from multi-head attention. It
is placed at the end of the encoder because with
this feed-forward neural network, we can train the
embeddings with a latent space of words.

Layer Normalization (Ba et al., 2016) is applied
to normalize the weights and retain some form
of information from the previous layers, which is
performed for both Multi-Head Attention and Feed
Forward Neural Network.

Final output embeddings contain contextual in-
formation about the input sentence and the words
in the sequence. So, the output of the Trans-
former Encoder is a -theoretically- more compre-
hensive representation of contextual information
compared to the input word embeddings and also
compared to the the output of a BiLSTM encoder

94

head sibling modifier

Figure 5: Sibling structure

grandparent head modifier

Figure 6: Grandchild structure

of a STACKPTR.

4.3 Stack Pointer Network
Stack Pointer Network (STACKPTR) (Ma et al.,
2018) is a transition-based structure but it still per-
forms a global optimization over the potential de-
pendency parse trees of a sentence. STACKPTR is
based on a pointer network (PTR-NET) (Vinyals
et al., 2015) but differently, a STACKPTR has a
stack to store the order of head words in trees. In
each step, an arc is built from a child to the head
word at the top of the stack based on the attention
scores obtained from a pointer network.

We use a Stack Pointer Network for decoding
the sequence to infer the dependencies, where each
word is encoded with a Transformer Network as
mentioned in the previous section.

The transformer encoder outputs a hidden state
vector si for the ith word in the sequence. The hid-
den state vector is summed with higher-order infor-
mation similar to that of Ma et al. (2018). There are
two types of higher-order information in the model:
Sibling (two words that have the same parent) and
grandparent/grandchild (parent of the word’s par-
ent and the child of the word’s child). Figure 5 and
Figure 6 shows an illustration of these high-order
structures.

So, the input vector for the decoder is the sum of
the state vector of the word on the top of the stack,
its sibling and its grandparent:

βi = sh + ss + sg (2)

In the decoder part, an LSTM gathers all of the
contextual and higher-order information about the
word at the top of stack. Normally, in the pointer
networks, at each time step t, the decoder receives
the input from the last step and outputs decoder
hidden state ht. Therefore, an attention score is

obtained as follows:

eti = score(ht, si) (3)

where et is the output of the scoring function, si
is the encoder hidden state and ht is the decoder
hidden state at time step t. After calculating the
score for each possible output in the Biaffine atten-
tion mechanism, the final prediction is performed
as follows with a softmax function to convert it into
a probability distribution:

at = softmax(et) (4)

where at is the output probability vector for each
possible child word and et is the output vector of
the scoring function.

In our model, scoring function is adopted from
Deep Biaffine attention mechanism (Dozat and
Manning, 2016):

eti = hTt Wsi + U tht + V tsi + b (5)

where W is the weight matrix, U and V are the
weight vectors and b is the bias.

Additionally, before the scoring function, an
MLP is applied to the output of decoder, as pro-
posed by Dozat and Manning (2016) to reduce the
dimensionality.

As for the dependency labels, we also use an-
other MLP to reduce the dimensionlity and then
apply deep biaffine to score the possible labels for
the word at the top of the stack.

4.4 Learning

We use cross-entropy loss for training the model
similar to STACKPTR. The probability of a parse
tree y for a given sentence x under the parameter
set θ is Pθ(y|x) and estimated as follows:

Pθ(y|x) =
k∏

i=1

Pθ(pi|p<i, x) (6)

=
k∏

i=1

li∏

j=1

Pθ(ci,j |ci,<j , p<i, x) (7)

p<i denotes the preceding paths that have already
been generated, ci,j represents the jth word in the
path pi and ci,<j denotes all the proceeding words
on the path pi. Here, a path consists of a sequence
of words from the root to the leaf.

The model learns the arcs and labels in the de-
pendency tree simultaneously.

95

5 Experiments & Results

5.1 Datasets
We ran experiments on both Turkish and English.
We used Penn Treebank (PTB) (Marcus et al.,
1993) for English and IMST dataset (Sulubacak
et al., 2016) in Universal Dependencies for Turk-
ish.

As for the word embeddings, we used pre-trained
Glove embeddings (Pennington et al., 2014) on
Wikipedia and pre-trained Polyglot embeddings
(Al-Rfou’ et al., 2013) on Wikipedia for both Turk-
ish and English.

5.2 Evaluation Metrics
For the evaluation, we used two different evaluation
metrics: UAS and LAS, which are the standard
metrics for dependency parsing.

UAS is a metric that is used to calculate the ac-
curacy of predicting words’ heads. In other words,
it is the ratio of the number of correctly predicted
heads to the total number of words in the dataset:

UAS = #ofcorrectheads

#ofwords
(8)

LAS is another metric for dependency parsing
that measures the correctness of both heads and
labels. In other words, it is the ratio of correctly
predicted heads and labels to the total number of
words in the dataset:

LAS = #ofcorrecthead, labelpair

#ofwords
(9)

5.3 Hyperparameters
In our experiments, we use similar configurations
with the baseline models: STACKPTR model by
Ma et al. (2018) and Self-Attention mechanism by
Vaswani et al. (2017). Differently from the base-
line models, for the self-attended encoder stack; we
used 6 layers because this configuration performs
better with the Polyglot embeddings for both En-
glish and Turkish as seen in Table 1 and Table 2 for
English and Turkish respectively.

5.4 Results
The results obtained from IMST dataset (Suluba-
cak et al., 2016) in Turkish is given in Table 3,
along with the results of other related work. OUr
results compared to other related work show com-
petitive performance for Turkish language. Our
model gives an UAS score of 74.43% and LAS
score of 64.26% with Glove embeddings, whereas

Layer UAS
1 86.24
2 88.56
4 92.40
6 94.23
8 93.13

Table 1: Accuracy for different number of encoder lay-
ers for PTB Dataset (Marcus et al., 1993)

Layer UAS
1 69.89
2 71.48
4 74.51
6 76.81
8 75.32

Table 2: Accuracy for different number of encoder lay-
ers for Turkish IMST Dataset (Sulubacak et al., 2016)

an UAS score of 76.81% and LAS score of 67.95%
are obtained with Polyglot embeddings. Therefore,
using Polyglot embeddings gives far better results
in Turkish. This could be due to the size of the
train set used for the Polyglot embeddings.

The results obtained from Penn Treebank dataset
(Marcus et al., 1993) in English is given in Table
4. Our results again show competitive performance
compared to other related work for English. Simi-
lar to the Turkish results, our model performs bet-
ter with Polyglot embeddings. While Glove gives
93.43% UAS and 91.98% LAS, Polyglot gives
94.23% UAS and 92.67% LAS.

5.5 Error Analysis

5.5.1 Sentence Length
The main aim in this study is to utilize Transformer
Networks to resolve the long-term dependencies
problem in dependency parsing. We analyzed the
accuracy of our model in both short and longer
sentences to see the impact of the Transformer
Networks in our model compared to sequential
STACKPTR model that is based on LSTMs.

Table 7 gives the results for different lengths of
sentences to show the impact of using Transformer
Networks in long term depedencies. We compare
our model with the original STACKPTR (Ma et al.,
2018) model, which is based on LSTMs. As the
results show, our model performs far better for
sentences with more than 20 words compared to the
standard STACKPTR model, with an improvement

96

Model UAS LAS
Our Model w/ Glove 74.43 64.26

Our Model w/ Polyglot 76.81 67.95
Nguyen and Verspoor (2018) 70.53 62.55

Kondratyuk and Straka (2019) 74.56 67.44
McDonald et al. (2006) 74.70 63.20

Dozat and Manning (2016) 77.46 68.02
Ma et al. (2018) 79.56 68.93

Ballesteros et al. (2015) 79.30 69.28

Table 3: Results for Turkish IMST Dataset (Sulubacak
et al., 2016)

Model UAS LAS
Our Model w/ Glove 93.43 91.98

Our Model w/ Polyglot 94.23 92.67
Ballesteros et al. (2015) 91.63 89.44

Chen and Manning (2014) 91.8 89.6
Kiperwasser and Goldberg (2016) 93.1 91.0

Ballesteros et al. (2016) 93.56 91.42
Weiss et al. (2015) 94.26 92.41
Andor et al. (2016) 94.61 92.79

Ma and Hovy (2017) 94.88 92.98
Dozat and Manning (2016) 95.74 94.08

Ma et al. (2018) 95.87 94.19

Table 4: Results for English PTB Dataset (Marcus et al.,
1993)

of UAS score with around 7%.
For less than 20 words, our model’s accuracy

is lower compared to longer sentences. It shows
that our self-attention based model is not able to
learn shorter sentences better than the BiLSTM
based STACKPTR model. However, we observed
that decreasing the number of layers in our encoder
stack gives a higher accuracy for shorter sentences.
However, it decreases the overall accuracy for the
entire dataset.

5.5.2 The Impact of Punctuation

We also analyzed the impact of using punctua-
tion in the datasets during training. Analysis of
Spitkovsky et al. (Spitkovsky et al., 2011) shows
that the usage of lexicalized and punctuated sen-
tences gives better results in dependency parsing.
So, we ran our model with both punctuated and
not-punctuated versions of both datasets in Turkish
and English. Table 5 shows that punctuation af-
fects the learning of the model for both languages

Dataset w/ Punctuation w/o Punctuation
PTB 94.23 (92.67) 93.47 (91.94)

IMST 76.81 (67.95) 71.96 (62.41)

Table 5: Accuracy (UAS (LAS)) with and without
punctuation on IMST (Sulubacak et al., 2016) and PTB
(Marcus et al., 1993) Datasets

Input Embeddings UAS
Glove 63.24

Polyglot 65.76
Polyglot + PoS 70.48
Polyglot + CNN 73.81

Polyglot + PoS + CNN 76.81

Table 6: The impact of using word embeddings (Glove
or Polyglot), PoS tag embeddings and character-based
word embeddings for the Turkish IMST Dataset (Su-
lubacak et al., 2016)

and the results are comparably higher when the
punctuation is also used in the datasets. The im-
pact of using punctuation is even more for Turkish
language and both UAS and LAS are around %5
higher compared to training on datasets without
punctuation.

5.5.3 The Impact of Using Embeddings
We analyzed the effect of using various embeddings
in the Transformer encoder. As mentioned before,
we utilize word embeddings, PoS tag embeddings
and char embeddings obtained from CNN in our
model. Table 6 shows the impact of the embed-
dings on the accuracy of the model. As the results
show, character-level encoding plays a crucial role
in our model because it helps to mitigate the OOV
problem during training. We obtained the highest
scores when Polyglot word embeddings, PoS tag
embeddings and character-based word embeddings
are incorporated in training.

6 Conclusion & Future Work

Our experiments show that using Self-Attention
mechanism increases parsing accuracy especially
in longer sentences in Turkish. However, our parser
requires more data to learn better for also shorter
sentences. The results also show that using charac-
ter level word embeddings along with word embed-
dings and PoS tag embeddings gives the highest
accuracy for our model.

We obtained the highest scores when we include

97

Number of words in sentence UAS - STACKPTR UAS - Self-Attended STACKPTR

less than 10 words 93.23 86.47
between 10 and 20 words 88.96 81.63

more than 20 words 56.49 62.33

Table 7: Accuracies for different lengths of sentences in IMST Dataset in Turkish (Sulubacak et al., 2016)

6 layers in our encoder stack by using Polyglot
embeddings. Our results also show that including
punctuation in the dataset improves the accuracy
substantially.

We leave integrating morpheme-level informa-
tion in especially morphologically rich languages
such as Turkish as future work.

References
Rami Al-Rfou’, Bryan Perozzi, and Steven Skiena.

2013. Polyglot: Distributed word representations
for multilingual NLP. In Proceedings of the Seven-
teenth Conference on Computational Natural Lan-
guage Learning, pages 183–192, Sofia, Bulgaria.
Association for Computational Linguistics.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei
Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally normal-
ized transition-based neural networks. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 2442–2452, Berlin, Germany. Associa-
tion for Computational Linguistics.

Gabor Angeli, Melvin Jose Johnson Premkumar, and
Christopher D. Manning. 2015. Leveraging linguis-
tic structure for open domain information extraction.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
344–354, Beijing, China. Association for Computa-
tional Linguistics.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hin-
ton. 2016. Layer normalization.

Miguel Ballesteros and Bernd Bohnet. 2014. Au-
tomatic feature selection for agenda-based depen-
dency parsing. In Proceedings of COLING 2014,
the 25th International Conference on Computa-
tional Linguistics: Technical Papers, pages 794–
805, Dublin, Ireland. Dublin City University and As-
sociation for Computational Linguistics.

Miguel Ballesteros, Chris Dyer, and Noah A. Smith.
2015. Improved transition-based parsing by model-
ing characters instead of words with lstms.

Miguel Ballesteros, Yoav Goldberg, Chris Dyer, and
Noah A. Smith. 2016. Training with exploration im-
proves a greedy stack-lstm parser.

Xavier Carreras and Michael Collins. 2009. Non-
projective parsing for statistical machine translation.
In Proceedings of the 2009 Conference on Empiri-
cal Methods in Natural Language Processing, pages
200–209, Singapore. Association for Computational
Linguistics.

Danqi Chen and Christopher Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 740–750, Doha, Qatar. Association
for Computational Linguistics.

Huadong Chen, Shujian Huang, David Chiang, and Ji-
ajun Chen. 2017. Improved neural machine trans-
lation with a syntax-aware encoder and decoder.
pages 1936–1945.

Hao Cheng, Hao Fang, Xiaodong He, Jianfeng Gao,
and Li Deng. 2016. Bi-directional attention with
agreement for dependency parsing. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 2204–2214,
Austin, Texas. Association for Computational Lin-
guistics.

Do Kook Choe and Eugene Charniak. 2016. Parsing
as language modeling. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2331–2336, Austin, Texas.
Association for Computational Linguistics.

Kevin Clark, Minh-Thang Luong, Christopher D. Man-
ning, and Quoc V. Le. 2018. Semi-supervised se-
quence modeling with cross-view training.

Timothy Dozat and Christopher D. Manning. 2016.
Deep biaffine attention for neural dependency pars-
ing.

Gülşen Eryiğit, Joakim Nivre, and Kemal Oflazer. 2008.
Dependency parsing of turkish. Computational Lin-
guistics, 34(3):357–389.

Daniel Fernández-González and Carlos Gómez-
Rodrı́guez. 2019. Left-to-right dependency parsing
with pointer networks. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 710–716, Minneapolis, Minnesota.
Association for Computational Linguistics.

Jenny Rose Finkel and Christopher D. Manning. 2009.
Joint parsing and named entity recognition. In Pro-
ceedings of Human Language Technologies: The

98

2009 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 326–334, Boulder, Colorado. Associ-
ation for Computational Linguistics.

Katrin Fundel-Clemens, Robert Küffner, and Ralf Zim-
mer. 2007. Relex - relation extraction using de-
pendency parse trees. Bioinformatics (Oxford, Eng-
land), 23:365–71.

Yoav Goldberg and Michael Elhadad. 2010. An effi-
cient algorithm for easy-first non-directional depen-
dency parsing. In Human Language Technologies:
The 2010 Annual Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics, pages 742–750, Los Angeles, California.
Association for Computational Linguistics.

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsu-
ruoka, and Richard Socher. 2017. A joint many-task
model: Growing a neural network for multiple NLP
tasks. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 1923–1933, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

John Hewitt and Christopher D. Manning. 2019. A
structural probe for finding syntax in word repre-
sentations. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4129–4138, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9:1735–
80.

Tao Ji, Yuanbin Wu, and Man Lan. 2019. Graph-
based dependency parsing with graph neural net-
works. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 2475–2485, Florence, Italy. Association
for Computational Linguistics.

Zhanming Jie, Aldrian Obaja Muis, and Wei Lu. 2017.
Efficient dependency-guided named entity recogni-
tion. In Proceedings of the Thirty-First AAAI Con-
ference on Artificial Intelligence, AAAI’17, page
3457–3465. AAAI Press.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional LSTM feature representations. Transactions
of the Association for Computational Linguistics,
4:313–327.

Dan Kondratyuk and Milan Straka. 2019. 75 lan-
guages, 1 model: Parsing universal dependencies
universally.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, and Noah A. Smith. 2016. Distill-
ing an ensemble of greedy dependency parsers into
one mst parser.

Ying Li, Zhenghua Li, Min Zhang, Rui Wang, Sheng
Li, and Luo Si. 2019. Self-attentive biaffine depen-
dency parsing. In Proceedings of the 28th Inter-
national Joint Conference on Artificial Intelligence,
pages 5067–5073. AAAI Press.

Zuchao Li, Jiaxun Cai, Shexia He, and Hai Zhao. 2018.
Seq2seq dependency parsing. In Proceedings of
the 27th International Conference on Computational
Linguistics, pages 3203–3214, Santa Fe, New Mex-
ico, USA. Association for Computational Linguis-
tics.

Ji Ma, Jingbo Zhu, Tong Xiao, and Nan Yang. 2013.
Easy-first POS tagging and dependency parsing with
beam search. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 110–114,
Sofia, Bulgaria. Association for Computational Lin-
guistics.

Xuezhe Ma and Eduard Hovy. 2017. Neural proba-
bilistic model for non-projective MST parsing. In
Proceedings of the Eighth International Joint Con-
ference on Natural Language Processing (Volume 1:
Long Papers), pages 59–69, Taipei, Taiwan. Asian
Federation of Natural Language Processing.

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng,
Graham Neubig, and Eduard Hovy. 2018. Stack-
pointer networks for dependency parsing. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1403–1414, Melbourne, Australia.
Association for Computational Linguistics.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of english: The penn treebank.

Marie-Catherine de Marneffe, Timothy Dozat, Na-
talia Silveira, Katri Haverinen, Filip Ginter, Joakim
Nivre, and Christopher D. Manning. 2014. Uni-
versal Stanford dependencies: A cross-linguistic ty-
pology. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC-2014), pages 4585–4592, Reykjavik, Ice-
land. European Languages Resources Association
(ELRA).

Ryan McDonald, Kevin Lerman, and Fernando Pereira.
2006. Multilingual dependency analysis with a two-
stage discriminative parser. In Proceedings of the
Tenth Conference on Computational Natural Lan-
guage Learning (CoNLL-X), pages 216–220, New
York City. Association for Computational Linguis-
tics.

Alireza Mohammadshahi and James Henderson. 2019.
Graph-to-graph transformer for transition-based de-
pendency parsing.

Dat Quoc Nguyen and Karin Verspoor. 2018. An im-
proved neural network model for joint. Proceedings
of the.

99

Joakim Nivre and Ryan McDonald. 2008. Integrat-
ing graph-based and transition-based dependency
parsers. In Proceedings of ACL-08: HLT, pages
950–958, Columbus, Ohio. Association for Compu-
tational Linguistics.

Nanyun Peng, Hoifung Poon, Chris Quirk, Kristina
Toutanova, and Wen-tau Yih. 2017. Cross-sentence
n-ary relation extraction with graph lstms. Transac-
tions of the Association for Computational Linguis-
tics, 5.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532–1543, Doha, Qatar. Asso-
ciation for Computational Linguistics.

Peng Qi and Christopher D. Manning. 2017. Arc-swift:
A novel transition system for dependency parsing.

Valentin I. Spitkovsky, Hiyan Alshawi, and Daniel Ju-
rafsky. 2010. From baby steps to leapfrog: How
“less is more” in unsupervised dependency parsing.
In Human Language Technologies: The 2010 An-
nual Conference of the North American Chapter
of the Association for Computational Linguistics,
pages 751–759, Los Angeles, California. Associa-
tion for Computational Linguistics.

Valentin I. Spitkovsky, Hiyan Alshawi, and Daniel Ju-
rafsky. 2011. Punctuation: Making a point in un-
supervised dependency parsing. In Proceedings of
the Fifteenth Conference on Computational Natural
Language Learning, pages 19–28, Portland, Oregon,
USA. Association for Computational Linguistics.

Umut Sulubacak, Memduh Gokirmak, Francis Tyers,
Çağrı Çöltekin, Joakim Nivre, and Gülşen Eryiğit.
2016. Universal dependencies for Turkish. In Pro-
ceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Techni-
cal Papers, pages 3444–3454, Osaka, Japan. The
COLING 2016 Organizing Committee.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1556–1566, Beijing, China. Association for
Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural net-
work transition-based parsing. In Proceedings of
the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 323–333, Beijing,
China. Association for Computational Linguistics.

Yue Zhang and Stephen Clark. 2008. A tale of two
parsers: Investigating and combining graph-based
and transition-based dependency parsing. In Pro-
ceedings of the 2008 Conference on Empirical Meth-
ods in Natural Language Processing, pages 562–
571, Honolulu, Hawaii. Association for Computa-
tional Linguistics.

Yuhao Zhang, Peng Qi, and Christopher D. Manning.
2018. Graph convolution over pruned dependency
trees improves relation extraction. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2205–2215, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Junru Zhou and Hai Zhao. 2019. Head-driven phrase
structure grammar parsing on Penn treebank. In
Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
2396–2408, Florence, Italy. Association for Compu-
tational Linguistics.

100

Proceedings of the 17th International Conference on Natural Language Processing, pages 101–107
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Creation of Corpus and Analysis in Code-Mixed
Kannada-English Social Media Data for POS Tagging

Appidi Abhinav Reddy, Vamshi Krishna Srirangam,
Suhas Darsi and Manish Shrivastava

Language Technologies Research Centre (LTRC)
Kohli Centre on Intelligent Systems(KCIS)

International Institute of Information Technology, Hyderabad, India.
(abhinav.appidi, v.srirangam, darsi.suhas)@research.iiit.ac.in

m.shrivastava@iiit.ac.in

Abstract

Part-of-Speech (POS) is one of the essential
tasks for many Natural Language Processing
(NLP) applications. There has been a signifi-
cant amount of work done in POS tagging for
resource-rich languages. POS tagging is an
essential phase of text analysis in understand-
ing the semantics and context of language.
These tags are useful for higher-level tasks
such as building parse trees, which can be used
for Named Entity Recognition, Coreference
resolution, Sentiment Analysis, and Question
Answering. There has been work done on
code-mixed social media corpus but not on
POS tagging of Kannada-English code-mixed
data. Here, we present Kannada-English code-
mixed social media corpus annotated with cor-
responding POS tags. We also experimented
with machine learning classification models
CRF, Bi-LSTM, and Bi-LSTM-CRF models
on our corpus.

1 Introduction

The advent of social media like Twitter, Facebook,
and Reddit has accelerated the communication be-
tween people of all colors, nations, and languages.
Though the platform exists, the barriers to com-
munication still exist due to languages. Many re-
searchers are trying to solve this through various
methods.

India is a land of multiple languages and ma-
jority of people are multilingual and tend to mix
words from different languages in written text
and also in speech. This interchanging language
method involves complex grammar and is com-
monly addressed by terms ‘Code-mixing’ and
‘Code-switching’ as described by Lipski (1978).
Code-switching refers to the use of words or
phrases from different languages within the same
speech context, whereas Code-mixing refers to the
use of words or phrases from different languages

in the same sentence. We can understand the dif-
ference between code-mixing and code-switching
from the positions of altered elements. Code-
mixing refers to the intra-sentential modification of
codes, whereas code-switching refers to the inter-
sentential modification of codes.

1.1 Characteristic of Code-Mixed
Kannada-English Data

As explained above mixing happens at phrase,
word, syntactic and morphological level too. Fol-
lowing are few more examples :

1. Morphological level: The word ‘cinemagalu’
in Kannada, the root word ‘cinema’ is bor-
rowed from English and ‘galu’ is a Kannada
morphene that marks plurality.

2. Phrase level: This is a completely code-
mixed sentence. For example, ‘Kelsa bittu
pitch reporter aagu olle future ide!’ which
means ‘Leave your work and become pitch
reporter, you have great future in that!’. Here
the statement follows the structure of Kannada
with English words embedded in it.

3. Word level: This is language mixing occur-
ing at word level. A complete word from
English language is taken into Kannada lan-
guage. An example: ‘Ee thara branch ideya’
which means ‘Is there a branch like this?’.

4. Syntactic level: There are occurrences
in Kannada-English CM data where inter-
sentential mixing takes place. For example,
‘Born and brought up in bengaluru, Yaako
nange mysoor thumba ista, mysoor alli kelsa
sikdre ready to shift.’

While there are robust solutions currently to han-
dle non-code-mixed data, the same is not true for
code-mixed data. One of the keys to solving any

101

higher-level NLP tasks is to do POS tagging. While
POS tagging on English is very mature at this point,
POS tagging for code-mixed in low-resource lan-
guages is relatively uncommon. In this paper, we
have tried to address this problem. Here, we present
Kannada-English code-mixed social media corpus
annotated with corresponding POS tags.

Due to unstructured, informal, and incomplete
information available in the data, it complicates the
task of Code-mixed Kannada-English. Following
are the challenges associated with the corpus.

• Ambiguous words: A word in one language
can have a different meaning in other lan-
guages. For example, the word ‘Bali’ in En-
glish, which is a place in Indonesia, also used
in Kannada which means ‘Near’.

• Word-level Code-mixing: In the word ‘Kan-
glish’, its a fusion of two words Kannada and
English at word level. This is similar to lan-
guage mixing at word-level.

• Word Orders: English and Indian languages
follow different word orders. Indian lan-
guages follow Subect-Object-Verb format,
whereas English language follows Subject-
Verb-Object format.

• Reduplication: People tend to use a second
word with first word, which does not have a
meaning on its own. The second word when
addressed together with the first word it be-
comes a multi word expression. For example
‘postu geestu’, ‘desha gesha’, ‘man ban’.

• Variable Lexical Representations: Users on
social media have preference for their own
way of native words like for example ‘hogilla’
is a Kannada word and it can be written as
‘hogila’, ‘hgilla’ etc.

Here are an instance depicting Kannada-English
code-mixed nature and its translation.

T1 : “@Suharsh2512 oho, idyaavdo bril-
liant facility. Nanna phone alli sound barutte..
ondond sala baralla. Hyaage nodu...”
Translation: “@Suharsh212 Oho...this is some
brilliant facility...in my phone there is sound..once
there is no sound...see how it is ”

2 Background and Related Work

POS tagging is a crucial stage in the NLP pipeline
(Cutting et al., 1992) and has been explored exten-
sively by Toutanova et al. (2003). Gimpel et al.
(2010) and Owoputi et al. (2013) worked on the
POS tagging of social media data. POS tagging
for English using Dynamic Feature Induction with
an accuracy of 97.64% was done on the WallStreet
journal data set by Choi (2016).

POS tagging work has been done on Indian
monolingual languages. Earlier work in POS tag-
ging for Indian languages was mainly based on
rule-based approaches (Antony and Soman, 2011).
Some works in POS tagger system in Hindi done
by Singh et al. (2006) and in the Bengali language
was done by Ekbal et al. (2009) and in Telugu by
RamaSree and Kusuma Kumari (2007).

Not many works were done on the POS tagger on
Code-mixed data. POS taggers have been trained
on Hindi-English code-mixed posts generated on
Facebook (Vyas et al., 2014; Sharma et al., 2016).
Only one public dataset of English-Hindi code-
mixed Twitter posts annotated for POS tags ex-
ists (Jamatia and Das, 2016). Some of the recent
works in code-mixed includes POS on code-mixed
Telugu-English by Nelakuditi et al. (2016) and in
NER in Telugu-English code-mixed social media
data by Srirangam et al. (2019).

There are not many works done on Kannada
because of the scarcity of quality annotated data.
Recent works in POS tagging on Kannada were
experimented only with traditional ML techniques
like HMM, CRF, or SVM (BR and Kumar, 2012;
Antony and Soman, 2010). Todi et al. (2018) built
a Kannada POS tagger using machine learning and
neural network models.

There have been very few works done on
Kannada-English code-mixed data. Lakshmi
and Shambhavi (2017) presented an automatic
language identification system for code-mixed
Kannada-English Social media text. Shalini et al.
(2018) worked on sentiment analysis for Code-
Mixed Kannada-English Social Media Text.

To the best of our knowledge, the corpus created
for this paper is the first ever Kannada-English
code-mixed social media corpus with POS tags.

3 Corpus Creation and Annotation

This corpus consists of Kannada-English code
mixed tweets scraped from Twitter for the past
six years based on topics such as sports, trending

102

hashtags, politics, movies, events, and others not
limited to a particular domain. The tweets were
collected using twintproject1-an opensource twitter
intelligence tool. We retrieved over 318,000 tweets
using the mentioned tool. After extensive cleaning
and pre-processing of tweets, we were left with
6468 code-mixed Kannada-English tweets. We
have done extensive pre-processing of tweets and
retrieved them in JSON format. This JSON format-
ted data includes metadata like URLs, usernames,
retweets, tweet IDs, likes, full names, and others.

The following steps were followed during pre-
processing :

• Removing useless, noisy tweets, i.e., tweets
containing only hashtags and URLS.

• Tweets that were written in only English or
only Kannada were removed too.

• Tweets that having a minimum of ten words
and contain linguistic units from both English
and Kannada are only considered.

• Tweet Tokenizer is used to do Tokenisation of
tweets.

The corpus will be made available for public use
as soon as possible. The following explains the
mapping of the tokens with their respective tags.

3.1 Annotation: Parts of Speech
Since the paper focuses on two different languages
Kannada and English, we follow the Universal
POS proposed by Petrov et al. (2011), which
covers POS tags across all languages. There
are 17 tags in the Universal POS2, which we
are following such as adjectives(ADJ), adpo-
sition(ADP), adverb(ADV), auxiliary(AUX),
coordinating conjunction(CCONJ), deter-
miner(DET), interjection(INTJ), noun(NOUN),
numeral(NUM), particle(PART), pronoun(PRON),
proper noun(PROPN), punctuation(PUNCT), sub-
ordinating conjunction(SCONJ), symbol(SYM),
verb(VERB), and other(X). These tags are used
in the annotation of our corpus. ‘X’ tag in the
Universal POS is used to denote typos, foreign
words, unknown abbreviations, and others. We
included punctuation symbols under the category
‘PUNC’. Following is an example of an annotated
tweet and its translation.

1https://github.com/twintproject/twint
2https://universaldependencies.org/u/pos/

Tag Cohen Kappa Tokens
ADJ 0.84 6209
ADP 0.85 7000
ADV 0.85 11765
AUX 0.92 2098
CCONJ 0.83 2252
DET 0.88 3334
INTJ 0.87 943
NOUN 0.91 44533
NUM 0.92 1220
PART 0.89 569
PRON 0.89 17549
PROPN 0.91 7411
PUNCT 0.90 15602
SCONJ 0.82 1713
SYM 0.83 617
VERB 0.81 32545
X 0.85 1381

Table 1: Inter Annotator Agreement.

T2 : “Haha/INTJ ashtu/ADV idea/NOUN
illade/ADV gowdru/NOUN bengaluru/NOUN
north/NOUN bittu/VERB tumukur/NOUN
hogilla/ADV”
Translation: “Haha without having much idea
gowda left bengaluru north and went to tumukur.”

3.2 Inter-annotator Agreement

Two people who are with linguistic backgrounds,
both proficient in Kannada and English, manually
did the annotations of the POS tags. Inter Annota-
tor Agreement (IAA) is used to validate the qual-
ity of the annotation between two annotation sets
of 6468 tweets and 156761 tokens using Cohen’s
Kappa coefficient (Hallgren, 2012) (refer Table 1
for Score). The agreement is significantly high.

4 Corpus Statistics

We have collected more than 318,000 of tweets
from Twitter using TwintProject. After exten-
sive cleaning, we were left with 6468 code-mixed
Kannada-English tweets, as part of annotation us-
ing sixteen POS tags along with ‘X’ tag for foreign
words, we tagged 156761 tokens (refer Table 1).
We made sure that all the words in the corpus are in
Roman script. We used hashtags related to sports,
trending hashtags, politics, movies, events, and oth-
ers in collecting the corpus.

103

5 Experiments

We present the experiments using a combination
of features and systems. To understand the effect
of different parameters and features of the model,
we performed several experiments. With some
set of features at once and all at a time simultane-
ously, we performed experiments while changing
the parameters of the model, like regularization pa-
rameters and algorithms of optimization like ‘L2
regularization’, ‘Average Perceptron’and ‘Passive
Aggressive’ for CRF, optimization algorithms and
loss functions in LSTM. We used three-fold cross-
validation for CRF. We used ‘scikit-learn,’ ‘Tensor-
flow,’ and ‘Keras’ libraries to implement the above
algorithms.

5.1 Conditional Random Field (CRF)

CRFs are type of discriminative undirected proba-
bilistic graphical model. In natural language pro-
cessing, linear chain CRFs are popular, which im-
plement sequential dependencies in predictions.3

It is a supervised learning method and most often
used for structured prediction tasks. In CRF, a set
of feature functions are defined to extract features
for each word in a sentence. It has applications in
NER, POS tagging, among others. When it comes
to POS tagging, it has been proven to be better than
the tree-based models.

5.2 LSTM

Long Short Term Memory (LSTM) is a special
kind of RNN architecture that is well suited for
classification and making predictions based on time
series data. LSTMs are capable of capturing only
past information. In order to overcome this lim-
itation Bidirectional LSTMs are proposed where
two LSTM networks run in forward and backward
directions capturing the context in either directions.

5.3 LSTM-CRF

The Bi-LSTM-CRF is a combination of bidirec-
tional LSTM and CRF (Huang et al., 2015; Lample
et al., 2016). The Bi-LSTM model can be com-
bined with CRF to enhance recognition accuracy.
This combined model of Bi-LSTM-CRF inherits
the ability to learn past and future context features
from the Bi-LSTM model and use sentence-level
tags to predict possible tags using the CRF layer.
Bi-LSTM-CRF has been proved to be a powerful

3https://en.wikipedia.org/wiki/Conditionalrandomf ield

model for sequence labeling tasks like POS tagging,
shallow parsing, and NER.

5.4 Features
The features to our machine learning models con-
sist of lexical, word-level and character features
such as char N-Grams of size 2 and 3 in order
to capture the information from emojis, mentions,
suffixes in social media like ‘#,’ ‘@,’ numbers in
the string, numbers, punctuation. Features from
adjacent tokens are used as contextual features.

1. Character N-Grams: Character N-Grams
are proven to be efficient in the task of classi-
fication of text and are language-independent
(Majumder et al., 2002). They are helpful
when there are misspellings in the text (Cav-
nar et al., 1994; Huffman, 1995; Lodhi et al.,
2002). Group of chars can help in capturing
the semantic information. Character N-Grams
are especially helpful in cases like code mixed
language where there is free use of words,
which vary significantly from the standard
Kannada-English words.

2. Word N-Grams: Bag of words has been a sta-
ple for languages other than English (Jahangir
et al., 2012) in tasks like NER and POS. Thus,
we use adjacent words as a feature vector to
train our model as our word N-Grams. These
are also called contextual features. We used
Word N-Grams of size 3 in the paper.

3. Common Symbols: It is observed that cur-
rency symbols, brackets like ‘(,’ ‘[,’ etc. And
other symbols are followed by numeric or
some mention, are present in the corpus which
direct to symbol tag under Universal POS.
Hence, the presence of these symbols is a
good indicator of the words before or after
them for being a ‘SYM’ tag in POS tagging.

4. Numbers in String: In social media, we see
people using alphanumeric characters, gen-
erally to save the typing effort, to showcase
their style or shorten the message length.
When observed in our corpus, words contain-
ing alphanumeric are generally tagged under
‘NUM’ tag.

5. Mentions and Hashtags: People use ‘@’
mentions to refer to persons or organizations,
they use ‘#’ hashtags in order to make some-
thing notable or to make a topic trending.

104

Thus the presence of these two gives a reason-
able probability for the word being a named
entity which counts under proper nouns.

6. Capitalization: In social media, people tend
to use capital letters to refer to the names
of persons, organizations and persons; at
times, they write the entire name in capitals
(Von Däniken and Cieliebak, 2017) to give
particular importance or to denote aggression.
This gives rise to a couple of binary features.
One feature is to indicate if the beginning let-
ter of a word is capitalized, and the other is to
indicate if the entire word is capitalized.

6 Results and Discussion

Table 2 shows CRF results with ‘l2-sgd’ (Stochastic
Gradient Descent with L2 regularization) algorithm
for 200 iterations. The c2 value in the CRF model
refers to the ‘L2 regression’. Experiments using
the algorithms ‘pa’ (Passive-Aggressive) and ‘ap’
(Averaged Perceptron) resulted in similar F1-scores
of 0.79. The table 3 shows results after removing
each particular feature. Example prediction of our
CRF model is shown under appendix section.

In both the experiments Bi-LSTM and Bi-LSTM-
CRF, we experimented with the optimizer, acti-
vation functions, and the number of epochs. Af-
ter several experiments, the best result we came
through was using ‘softmax’ as activation func-
tion, ‘rmsprop’ as an optimizer and ‘categorical
cross-entropy’ as our loss function. Table2 shows
the results of BiLSTM on our corpus using thirty
epochs, and also shows the results of Bi-LSTM-
CRF on our corpus using twenty epochs, both with
random initialization of embedding vectors. The
training, validation, and testing for both experi-
ments are 60%, 10%, and 30% of the total data,
respectively. Bi-LSTM resulted in best F1-score
of 0.80 and Bi-LSTM-CRF with best F1-score of
0.81.

7 Conclusion and Future Work

Our Contributions are as follows:

1. Presented an annotated Kannada-English
code-mixed corpus for POS, which is, to the
best of our knowledge is the first ever corpus.
The corpus will be made available online.

2. We have experimented with the machine learn-
ing models CRF, Bi-LSTM, and Bi-LSTM-
CRF on our data, the F1-score for which is

Tag CRF Bi-LSTM BiL-CRF
ADJ 0.58 0.52 0.58
ADP 0.75 0.73 0.78
ADV 0.75 0.79 0.72
AUX 0.99 1.00 0.99

CCONJ 0.99 0.31 0.99
DET 0.85 0.74 0.88
INTJ 0.97 0.93 0.87

NOUN 0.83 0.84 0.84
NUM 0.69 0.76 0.74
PART 1.00 0.99 1.00
PRON 0.67 0.60 0.63

PROPN 0.86 0.77 0.77
PUNCT 1.00 1.00 1.00
SCONJ 0.77 1.00 0.75
SYM 0.80 0.74 0.78
VERB 0.70 0.70 0.69

X 0.79 0.80 0.81
weighted avg 0.80 0.79 0.79

Table 2: Table shows F1-scores for CRF, Bi-LSTM and
Bi-LSTM-CRF respectively.

Feature removed Precision Recall F1
Char
N-Grams

0.66 0.50 0.45

Word
N-Grams

0.62 0.53 0.50

Common
Symbols

0.66 0.55 0.52

Numbers
in String

0.62 0.56 0.55

Mentions,
Hashtags

0.60 0.56 0.54

Capitali-
zation

0.59 0.55 0.53

Table 3: Feature(removed) Specific Results for CRF.

0.79, 0.80, and 0.81 respectively, which looks
good considering the amount of research done
in this new area.

3. We are introducing and addressing Part-of-
Speech of code-mixed Kannada-English data
as a research problem.

For future work, the corpus can also be enriched by
giving the NER tags for each token. The size of the
corpus can be increased with more data. The prob-
lem can be adapted for POS tagging in multilingual
code-mixed data.

105

References
PJ Antony and KP Soman. 2010. Kernel based part

of speech tagger for kannada. In 2010 International
Conference on Machine Learning and Cybernetics,
volume 4, pages 2139–2144. IEEE.

PJ Antony and KP Soman. 2011. Parts of speech
tagging for indian languages: a literature survey.
International Journal of Computer Applications,
34(8):0975–8887.

Shambhavi BR and Ramakanth Kumar. 2012. Kan-
nada part-of-speech tagging with probabilistic clas-
sifiers. international journal of computer applica-
tions, 48(17):26–30.

William B Cavnar, John M Trenkle, et al. 1994. N-
gram-based text categorization. In Proceedings
of SDAIR-94, 3rd annual symposium on document
analysis and information retrieval, volume 161175.
Citeseer.

Jinho D Choi. 2016. Dynamic feature induction: The
last gist to the state-of-the-art. In Proceedings of the
2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 271–281.

Douglass Cutting, Julian Kupiec, Jan Pedersen, and
Penelope Sibun. 1992. A practical part-of-speech
tagger. In Third Conference on Applied Natural Lan-
guage Processing, pages 133–140.

Asif Ekbal, Md Hasanuzzaman, and Sivaji Bandyopad-
hyay. 2009. Voted approach for part of speech tag-
ging in bengali. In Proceedings of the 23rd Pa-
cific Asia Conference on Language, Information and
Computation, Volume 1, pages 120–129.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein,
Michael Heilman, Dani Yogatama, Jeffrey Flanigan,
and Noah A Smith. 2010. Part-of-speech tagging
for twitter: Annotation, features, and experiments.
Technical report, Carnegie-Mellon Univ Pittsburgh
Pa School of Computer Science.

Kevin A Hallgren. 2012. Computing inter-rater relia-
bility for observational data: an overview and tuto-
rial. Tutorials in quantitative methods for psychol-
ogy, 8(1):23.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF models for sequence tagging.
arXiv preprint arXiv:1508.01991.

Stephen Huffman. 1995. Acquaintance: Language-
independent document categorization by N-grams.
Technical report, DEPARTMENT OF DEFENSE
FORT GEORGE G MEADE MD.

Faryal Jahangir, Waqas Anwar, Usama Ijaz Bajwa, and
Xuan Wang. 2012. N-gram and gazetteer list based
named entity recognition for Urdu: A scarce re-
sourced language. In Proceedings of the 10th Work-
shop on Asian Language Resources, pages 95–104.

Anupam Jamatia and Amitava Das. 2016. Task re-
port: Tool contest on pos tagging for code-mixed in-
dian social media (facebook, twitter, and whatsapp)
text@ icon 2016.”. Proceedings of ICON.

BS Sowmya Lakshmi and BR Shambhavi. 2017. An
automatic language identification system for code-
mixed english-kannada social media text. In 2017
2nd International Conference on Computational Sys-
tems and Information Technology for Sustainable So-
lution (CSITSS), pages 1–5. IEEE.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
arXiv preprint arXiv:1603.01360.

John Lipski. 1978. Code-switching and the problem
of bilingual competence. Aspects of bilingualism,
250:264.

Huma Lodhi, Craig Saunders, John Shawe-Taylor,
Nello Cristianini, and Chris Watkins. 2002. Text
classification using string kernels. Journal of Ma-
chine Learning Research, 2(Feb):419–444.

P Majumder, M Mitra, and BB Chaudhuri. 2002. N-
gram: a language independent approach to IR and
NLP. In International conference on universal
knowledge and language.

Kovida Nelakuditi, Divya Sai Jitta, and Radhika
Mamidi. 2016. Part-of-speech tagging for code
mixed english-telugu social media data. In In-
ternational Conference on Intelligent Text Process-
ing and Computational Linguistics, pages 332–342.
Springer.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer,
Kevin Gimpel, Nathan Schneider, and Noah A
Smith. 2013. Improved part-of-speech tagging for
online conversational text with word clusters. In
Proceedings of the 2013 conference of the North
American chapter of the association for computa-
tional linguistics: human language technologies,
pages 380–390.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2011.
A universal part-of-speech tagset. arXiv preprint
arXiv:1104.2086.

RJ RamaSree and P Kusuma Kumari. 2007. Combin-
ing pos taggers for improved accuracy to create tel-
ugu annotated texts for information retrieval. Dept.
of Telugu Studies, Tirupathi, India.

K Shalini, HB Barathi Ganesh, M Anand Kumar, and
KP Soman. 2018. Sentiment analysis for code-
mixed indian social media text with distributed rep-
resentation. In 2018 International Conference on
Advances in Computing, Communications and Infor-
matics (ICACCI), pages 1126–1131. IEEE.

Arnav Sharma, Sakshi Gupta, Raveesh Motlani, Piyush
Bansal, Manish Srivastava, Radhika Mamidi, and
Dipti M Sharma. 2016. Shallow parsing pipeline for

106

hindi-english code-mixed social media text. arXiv
preprint arXiv:1604.03136.

Smriti Singh, Kuhoo Gupta, Manish Shrivastava, and
Pushpak Bhattacharyya. 2006. Morphological rich-
ness offsets resource demand–experiences in con-
structing a pos tagger for hindi. In Proceedings
of the COLING/ACL 2006 Main Conference Poster
Sessions, pages 779–786.

Vamshi Krishna Srirangam, Appidi Abhinav Reddy,
Vinay Singh, and Manish Shrivastava. 2019. Cor-
pus creation and analysis for named entity recogni-
tion in telugu-english code-mixed social media data.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics: Student
Research Workshop, pages 183–189.

Ketan Kumar Todi, Pruthwik Mishra, and Dipti Misra
Sharma. 2018. Building a kannada pos tagger using
machine learning and neural network models. arXiv
preprint arXiv:1808.03175.

Kristina Toutanova, Dan Klein, Christopher D Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of the 2003 conference of the North
American chapter of the association for computa-
tional linguistics on human language technology-
volume 1, pages 173–180. Association for Compu-
tational Linguistics.

Pius Von Däniken and Mark Cieliebak. 2017. Trans-
fer learning and sentence level features for named
entity recognition on tweets. In 3rd Workshop on
Noisy User-generated Text (W-NUT), Copenhagen,
7 September 2017, volume 3, pages 166–171. ACL.

Yogarshi Vyas, Spandana Gella, Jatin Sharma, Kalika
Bali, and Monojit Choudhury. 2014. Pos tagging of
english-hindi code-mixed social media content. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 974–979.

A Appendices

A.1 Example Prediction of CRF

Word Truth Predicted
Haha INTJ INTJ
ashtu ADV VERB
idea NOUN NOUN

illade ADV VERB
gowdru NOUN NOUN

bengaluru NOUN NOUN
north NOUN NOUN
bittu VERB NOUN

tumukur NOUN NOUN
hogilla ADV ADV

107

Proceedings of the 17th International Conference on Natural Language Processing, pages 108–116
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Identifying Complaints from Product Reviews in Low-resource
Scenarios via Neural Machine Translation

Raghvendra P. Singh‡, Rejwanul Haque⋆, Mohammed Hasanuzzaman† and Andy Way
The ADAPT Centre

‡School of Computing, Dublin City University, Dublin, Ireland
⋆School of Computing, National College of Ireland, Dublin, Ireland
†School of Computing, Cork institute of Technology, Cork, Ireland

raghvendra.singh6@mail.dcu.ie
rejwanul.haque,mohammed.hasanuzzaman,andy.way@adaptcentre.ie

Abstract

Automatic recognition of customer com-
plaints on products or services that they
purchase can be crucial for the organisa-
tions, multinationals and online retailers
since they can exploit this information to
fulfil their customers’ expectations includ-
ing managing and resolving the complaints.
Recently, researchers have applied super-
vised learning strategies to automatically
identify users’ complaints expressed in En-
glish on Twitter. The downside of these ap-
proaches is that they require labeled train-
ing data for learning, which is expensive
to create. This poses a barrier for them
being applied to low-resource languages
and domains for which task-specific data
is not available. Machine translation (MT)
can be used as an alternative to the tools
that require such task-specific data. In
this work, we use state-of-the-art neural
MT (NMT) models for translating Hindi
reviews into English and investigate per-
formance of the downstream classification
task (complaints identification) on their
English translations.

1 Introduction
Almost all online retailers allow users to freely
express their opinions and thoughts on prod-
ucts via their websites and relevant social me-
dia platforms. Customers who intend to pur-
chase a product may take purchasing decisions
based on the reviews of the product. Accord-
ingly, commercial and retail companies con-
sider product reviews as an important source
of information, and could exploit this informa-
tion to build their marketing tools and strat-
egy, and to resolve any issues in relation to the
product. This could also benefit users with
suggestions on the quality of the products or
services that they want to purchase. As for

the number of reviews of a product posted
by the users, they could range from several
hundreds to tens of thousands. E-commerce
companies and online retailers want to iden-
tify complaints given the reviews of a product
for their own benefit. Likewise, customers who
want to buy a product or service may need
such information while avoiding having to con-
sult thousands of reviews about the product.

In this context, Gupta et al. (2014) identi-
fied the relationship between users’ purchase
intent from their social media forums such
as Quora1 and Yahoo! Answers,2 and Wang
et al. (2015) investigated the problem of iden-
tifying purchase intent with using a list of seed
intent-indicators (e.g. ‘want to’). Haque et al.
(2019b) extend the work of Wang et al. (2015)
while increasing the coverage of the purchase
intent indicators with the distributed vector
representation of words using the continuous
skip-gram model (Mikolov et al., 2013).

Recently, Preotiuc-Pietro et al. (2019) au-
tomatically identified complaints from tweets
posted by social media users and potential cus-
tomers. In Singh et al. (2020), we conducted
a similar study in an attempt to identify com-
plaints from opinionated texts (reviews) about
products posted in a low-resource language,
Hindi, from the the websites of the retail gi-
ant Amazon India3 and the popular social me-
dia platform YouTube.4 For investigating this
problem in Hindi (Singh et al., 2020), as in
Gupta et al. (2014); Wang et al. (2015); Haque
et al. (2019b); Preotiuc-Pietro et al. (2019), we
had to manually create labeled training data5

1www.quora.com
2www.answers.yahoo.com
3https://www.amazon.in/
4https://www.YouTube.com/
5https://github.com/MrRaghav/

108

by employing a number of human annotators.
The process of creating such a data set is not
easy; it is not only time-consuming and labo-
rious but also a very expensive task.

In this context, Tebbifakhr et al. (2019) in-
vestigated possibility of exploiting MT in a
specific NLP task in a language for which dedi-
cated tools are not available due to the scarcity
of task-specific training data. As in Tebbi-
fakhr et al. (2019), in this work, we consid-
ered Hindi, an under-resourced Indic language,
and investigate whether MT can play a role in
complaint identification and eliminate the re-
quirement for complaint identification tools for
Hindi, which require labeled data for training,
which is expensive to create. Accordingly, we
study the following two scenarios while con-
sidering reviews about a variety of products
from the the websites of Amazon India and
YouTube expressed in Hindi as the test exam-
ples in our experiments, namely performance
of the classifiers (complaints identifiers) built
for English on the English translations of the
Hindi reviews by (i) our MT systems and (ii)
human translators. Note that as a part of
our investigation, we created a labeled train-
ing dataset of English reviews about products
posted in Amazon, and detail the data cre-
ation process and statistics in Section 2.2.

Unlike Tebbifakhr et al. (2019) who focus
on improving a downstream task (i.e. senti-
ment classification) by controlling translations
of an MT system but at the expense of transla-
tion quality, we customise our neural MT sys-
tems using the standard and commonly-used
data augmentation and terminology-aware do-
main adaptation techniques (Jooste et al.,
2020; Haque et al., 2020c; Nayak et al., 2020b;
Parthasarathy et al., 2020) so that the trans-
lations produced by the MT systems can re-
tain source-side stylistics property and seman-
tics as much as possible. In other words, in
this study, we aim to observe the performance
of the English classifiers (complaint identifiers)
on the translations of the Hindi reviews by the
baseline, adapted/customised neural MT sys-
tems, and human translators.

The remainder of the paper is organised as
follows. In Section 2, we detail how we cre-
ated training data for our experiments. Sec-

Complaints-mining-from-Hindi-product-reviews

tion 3 describes our MT system building and
setups. In Section 4, we present our exper-
imental methodology for complaint classifica-
tion. Section 5 presents our evaluation results,
with some discussion. Section 6 concludes and
provides avenues for further work.

2 Dataset Creation

This section details the creation of training
data that has been used in this task.

2.1 The Hindi Review test data
In attempt to create an evaluation test data
of reviews, we first collected reviews written
in Hindi posted online. The reviews were
taken from two different sources: (i) websites
of Amazon India, and (ii) YouTube. Ama-
zon India has around 180 million listed prod-
ucts and YouTube has 265+ million active
users. In order to collect the reviews from the
Amazon India websites, we used the amazon-
reviews-scraper Python library6 which takes a
product name as input and provides reviews
about the product across the different lan-
guages. Similarly, in order to collect the re-
views from YouTube, we used the YouTube-
comment-downloader Python library.7 This
script provided us with reviews on the prod-
ucts across the different languages. In order to
remove noise (e.g. HTML tags, special charac-
ters) from reviews, we applied a number clean-
ing scripts including a language identifier.8

Each of the collected clean reviews is manu-
ally tagged with a particular category, namely
complaint or non-complaint. For this, we
followed the annotation scheme described in
Singh et al. (2020). A sample of annotated
test set is presented in Table 1. The statis-
tics about the test set reviews are shown in
Table 2. We can see from Table 2 that the
test set contains 400 examples, with 200 com-
plaints and 200 non-complaints reviews. The
numbers of positive and negative examples are
equal because we wanted to use a balanced test
set in our experiments. Note that the Hindi re-

6https://github.com/philipperemy/
amazon-reviews-scraper. Accessed on August
2020

7https://github.com/egbertbouman/
YouTube-comment-downloader. Accessed on Au-
gust 2020.

8https://pypi.org/project/pycld2/

109

Review Label
Hi: वो ज़न्दगी जो हम जीना चाहते हैं 0En: The life we want to live
Hi: पर फेस अनलॉक चल नहीं रहा 1En: But face unlock is not working
Hi: हन्द माध्यम के लए एक वरदान 0En: A boon for Hindi medium
Hi: पृ ों क क्वा लट व छपाई बहुत ही खराब हैं 1En: The quality and printing of pages are very poor
Hi: समान क डलवरी ही नहीं हुई 1En: The product was not delivered

Table 1: Sample Hindi reviews from test set and their manual English translations.

count words (HI) words (EN)
Reviews 400 5,141 4,762
Complaints 200 2,932 2,738
Non-Complaints 200 2,209 2,024

Table 2: Statistics of the test set reviews.

views have been manually translated into En-
glish and the statistics about the English trans-
lations of the Hindi reviews are shown in the
third column of Table 2. In addition to the
sample Hindi reviews, Table 1 shows the cor-
responding English translations of the Hindi
reviews.

2.2 The English Review data
As discussed above, for complaint identifi-
cation in English we required labeled train-
ing data for building classifiers (complaint
identifiers). Accordingly, we created la-
beled training data for English. For this,
we followed the data creation and anno-
tation methods described in Singh et al.
(2020). First, we took English reviews from
Amazon review dump.9 We sampled re-

Table 3: Statistics of the train and development
sets (English reviews).

Reviews Words Complaints
Train set 8,026 3,84,467 4,013
Dev. set 400 17,873 200

views from four different categories, namely
Books, Cell_Phones_and_Accessories, Elec-
tronics, and Movies_and_TV. The Hindi re-
views which we collected from the websites
of Amazon India and YouTube were mainly
on books and electronic goods. This is the
reason why we considered English reviews on
those four (related) product categories. As for

9https://jmcauley.ucsd.edu/data/amazon/

data cleaning and preprocessing, we adopted
the same steps as applied for Hindi (cf. Sec-
tion 2.1). Table 3 presents the statistics of the
English dataset (the training and development
sets).

3 The Hindi-to-English MT
Systems

Our MT systems are Transformer models
(Vaswani et al., 2017) which were trained us-
ing the Marian-NMT toolkit.10 The tokens
of the training, evaluation and validation sets
are segmented into sub-word units using Byte-
Pair Encoding (BPE) (Sennrich et al., 2016),
and BPE is applied individually on the source
and target languages. From our experiences
(Jooste et al., 2020; Haque et al., 2020b,c;
Nayak et al., 2020b,a; Parthasarathy et al.,
2020) in the participation in the recent shared
translation tasks (Barrault et al., 2020; May-
hew et al., 2020; Nakazawa et al., 2020) in-
volving low-resource language pairs and do-
mains, we found that the following configura-
tion usually leads to the best results in the
low-resource translation settings: (i) the BPE
vocabulary size: 6,000, (ii) the sizes of the
encoder and decoder layers: 4 and 6, respec-
tively, and (iii) learning-rate: 0.0003. As for
the remaining hyperparameters, we followed
the recommended best setup from Vaswani
et al. (2017). The early stopping criterion
is based on cross-entropy; however, the final
NMT system is selected as per the highest
BLEU score on the validation set. The beam
size for search is set to 6. We make our final
NMT model with ensembles of 8 models that
are sampled from the training run.

For building our baseline models (forward
10https://github.com/marian-nmt/marian

110

and backward), we used the IIT Bombay
English-Hindi parallel corpus11 (Kunchukut-
tan et al., 2017) that is compiled from a variety
of existing sources, e.g. OPUS12 (Tiedemann,
2012). After applying standard cleaning pro-
cedures including applying a language identi-
fier13 we are left with just over 1.1 million par-
allel sentence pairs. As for Hindi and English
monolingual sentences for forward-translation
and back-translation, respectively, we sampled
them from the AI4Bharat-IndicNLP Corpus
(Kunchukuttan et al., 2020) and Amazon re-
view dump (cf. Section 2.2), respectively. Ta-
ble 4 presents the corpus statistics. As above
(cf. Section 2.1), for our development set
we used 385 reviews from Amazon India and
YouTube, which were then manually trans-
lated into English (cf. last row of Table 4).

sentences words (EN) words (HI)
Train 1,102,511 22.4M 23.4M
Monolingual
English 6.86M 121.3M –
Hindi 7.82M – 142.9M
Dev. set 385 6,952 7,209

Table 4: The Corpus statistics.

We present the performance of our MT sys-
tems in terms of the automatic evaluation met-
ric BLEU (Papineni et al., 2002). Addition-
ally, we performed statistical significance tests
using bootstrap resampling methods (Koehn,
2004). We obtained the BLEU scores of our
MT systems on the test set, and the scores
are reported in Table 5. The first row of Ta-
ble 5 represents our baseline Hindi-to-English
MT system. The English-to-Hindi MT system
which has been used to translate the English
monolingual sentences (reviews) into Hindi
produced 20.52 BLEU points on the develop-
ment set. The BLEU scores of the MT sys-
tems (Base+BT and Base+BT+FT) trained
on training data that consists of both authen-
tic and (target- or/and source-original) syn-
thetic parallel data are shown in the next two
rows of Table 5. As in Caswell et al. (2019),
in order to let the NMT model know that the
given source is synthetic, we tag the source
sentences of the synthetic data with the extra

11http://www.cfilt.iitb.ac.in/iitb_parallel/
12http://opus.lingfil.uu.se/
13https://pypi.org/project/pycld2/

tokens.

BLEU
devset test set

Base 25.92 23.03
Base+BT 30.84 26.51
Base+BT+FT 30.89 26.85
Base+BT+FT+DA 31.52 27.49

Table 5: The BLEU scores of the English-to-Hindi
NMT systems.

We observed that the review texts generally
contain terms or product names, and termi-
nology translation is a challenging task in MT
(Haque et al., 2019a, 2020a). In order to adapt
our best MT system, Base+BT+FT, to the
task, we adopted the terminology-aware on-
the-fly adaption method Jooste et al. (2020);
Haque et al. (2020c); Nayak et al. (2020b);
Parthasarathy et al. (2020), and mine those
sentences from large monolingual datasets
that could be beneficial for fine-tuning the orig-
inal NMT model. As in Jooste et al. (2020);
Haque et al. (2020c); Nayak et al. (2020b);
Parthasarathy et al. (2020), we first identi-
fied terms in the review test set (cf. Table
2) to be translated,14 and given the list of
extracted terms, Hindi sentences which were
mined from large monolingual data are sim-
ilar in style to the test set sentences. We
mined Hindi sentences (a total of 129,800 sen-
tences) from a large monolingual corpus given
the list of terms (a total of 2,953 terms) ap-
pearing in the test set. Then, a source-original
synthetic corpus was created by translating
these mined Hindi sentences into English us-
ing the best MT system, Base+BT+FT. The
monolingual corpus that we used for this pur-
pose contains 62,679,936 sentences from the
AI4Bharat-IndicNLP Corpus. Additionally,
we mined 36,397 sentences from the source
side of the parallel training corpus and took
their target counterparts, which gives us an
authentic parallel corpus for adaptation. Fi-
nally, Base+BT+FT was fine-tuned on the
resultant training corpus (166,197 training in-
stances which contains 129,800 synthetic and
36,397 authentic sentence-pairs). As for trans-
lating the development set sentences, we fol-

14We followed Haque et al. (2014, 2018) in order to
automatically identify terms in the in-domain texts.

111

lowed the same strategy.
The BLEU scores of the adapted MT system

(Base+BT+FT+DA) on the test set are shown
in the last row of Table 5. When we com-
pare the original MT system with the adapted
MT system, we see that the adapted version of
Base+BT+FT, Base+BT+FT+DA, produces
a 0.64 BLEU point (corresponding to 2.38%
relative) improvement over Base+BT+FT,
and the improvement is statistically signifi-
cant.

4 The Complaint Identification
Models

4.1 LSTM Network
Nowadays, recurrent neural networks (RNN),
in particular long-short term memory (LSTM)
(Hochreiter and Schmidhuber, 1997) hidden
units, have proven to be an effective model for
many classification tasks in NLP, e.g. senti-
ment analysis (Wang et al., 2016), text classi-
fication (Joulin et al., 2016; Zhou et al., 2016).
RNN is an extension of the feed-forward neural
network (NN), which has the gradient vanish-
ing or exploding problems. LSTM deals with
the gradient vanishing and exploding problems
of RNN. An RNN composed of LSTM hidden
units is often called an LSTM network. A com-
mon LSTM unit is composed of a cell, an input
gate, an output gate and a forget gate. More
formally, each cell in LSTM can be computed
as follows:

X =

[
ht−1

xt

]
(1)

ft = σ(Wf · X + bf) (2)

it = σ(Wi · X + bi) (3)

ot = σ(Wo · X + bo) (4)

ct = ft ⊙ ct−1 + it ⊙ tanh (Wc · X + bc) (5)

ht = ot ⊙ tanh (ct) (6)

where Wi,Wf ,Wo ∈ Rd×2d are the weighted
matrices and bi, bf , bo ∈ Rd are the biases of
LSTM, which need to be learned during train-
ing, parameterising the transformations of the

input, forget and output gates, respectively.
σ is the sigmoid function, and ⊙ stands for
element-wise multiplication. xt includes the in-
puts of LSTM cell unit. The vector of hidden
layer is ht. The final hidden vector hN repre-
sents the whole input review, which is passed
to the softmax layer after linearising it into
a vector whose length is equal to the number
of class labels. In our work, the set of class
labels includes complaint and non-complaint
categories.

4.2 Classical Supervised Classification
Models

Furthermore, we compare the LSTM network
with classical supervised classification models.
We employ the following classical supervised
classification techniques in our experiments:

• Logistic Regression (LR)

• Decision Tree (DT)

• Random Forest (RF)

• Naïve Bayes (NB)

• Support Vector Machine (SVM)

These classical learning models (LR, DT,
RF, NB and SVM) can be viewed as the base-
line in this task. Thus, we obtain a compara-
tive overview on the performance of different
supervised classification models including the
LSTM network.

4.3 Training Setup
In order to build LR, DT, RF and NB classifi-
cation models, we use the well-known scikit-
learn machine learning library,15 and per-
formed all the experiments with default param-
eters set by scikit-learn. As for the represen-
tation space, each review was represented as
a vector of word unigrams weighted by their
frequency in the reviews.

For the classifiers based on the neural net-
works, we use a 300-Dimensional word em-
beddings from fastText. We use the sigmoid
activation function with the Adam optimizer
(Kingma and Ba, 2014) and binary cross en-
tropy loss function. The size of the input layer
of the NN is 300. We employ layer normalisa-
tion (Ba et al., 2016) in the model. Dropout

15https://scikit-learn.org/stable/

112

(Gal and Ghahramani, 2016) between layers is
set to 0.10. The size of the embedding and
hidden layers are 300. The models are trained
with learning-rate set to 0.0003 and reshuffling
the training examples for each epoch.

5 Results and Discussion

We evaluate the performance our classifiers on
the gold-standard test set (cf. Table 2) and
report the evaluation results in this section.
In order to measure a classifier’s accuracy on
the test set, we use three widely-used evalua-
tion metrics: precision, recall and F1 measures.
The results obtained are reported in Table 6.
The first five columns of Table 6 represent our
baseline classifiers (i.e. the classical supervised
classification models). We see from the ta-
ble that these classifiers perform moderately
to excellently and LR is the best-performing
method among them (LR: a 70.35 F1 score))
when tested on the translations by our best
MT system (Base+BT+FT+DA). This classi-
fier (LR) produces an F1 score of 71.47 on the
gold-standard test set (i.e. translations of the
Hindi reviews by translators).

Table 6: Performance of the classifiers on the eval-
uation test set.

NB LR DT SVM RF LSTM
Base
P 57.64 66.98 62.82 66.82 68.78 75.76
R 41.50 72.00 73.5 69.50 70.50 75.00
F1 48.26 69.4 67.74 68.13 69.63 75.38
Base+BT
P 58.78 71.28 61.50 70.00 69.85 77.44
R 43.50 69.50 69.50 63.00 69.50 75.50
F1 50.00 70.38 65.26 66.32 69.67 76.46
Base+BT+FT
P 59.49 70.71 64.38 68.98 70.62 76.12
R 47.00 70.00 70.5 64.50 68.5) 76.5
F1 52.51 70.35 67.30 66.67 69.54 76.31
Base+BT+FT+DA
P 58.17 70.71 65.33 68.56 70.47 77.16
R 44.50 70.00 73.50 66.50 68.00 76.00
F1 50.43 70.35 69.18 67.51 69.21 76.58
Manual (Upper Bound)
P 58.22 73.55 63.55 71.82 71.42 80.10
R 42.50 69.50 68.00 65.00 67.50 78.50
F1 49.13 71.47 65.70 68.24 69.41 79.29
Hindi classifiers on Hindi reviews
P 59.09 74.14 77.77 72.16 84.51 74.71
R 65.00 76.00 31.50 70.00 30.00 65.00
F1 61.91 75.06 44.84 71.07 44.28 69.52

As for our NN-based classifier, the LSTM
network trained on fastText embeddings per-
formed excellently as we see from Table 6,
where it obtains an excellent F1 score (76.58
F1) on the test set of translations of the Hindi
reviews by Base+BT+FT+DA. It obtains an
F1 score of 79.29 on the test set of translations
of the Hindi reviews by human translators.

For comparison, we also measured the per-
formance of the Hindi classifiers that were
built on the Hindi training data released by
Singh et al. (2020) on the original reviews (i.e.
the Hindi-side of the test set; cf. Table 2),
and the results are shown in the last rows of
Table 6. We see from Table 6 that in this case,
the best-performing Hindi classifier is LR and
it produces an F1 of 75.06, which is 1.52 F1

points lower than that produced by the best-
performing English classifier on the transla-
tions by our best MT system.

We clearly see from the scores presented in
Table 6 that the performance of the English
classifiers on the translations produced by our
customised MT system (Base+BT+FT+DA)
is comparable to that of the Hindi classifiers on
the original Hindi reviews. Thus, we can say
that MT when customised or trained to trans-
late texts of specific styles (e.g. reviews about
a variety of products) can act as an alternative
to the tools that rely on task-specific (in this
work, complaint identification) training data
which is expensive to prepare.

6 Conclusion

In this paper, we presented a strategy in which
MT can be used to eliminate the requirement
for expensive task-specific data creation for
low-resource languages or domains. We inves-
tigated our strategy on complaint identifica-
tion from reviews about products posted in
Hindi. We used state-of-the-art NMT models
for translating the Hindi reviews into English,
and investigate the performance of the English
complaint identifiers on the translations of the
Hindi reviews by the Hindi-to-English MT sys-
tems. For comparison, we tested the perfor-
mance of the English classifiers on two setups:
(i) English translations of the Hindi reviews by
the MT systems, and (ii) gold-standard En-
glish translations of the Hindi reviews. We
also compared the performance of the Hindi

113

classifiers built on a publicly available Hindi
review training data set on the original Hindi
reviews (i.e. the Hindi-side of the review test
set).

In our experiments, we also aimed at pre-
serving source-language stylistic properties
and semantics in translation. For this, we ap-
plied standard and commonly-used data aug-
mentation techniques and terminology-aware
domain adaptation method (Jooste et al.,
2020; Haque et al., 2020c; Nayak et al.,
2020b; Parthasarathy et al., 2020) for build-
ing our Hindi-to-English NMT systems, and
used task-specific target-language monolin-
gual data. These strategies were found to be
effective in this task. We demonstrated that
the NMT systems when customised or trained
to translate texts of specific styles (e.g. user-
generated content or reviews) can act as an
alternative to those tools that require task-
specific (i.e. complaint identification) training
data which are expensive to create.

We believe that this work would bring ad-
ditional value to the social media analytics re-
search and practice given the fact that many
task-specific data are available in English only
and does not exist in many low-resource and
even some high-resource languages.

In future, we intend to test our method on
different low-resource and high-resource non-
English languages. We also plan to investigate
this method on different NLP tasks.

Acknowledgments
This research has been supported by the
ADAPT Centre for Digital Content Technol-
ogy which is funded under the Science Foun-
dation Ireland (SFI) Research Centres Pro-
gramme (Grant No. 13/RC/2106) and is co-
funded under the European Regional Develop-
ment Fund.

References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E

Hinton. 2016. Layer normalization. CoRR,
abs/1607.06450.

Loïc Barrault, Magdalena Biesialska, Ondřej Bo-
jar, Marta R. Costa-jussà, Christian Feder-
mann, Yvette Graham, Roman Grundkiewicz,
Barry Haddow, Matthias Huck, Eric Joanis,
Tom Kocmi, Philipp Koehn, Chi-kiu Lo, Nikola

Ljubešić, Christof Monz, Makoto Morishita,
Masaaki Nagata, Toshiaki Nakazawa, Santanu
Pal, Matt Post, and Marcos Zampieri. 2020.
Findings of the 2020 conference on machine
translation (wmt20). In Proceedings of the Fifth
Conference on Machine Translation, pages 1–54,
Online. Association for Computational Linguis-
tics.

Isaac Caswell, Ciprian Chelba, and David Grang-
ier. 2019. Tagged back-translation. In Pro-
ceedings of the Fourth Conference on Machine
Translation (Volume 1: Research Papers), pages
53–63, Florence, Italy. Association for Compu-
tational Linguistics.

Yarin Gal and Zoubin Ghahramani. 2016.
A theoretically grounded application of
dropout in recurrent neural networks. CoRR,
abs/1512.05287.

Vineet Gupta, Devesh Varshney, Harsh Jhamtani,
Deepam Kedia, and Shweta Karwa. 2014. Iden-
tifying purchase intent from social posts. In
Proceedings of the Eighth International AAAI
Conference on Weblogs and Social Media, pages
180–186, Ann Arbor, Michigan.

Rejwanul Haque, Mohammed Hasanuzzaman, and
Andy Way. 2019a. Investigating terminology
translation in statistical and neural machine
translation: A case study on English-to-Hindi
and Hindi-to-English. In Proceedings of the In-
ternational Conference on Recent Advances in
Natural Language Processing (RANLP 2019),
pages 437–446, Varna, Bulgaria.

Rejwanul Haque, Mohammed Hasanuzzaman, and
Andy Way. 2020a. Analysing terminology trans-
lation errors in statistical and neural machine
translation. Machine Translation (in press),
34(2):149–195.

Rejwanul Haque, Yasmin Moslem, and Andy Way.
2020b. The ADAPT system description for
the STAPLE 2020 English-to-Portuguese trans-
lation task. In Proceedings of the Fourth Work-
shop on Neural Generation and Translation,
pages 144–152, Online. Association for Compu-
tational Linguistics.

Rejwanul Haque, Yasmin Moslem, and Andy Way.
2020c. Terminology-aware sentence mining for
nmt domain adaptation: Adapt’s submission to
the adap-mt 2020 english-to-hindi ai translation
shared task. In Proceedings of the Workshop on
Low Resource Domain Adaptation for Indic Ma-
chine Translation (Adap-MT 2020), Patna, In-
dia (to appear).

Rejwanul Haque, Sergio Penkale, and Andy Way.
2014. Bilingual termbank creation via log-
likelihood comparison and phrase-based statis-
tical machine translation. In Proceedings of the
4th International Workshop on Computational

114

Terminology (Computerm), pages 42–51, Dublin,
Ireland. Association for Computational Linguis-
tics and Dublin City University.

Rejwanul Haque, Sergio Penkale, and Andy Way.
2018. TermFinder: log-likelihood comparison
and phrase-based statistical machine transla-
tion models for bilingual terminology extraction.
Language Resources and Evaluation, 52(2):365–
400.

Rejwanul Haque, Arvind Ramadurai, Mohammed
Hasanuzzaman, and Andy Way. 2019b. Mining
purchase intent in twitter. Computación y Sis-
temas, 23(3).

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Wandri Jooste, Rejwanul Haque, and Andy Way.
2020. The ADAPT Centre’s neural MT systems
for the WAT 2020 document-level translation
task. In Proceedings of the the 7th Workshop on
Asian Translation (WAT 2020), AACL-IJCNLP
2020, pages 142–146, Suzhou, China.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
and Tomas Mikolov. 2016. Bag of tricks
for efficient text classification. arXiv preprint
arXiv:1607.01759.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Philipp Koehn. 2004. Statistical significance tests
for machine translation evaluation. In Proceed-
ings of the 2004 Conference on Empirical Meth-
ods in Natural Language Processing, pages 388–
395, Barcelona, Spain. Association for Compu-
tational Linguistics.

Anoop Kunchukuttan, Divyanshu Kakwani, Satish
Golla, Avik Bhattacharyya, Mitesh M Khapra,
Pratyush Kumar, et al. 2020. Ai4bharat-
indicnlp corpus: Monolingual corpora and word
embeddings for indic languages. arXiv preprint
arXiv:2005.00085.

Anoop Kunchukuttan, Pratik Mehta, and Pushpak
Bhattacharyya. 2017. The IIT Bombay English–
Hindi parallel corpus. CoRR, 1710.02855.

Stephen Mayhew, Klinton Bicknell, Chris Brust,
Bill McDowell, Will Monroe, and Burr Settles.
2020. Simultaneous translation and paraphrase
for language education. In Proceedings of the
Fourth Workshop on Neural Generation and
Translation, pages 232–243, Online. Association
for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S
Corrado, and Jeff Dean. 2013. Distributed rep-
resentations of words and phrases and their com-
positionality. In Advances in neural information
processing systems, pages 3111–3119.

Toshiaki Nakazawa, Hideki Nakayama, Chenchen
Ding, Raj Dabre, Hideya Mino, Isao Goto,
Win Pa Pa, Anoop Kunchukuttan, Shantipriya
Parida, Ondřej Bojar, and Sadao Kurohashi.
2020. Overview of the 7th workshop on Asian
translation. In Proceedings of the 7th Workshop
on Asian Translation, Suzhou, China. Associa-
tion for Computational Linguistics.

Prashanth Nayak, Rejwanul Haque, and Andy
Way. 2020a. The ADAPT Centre’s participa-
tion in WAT 2020 english-to-odia translation
task. In Proceedings of the the 7th Workshop on
Asian Translation (WAT 2020), AACL-IJCNLP
2020, pages 114–117, Suzhou, China.

Prashanth Nayak, Rejwanul Haque, and Andy
Way. 2020b. The ADAPT’s submissions to the
WMT20 biomedical translation task. In Pro-
ceedings of the Fifth Conference on Machine
Translation (Shared Task Papers (Biomedical),
pages 839–‑846, Online Conference.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. Bleu: a method for auto-
matic evaluation of machine translation. In Pro-
ceedings of the 40th Annual Meeting of the As-
sociation for Computational Linguistics, pages
311–318, Philadelphia, Pennsylvania, USA. As-
sociation for Computational Linguistics.

Venkatesh Balavadhani Parthasarathy, Akshai
Ramesh, Rejwanul Haque, and Andy Way. 2020.
The ADAPT system description for the WMT20
news translation task. In Proceedings of the
Fifth Conference on Machine Translation, pages
261‑–267, Online Conference.

Daniel Preotiuc-Pietro, Mihaela Gaman, and Niko-
laos Aletras. 2019. Automatically identifying
complaints in social media. arXiv preprint
arXiv:1906.03890.

Rico Sennrich, Barry Haddow, and Alexandra
Birch. 2016. Neural machine translation of rare
words with subword units. In Proceedings of the
54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1715–1725, Berlin, Germany. Association
for Computational Linguistics.

Raghvendra Pratap Singh, Rejwanul Haque, Mo-
hammed Hasanuzzaman, and Andy Way. 2020.
Identifying complaints from product reviews: A
case study on hindi. In Proceedings of the
Irish Conference on Artificial Intelligence and
Cognitive Science (AICS 2020), pages 217–228,
Dublin, Ireland.

Amirhossein Tebbifakhr, Luisa Bentivogli, Matteo
Negri, and Marco Turchi. 2019. Machine trans-
lation for machines: the sentiment classification
use case. In Proceedings of the 2019 Conference

115

on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 1368–1374, Hong Kong, China.

Jörg Tiedemann. 2012. Parallel data, tools and in-
terfaces in OPUS. In Proceedings of the 8th In-
ternational Conference on Language Resources
and Evaluation (LREC’2012), pages 2214–2218,
Istanbul, Turkey.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. In Advances in Neural In-
formation Processing Systems, pages 6000–6010.

Jinpeng Wang, Gao Cong, Wayne Xin Zhao, and
Xiaoming Li. 2015. Mining user intents in
twitter: A semi-supervised approach to infer-
ring intent categories for tweets. In Twenty-
Ninth AAAI Conference on Artificial Intelli-
gence, pages 318–324, Austin, TX.

Yequan Wang, Minlie Huang, Li Zhao, et al. 2016.
Attention-based LSTM for aspect-level senti-
ment classification. In Proceedings of the 2016
conference on empirical methods in natural lan-
guage processing, pages 606–615, Austin, TX.

Peng Zhou, Zhenyu Qi, Suncong Zheng, Jiaming
Xu, Hongyun Bao, and Bo Xu. 2016. Text clas-
sification improved by integrating bidirectional
lstm with two-dimensional max pooling. arXiv
preprint arXiv:1611.06639.

116

Proceedings of the 17th International Conference on Natural Language Processing, pages 117–126
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Generative Adversarial Networks for Annotated Data Augmentation in
Data Sparse NLU

Olga Golovneva
Amazon / Cambridge, MA
olggol@amazon.com

Charith Peris
Amazon / Cambridge, MA
perisc@amazon.com

Abstract

Data sparsity is one of the key challenges as-
sociated with model development in Natural
Language Understanding (NLU) for conversa-
tional agents. The challenge is made more
complex by the demand for high quality an-
notated utterances commonly required for su-
pervised learning, usually resulting in weeks
of manual labor and high cost. In this paper,
we present our results on boosting NLU model
performance through training data augmenta-
tion using a sequential generative adversarial
network (GAN). We explore data generation
in the context of two tasks, the bootstrapping
of a new language and the handling of low
resource features. For both tasks we explore
three sequential GAN architectures, one with a
token-level reward function, another with our
own implementation of a token-level Monte
Carlo rollout reward, and a third with sentence-
level reward. We evaluate the performance of
these feedback models across several sampling
methodologies and compare our results to up-
sampling the original data to the same scale.
We further improve the GAN model perfor-
mance through the transfer learning of the pre-
trained embeddings. Our experiments reveal
synthetic data generated using the sequential
generative adversarial network provides signif-
icant performance boosts across multiple met-
rics and can be a major benefit to the NLU
tasks.

1 Introduction

Over recent years, various task-oriented conver-
sational agents, such as Amazon Alexa, Apple’s
Siri, Google Assistant, and Microsoft’s Cortana,
have become more popular in people’s everyday
life and are expected to be highly intelligent. For
the NLU component, this means that we expect
models to perform recognition of the actions and
entities within a user’s request with high accuracy.

When first training an NLU model on a new lan-
guage (a process referred to as bootstrapping a new
language), there is a strong requirement for high
quality annotated data that would support the most
common user requests across a range of domains.
As the modeling space expands to support new
features and additional languages, NLU models
are regularly re-trained on updated data sets to en-
sure support for these new functions. The major
bottleneck in both of these processes is the labor
and cost associated with collecting and annotating
new training utterances for every new feature or
language.

Recent advances in machine learning methods,
including the use of techniques such as transfer
learning (Lu et al., 2015) and active learning (Set-
tles, 2009), can lead to more efficient data usage
by NLU models and therefore decrease the need
for annotated training data. Additionally, data aug-
mentation models are being widely explored. The
advantage of data augmentation is that once syn-
thetic data is generated, it can be ingested into sub-
sequent models without additional effort, allowing
for faster experimentation.

NLU models in dialog systems can perform a va-
riety of tasks (Ram et al., 2018; Gao et al., 2018). In
this study, we will focus on three of them: Domain
classification (DC) – identify the domain that the
user request belongs to (music, reminders, alarm,
etc.), Intent classification (IC) – extract actions
requested by users (play music, find a restaurant,
set an alarm, etc.), and Named Entity Recogni-
tion (NER) – identify and extract entities (names,
values, dates, locations, etc.) from user requests.

For each utterance we expect our NLU model to
output a domain, intent, and set of extracted entities
with corresponding tags. For example, if a user
requests “play Bohemian Rhapsody by Queen”, we
expect the NLU model to return {domain: music,
intent: play song, named entities: [(bohemian

117

rhapsody, song name), (queen, artist name)]}. We
call this output annotation, and the utterance along
with annotation is called an annotated utterance.
Named entities with corresponding labels are called
slots.

For our NLU model to perform well on real-time
user requests, we need to train it on a large dataset
of diverse annotated utterances. However, there
could be some areas of functionality where large
datasets for training are not available. To boost
model performance in situations where training
data is limited, we use synthetic data generated
from a small set of unique utterances that cover the
basic functionality of the user experience, called
Golden utterances. We leverage a Sequence Gener-
ative Adversarial Networks (SeqGAN) introduced
by Yu et al. (2017) to generate new utterances from
this “seed” set, and use these generated utterances
to augment training data and evaluate the perfor-
mance of the classification and recognition tasks.
We also investigate how the metrics that we use to
evaluate the quality of the generated synthetic data
links to the performance boost in the underlying
tasks.

2 Related work

NLU model boosting through training data aug-
mentation has been an active area of research over
the last few years, with more sophisticated tech-
niques and models being developed. Some of these
techniques include data resampling, the use of Vari-
ational Autoencoders (VAEs) and GANs. Xie et al.
(2017) generalize resampling methods by propos-
ing noising schemes that are designed to smooth in-
put data by randomly changing the word tokens in
a sentence. First described by Kingma and Welling
(2013), VAEs learn distributed representations of
latent variables, and decode random samples to
generate data that have similar characteristics to
those that the network was trained on. GAN model
proposed by Goodfellow et al. (2014) includes two
competing neural networks: a generator that cre-
ates fake data, and a discriminator that is trained to
distinguish between fake and real data. The genera-
tor is trained on the results of its success in fooling
the discriminator and this contest results in syn-
thetic data that is progressively more similar to real
data.

Synthetic data have shown to be useful for IC
model boosting. For example, Malandrakis et al.
(2019) explored a set of encoder-decoder models

and proposed the use of conditional VAEs (CVAEs)
to generate phrase templates, called carrier phrases.
Authors used CVAEs to control the domain, intent,
and slot types to generate desirable outputs that
resulted in a higher F1 score on the intent classifi-
cation task.

Kumar et al. (2019) focused on a few-shot IC
problem where new categories with limited train-
ing data are introduced into an existing system with
mature categories. They compared different tech-
niques that were designed to augment training data,
including upsampling, random perturbation, extrap-
olation, CVAEs, and delta-encoders, and combined
feature space augmentation with popular BERT
pre-training (Devlin et al., 2019) to provide better
performance.

The use of GANs has been previously explored
for text data augmentation in language modeling
(Kusner and Hernández-Lobato, 2016; Yu et al.,
2017; Che et al., 2017; Guo et al., 2018; Hu et al.,
2017; Li et al., 2017; Lin et al., 2017; Zhang et al.,
2017; Fedus et al., 2018) and sentiment classifi-
cation (Gupta, 2019). However, discrete text se-
quence generation brings about several challenges:
first, one needs to generate a set of discrete tokens
from a random sample of real-valued continuous
data, and second, GANs are designed to give feed-
back on entire sequences, whereas generators need
guidance for each subsequent token. The SeqGAN
model developed by Yu et al. (2017) attempts to
resolve these issues by applying reinforcement al-
gorithms for the GAN objective with a policy gra-
dient that evaluates current state-action value using
Monte Carlo (MC) search. In this work, we adopt
a SeqGAN model to boost DC, IC, and NER tasks
in NLU models that suffer from sparse data limita-
tions.

3 Methods

3.1 Data
For our experiments, we used the English data1

collected by Schuster et al. (2019). This data was
consisted of three domains: weather, alarm, and
reminder, and a total of 43000 utterances. It was
collected in a three-step process: step 1 consisted
of native English speakers producing utterances
for each intent, step 2 consisted of two annotators
labeling the intents and slots while any conflicts
between these two annotators were resolved in step
3 by a third annotator. The data was processed

1https://fb.me/multilingual task oriented data

118

further to match the format that was suitable for
our models.

3.2 Models

Text data boosting in NLU was extensively used
for classification tasks, so most previous research
focused on generating sentences (Kumar et al.,
2019), carrier phrases (Malandrakis et al., 2019),
or embeddings (Guo et al., 2018). In our work
we consider DC, IC, and NER problems, where
both sequence and word tags are needed for model
training. We leverage a GAN to synthesize train-
ing data as a sequence of intents and slots: X =
{x0, x1, . . . , xn}, where n varies between a length
of 1 and the maximum allowed utterance length.
Each slot xi(i > 0) denotes the combination
of the ith word and its corresponding tag, and
x0 is a concatenation of the utterance domain
and intent. For example, for the utterance “play
Bohemian Rhapsody by Queen”, the training se-
quence for text generation would be as follows:
“music/play song play:none bohemian:song name
rhapsody:song name by:none queen:artist name”.

3.2.1 SeqGAN model
When applied to text data, traditional GANs have
difficulty performing back-propagation due to the
non-differentiable output of the generator model.
The SeqGAN model addresses this issue by treating
the generator as a reinforcement learning agent that
optimizes the GAN objective. The discriminator
itself is used within the reward function to evaluate
output sequences and return feedback to guide the
learning of the generative model. Traditional re-
ward functions from classification models are also
limited by the ability to only provide score/loss-
based reward values for a complete sequence. The
SeqGAN model enables evaluation of the action-
value for an intermediate state of unfinished se-
quence for each initial state, s0, by applying an
MC search with a rollout policy to sample the un-
known last tokens (Yu et al., 2017). MC search is
a tree-search algorithm with a root node s0. Each
child node of the tree is drawn from a distribution
parametrized by a stochastic parametrized policy.
This policy can be any, for example current state of
the generator G✓.

In our experiments, we compare different ways
to compute the reward function (Figure 1). First,
we use an implementation where the MC tree
search strategy is replaced with token-level reward
produced by the discriminator (Xu et al., 2018; Hu

et al., 2018). We use the output of the Long Short-
Term Memory (LSTM)-based discriminator model
DL

� , cross-entropy, as the reward. For a synthetic
sentence Y = {y0, y1, ..., yn}, yi 2 Y , where Y
is the vocabulary of candidate domain-intent and
token-label pairs, the cross-entropy based reward
for the ith word is calculated as:

R(yi) = � log DL
� (yi|y<i) (1)

Next, we devise our own MC search-based
method to produce a set of possible sequences to ap-
proximate the expectation of the token-level reward,
rather than using a single evaluation of only one of
the possible sequences. Using the current state of
the generator model G✓ as a stochastic rollout pol-
icy, for each incomplete sequence {y0, y1, ..., yk}
we use Monte-Carlo search to produce N complete
sequences. We evaluate the token-level reward for
each of these sequences:

{yk+1, ..., yn} 2MCG✓({y0, ..., yk}; N), (2)

for k < n. To approximate the expected value of
the reward function we average the token-level re-
ward (1) calculated for the N MC rollouts:

R(yi) =

1

(n + 1)N

nX

k=0

NX

j=1

(� log DL
� (yi|y<i))j,k, (3)

where (...)j,k is the jth MC rollout of the kth se-
quence. Finally, we compare results with an expec-
tation of a sentence-level reward calculated using
MC tree rollout strategy for the convolutional neu-
ral network (CNN)-based discriminator feedback
DC

� , that provides feedback on the full sentence (Yu
et al., 2017). Intermediate token-level reward for
current token yi is approximated using MC rollouts
as follows:

RMC(yi) =
1

N

NX

j=1

(DC
� (Y))j , i < n, (4)

where the sampling of the missing (n� i) tokens
is governed by the equation (2). At each step i,
generator reward is governed by the Monte-Carlo
approximation (4), or discriminator feedback on
the full sentence:

R(yi) =

(
RMC(yi), i < n,

DC
� (Y), i = n.

(5)

119

Ntoken embeddings

token-level reward

n+1
n+1

token-level reward token-level reward
with MC roll-out

sentence-level reward
with MC roll-out

n+1

N

N

n+1

n+1

N

avg avg avgavg

avg avg avgavg

avg

avg

Figure 1: Schematic representation of the reward function produced by discriminator model for each of the n + 1
input tokens and N Monte-Carlo rollouts (avg = average). Tokens fixed at each iteration are represented by solid
squares and tokens produced by the rollout policy are represented by blank squares. Sentence-level reward pro-
duces feedback on a complete sentence only, whereas token-level reward gives feedback on each token conditioned
on previous set of tokens.

The generator is trained to maximize the reward
from the discriminator model for the full se-
quence (Sutton et al., 2000):

J(✓) = E[R(Y |s0, ✓)] =
X

y02Y
G✓(y0|s0)Q

G✓
D�

(s0, y0) (6)

where QG✓
D�

(s0, y0) can be estimated by R(y0) us-
ing equations (1), (3) or (5).

The pre-training procedure for the generative
decoder uses the maximum likelihood estimation
metric, followed by the pre-training of the discrim-
inative classifier on positive samples from the train-
ing data and negative samples produced by the
generator. After pre-training, the generative and
discriminative models are trained one at a time in
the following loop: the last discriminator state is
used to provide feedback for the generative model
training, which then provides a new set of negative
examples for the discriminator updates.

3.2.2 DC and IC/NER models
Our model architecture consists of two parts: a sen-
tence classification model for the DC task, and a
domain-specific joint model for the IC and NER
tasks. The DC model is the same as the IC part
of the joint IC-NER model, so we will describe
only the latter in detail. The IC-NER model com-
ponents are schematically shown in Figure 2, and
are composed of the following:

• Embedding: concatenation of word embed-
ding with 256 dimensions and character em-
bedding with 16 dimensions trained on a 1-
filter CNN with a tanh activation function and
dropout.

• Encoder: 2-layer bidirectional LSTM with
384 dimensions in each hidden layer with

dropout and layer normalization for token en-
coder, and a pooling stack for sequence en-
coder.

• Decoders: MLP classifier with 256 dimen-
sions for IC task and CRF sequence labeler
with 192 dimensions. For each block we
also apply ELU activation function and drop-
out. All IC-NER models were trained for 500
epochs, and DC models for 100 epochs.

token embeddings

play music by madonna

bi-LSTM encoder
with pooling stack

playp l a y

CNN encoder

concatenationfinal token
embedding

CRF slot-filling MLP intent
classification

Figure 2: Multi-task model for IC and NER prediction.

3.3 Experimental setup

We build our experiments to mimic two major tasks
that are of interest to us (Figure 3):

1. Bootstrapping of a new language

2. Handling low resource features

We manipulate our English data set to simulate
modeling conditions in situations where training
data is limited. For our tasks, we need to iden-
tify a set of utterances from within our data set
that can be classified as Golden utterances, i.e.,
utterances that are found to be usually common

120

Train
data

Test data

Frequency
ranking

Top
20%

Rare
utterances

GAN NLU
model

Synthetic
data

Word
embeddings

Pre-
training

GAN NLU
model

Synthetic
data

Bootstrapping of new languages

Handling low resource features

Feature
split

Low-
resource
domain

Robust
domains

Pseudo
Goldens

Rare
utterances

Pseudo
Goldens

Figure 3: This schematic represents our data and ex-
perimental process. For our experiments we use anno-
tated data collected by Schuster et al. (2019). Train
and validation sets were combined together in a sin-
gle train data set to extract pseudo Golden utterances.
Pseudo Goldens were further used to train and evalu-
ate the GAN model. The test set was untouched and
was used to evaluate model performance in full scale.
To simulate the low resource feature task, we used the
full train data set for the two robust domains, and the
pseudo Goldens to represent the third low-resource do-
main.

across languages and cover the basic functionality
of the user experience. To select Goldens from
our data set we use the following process. We sort
the utterances in our training data by the utterance
frequency within each domain-intent combination.
We then select the top 20% of utterances within
each domain-intent combination, unique them, and
call them pseudo Goldens. The unique utterances
within the remaining set are called Rare utterances.
Utterance counts are provided in Appendix A.

3.3.1 Bootstrapping NLU models for new
languages

When bootstrapping an NLU model to support a
new language for a conversational artificial intelli-
gence (AI), there is usually a very limited data avail-
able. One major data source is Goldens translated
from another existing robust language model. In
mimicking this task, we use our determined pseudo
Goldens as input for both data generation and NLU
models. Synthetic data generated with the GAN
model is added to the set of pseudo Goldens and
fed into our NLU model. The NLU models are
tested using our fixed original test data set (Fig-
ure 3). Our baseline for comparison consists of an
NLU model run on only the pseudo Goldens.

3.3.2 Handling low resource features
Another common challenge faced by conversa-
tional AI NLU models is sparse data. When a
feature is new, or not common, we do not have

enough data for the NLU model to generalize well
on possible request variations. But, unlike the pre-
vious task, we typically do have a large amount
of data collected in the same language, but within
different intents and domains. Generative adver-
sarial networks, paired with a transfer learning ap-
proach, can give us the opportunity to use other
domains and intents which have robust data, to
strengthen the performance of these low resource
features. In this case we limit our experiments to
exploring a case where we have a low resource
domain. In mimicking this task, we pick one of
the three domains we have as the low resource
domain. We consider only the pseudo Goldens
as available data for this domain. The remaining
two domains are considered as robust domains and
we consider all data (i.e., both pseudo Goldens
and Rare utterances) as available data for the NLU
model. We also use all training data from the two
robust domains to pre-train word embedding us-
ing the fastText algorithm (Lample et al., 2017).
We then run data generation for the low resource
domain using our SeqGAN implementation while
using the pre-trained word embeddings from the
two robust domains to initialize word embeddings
both in generator and discriminator. For the NLU
model, we feed the pseudo Goldens together with
the synthesized data for the low resource domain
and feed all available training data for the two ro-
bust domains. We measure the performance of the
low resource domain against a baseline which is
run using only pseudo Goldens from the low re-
source domain together with all available data from
the robust domains. As with task 1, performance is
tested on the separate fixed test data set.

4 Data Generation

We explore the following different GAN frame-
works and expansions to generate synthetic anno-
tated utterances:

• Original implementation with Monte
Carlo rollout: a selected set of experiments
to benchmark the original implementation
by Yu et al. (2017) on our open source data
set.

• Original implementation without rollouts:
a selected set of experiments to benchmark the
original implementation by Yu et al. (2017),
where the reward function is evaluated on a
single MC rollout.

121

• Generator with token-level reward: train-
ing the generator using token-level reward as
suggested by Hu et al. (2018).

• Generator with token-level Monte Carlo
rollout: we expand the above implementation
to include a token-level Monte Carlo rollout
and test our task of bootstrapping new lan-
guages.

• Generator with pre-trained embeddings:
we add fastText pre-trained embeddings to the
generator and discriminator to selectively test
our task of handling low-resource features).

The model architecture consists of three parts: gen-
erator pre-training, discriminator pre-training, and
adversarial training. In the pre-training parts, we
first train the generator, followed by the discrim-
inator, for 80 epochs each. For each adversarial
epoch, we update the generator once and then for
35 steps we generate negative examples using the
current state of the generator, combined with the
same number of positive examples from the train-
ing data, and re-train the discriminator. The total
number of adversarial training epochs is set to 600.
All hyper-parameters were chosen based on obser-
vations of when the loss functions and synthetic
data quality evaluations either stabilize or clearly
degrade.

5 Results and Discussion

5.1 Evaluation

We evaluate our models using domain accuracy,
intent accuracy, slot F1, and frame accuracy. Do-
main and intent accuracy measure the accuracy of
the domain and intent classification tasks, respec-
tively. We use micro-averaging to calculate slot
F1 to measure the performance of the NER task.
Frame accuracy indicates the relative number of
utterances for which the domain, intent, and all
slots were correctly identified. In our case, we pay
attention to individual metrics to understand which
tasks are most affected by the synthesized data.

5.2 Language bootstrapping task

In this section we present the results of our exper-
iment mimicking the task of bootstrapping a new
language. See Section 3.3.1 for experimental setup.
We compare three SeqGAN implementations each
with a different reward policy. An open question
when using generated data for NLU model training

is whether the improvements observed are due to
the data enrichment gained by the new variations
introduced in synthetic data or due to upsampling.
To test this, we repeat each experiment on three
subsamples of the generated synthetic data. First,
we add a synthetic data set that is equal in size
to the pseudo Golden data set. We call this TopX
sampling. This enables us to explore the changes
in performance obtained by adding a synthetic data
set that reflects the original distribution produced
by the trained GAN framework, but with limited
effects of upsampling. In the second case, we pro-
duce a synthetic data set that is significantly larger
than the pseudo Golden data set (9600 utterances
per domain) and we take only the unique utterances
within that set. We call this Uniques sampling. This
enables us to explore the changes in performance
obtained by adding a synthetic dataset that contains
an exhaustive set of the different combinations of
utterances that the GAN can create, given the input
data. Finally, we add the full set of 9600 gener-
ated utterances per domain, that should be simi-
lar in distribution to the pseudo Goldens set (All
sampling). The results obtained for each SeqGAN
implementation with TopX, Uniques, and All sam-
pling strategies are summarized in Appendix B and
Appendix C.

5.2.1 Generator with token-level reward
When using the Generator with token-level reward,
we observe that out of three synthetic data sam-
pling strategies (i.e., TopX, Uniques, and All), the
biggest overall gain is shown by the All sampling
strategy with an overall intent accuracy improve-
ment of 4%, and an overall frame accuracy im-
provement of 3% (Table 1). Domain accuracy and
overall slot F1 do not show much change. In this
setup, alarm and reminder domains’ intent accura-
cies show increases of 12-14% with overall intent
accuracy increasing by 4%. However, intent ac-
curacy in the weather domain degrades by 4%.
The generator with token-level reward outperforms
the corresponding generator with sentence-level
reward in domain accuracy, slot F1 and frame ac-
curacy, but trails in intent metrics.

When the models are run using Goldens upsam-
pled to the same counts, we observe that overall do-
main, intent, and frame accuracies are slightly bet-
ter. However, individual intent accuracy of alarm
and reminder domains do not perform as well as
with synthetic data. No degradation of the weather
domain is observed with upsampled data.

122

Table 1: Performance relative to the baseline for models with token-level and sentence-level reward using All
sampling strategy. Baseline is a model trained on Goldens only.

Reward Domain Intent accuracy Overall Slot F1 Overall Frame
accuracy alarm reminder weather int. acc. alarm reminder weather slot F1 accuracy

Token-level 0.29 11.84 14.62 -3.89 4.41 -1.04 0.8 1.25 0.39 3.26
Sent.-level -0.26 14.45 17.4 0.27 7.81 -1.19 1.21 -2.77 -1.23 -4.43

Table 2: Performance relative to the baseline for models with Monte Carlo rollouts on token-level and sentence-
level reward using Uniques sampling strategy. Baseline is a model trained on Goldens only.

Reward Domain Intent accuracy Overall Slot F1 Overall Frame
accuracy alarm reminder weather int. acc. alarm reminder weather slot F1 accuracy

Token-level 0.41 14.83 14.43 -0.12 7.21 -0.43 2.82 0.25 0.67 4.3
Sent.-level -1.37 9.07 9.19 0.23 4.71 -0.09 1.47 -0.52 -0.12 0.19

5.2.2 Generator with token-level Monte
Carlo rollout

Using a Generator with token-level Monte Carlo
rollout brings significant improvement, especially
outperforming other models in the Uniques sam-
pling strategy. Overall intent accuracy shows an
improvement of 7%, and overall frame accuracy
improves by 4% (Table 2). Alarm and reminder
domains’ intent accuracy show improvements of
14-15%. The reminder domain’s slot F1 improves
by 3%. This setup performs significantly better
than the generator with sentence-level reward in
all overall metrics and also in alarm and reminder
domain intent accuracies.

When compared to the models run using Gold-
ens upsampled to the same counts, we observe that
the Generator with token-level Monte Carlo rollout
policy performs better on domain accuracy, overall
intent accuracy, and overall slot F1 while being
slightly under on frame accuracy. Specifically, it
performs much better on both the alarm and re-
minder domains which show approximately 50%
the performance boost.

5.3 Handling low resource features

In this section we present the results of our experi-
ment mimicking the task of handling low resource
features. See Section 3.3.2 for the experimental
setup. We conduct each experiment three times
and present the mean results for Uniques sampling
strategy in Appendix D.

5.3.1 Generator with token-level reward and
embeddings pre-trained on robust
domains

Appendix D summarizes the results obtained using
SeqGAN with a generator with token-level reward

and embeddings pre-trained on robust domains to
synthesize data for the low-resource domain. We
observe a 12% increase in intent accuracy in the
alarm domain when compared to the baseline. We
also observe a 13% increase in intent accuracy in
the reminder domain when synthetic data is added.
For the weather domain, we do not observe a signif-
icant change in intent accuracy. For alarm and re-
minder domains we see an increase in overall intent
accuracy when synthetic data is added. For these
same domains, overall frame accuracy shows small
improvements while domain accuracy and overall
slot F1 does not show any significant changes.

5.3.2 Generator with token-level Monte
Carlo rollout and embeddings
pre-trained on robust domains

Appendix D shows the results obtained when using
MC rollout policy in addition to using embeddings
pre-trained on robust domains to synthesize data
for the low-resource domain. For the reminder
and alarm domains, we note that the performance
boost in the IC task for the low-resource domain is
larger by 2-3% than without the MC rollout. The
weather domain shows a small but statistically sig-
nificant improvement of 0.5% when compared to
the baseline. These results suggest that the MC
rollout policy provides additional guidance to the
generator in all cases.

6 Synthetic data deep dive

6.1 Evaluating the quality of the data
generated

To the best of our knowledge, there is no compre-
hensive metric that is commonly used for measur-
ing the performance of a text generation model.
To measure the performance of the SeqGAN, we

123

Figure 4: Data quality evaluation for synthetic data gen-
erated in different GAN models: number of unique ut-
terances generated normalized by the number of Gold-
ens used as an input for GAN model (left), and 4-gram
BLEU score (right).

use the n-gram Bilingual Evaluation Understudy
(BLEU) score (Papineni et al., 2002), calculated
against a test set of Golden utterances. This metric
measures the degree of similarity between the gen-
erated data and test set. Additionally, we calculate
the diversity of generated data through the num-
ber of unique phrases we generated and number of
unique words used from vocabulary. We also keep
track on the mean utterance length to detect pos-
sible utterance collapse for token-level feedback,
when the generator learns to generate shorter ut-
terances. Detailed evaluations on bootstrapping
experiments are provided in the Appendix E, and
summarized in Figure 4. We see that compared to
other domains, weather’s BLEU scores are higher,
and the diversity of the generated data is lower,
suggesting that the model potentially reproduces
almost the same data as the input, and does not
bring in much novelty for NLU model training.

6.2 Annotation review

Although, in general, we observed that the NLU
model benefits from synthetic data, we have noted
some degradation in NER models, especially in the
weather domain. Deep diving into NER errors, we
found the following major sources of errors: an-
notation errors and context-dependent annotations.

First, in seeding pseudo Goldens, we selected ut-
terances based on their frequency, and then took
all unique annotations to be a pseudo Goldens set.
That process artificially increased weight of annota-
tion errors in cases were for frequent phrases there
were a few misannotated utterances. For example,
for utterances “remind me to ... tomorrow” with
and without label “datetime” frequently appeared
in our goldens, and the NLU model fails to recog-
nize “tomorrow” as an entity. In contrast, for the
utterances “remind me tomorrow to ...” the model
produces the correct “datetime” label. Additionally,
small context-dependent words that have different
annotation in the same domain, but appear to have
a dominant annotation in pseudo Goldens and fur-
ther in synthetic data, happen to be another cause
of failures. One example of such a word is “for” in
the weather domain, where in “weather for London
next week” it has no label, while in “forecast for
next week please” it is labeled as datetime.

7 Conclusions

In this paper, we evaluate the use of the SeqGAN
model for synthetic annotated data generation to
boost NLU model performance. We have shown
that adding synthetic data to bolster our Goldens
can significantly improve DNN model performance
in intent classification and named entity recognition
tasks. We propose a token-level reward with Monte
Carlo search rollout to guide the generator model,
that showed better performance when compared
with a regular token-level reward implementation,
sentence-level reward implementations both with
and without Monte Carlo tree search, and with a
pure upsampling strategy. We also show that us-
ing SeqGAN together with embeddings pre-trained
on high-resource domains to generate synthetic
data can significantly improve the performance of
low-resource domains. Embeddings pre-trained on
different tasks can carry over the information they
have learned and that can be especially useful in
low-resource model building scenarios.

References
Tong Che, Yanran Li, Ruixiang Zhang, R. Devon

Hjelm, Wenjie Li, Yangqiu Song, and Yoshua
Bengio. 2017. Maximum-likelihood augmented
discrete generative adversarial networks. ArXiv,
abs/1702.07983.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of

124

deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

William Fedus, Ian J. Goodfellow, and Andrew M. Dai.
2018. Maskgan: Better text generation via filling in
the . ArXiv, abs/1801.07736.

Ge Gao, Eunsol Choi, Yejin Choi, and Luke Zettle-
moyer. 2018. Neural metaphor detection in context.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
607–613, Brussels, Belgium. Association for Com-
putational Linguistics.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. In Advances in Neural Information
Processing Systems, pages 2672–2680. Curran As-
sociates, Inc.

Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong
Yu, and Jun Wang. 2018. Long text generation via
adversarial training with leaked information. In Pro-
ceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, (AAAI-18), the 30th innova-
tive Applications of Artificial Intelligence (IAAI-18),
and the 8th AAAI Symposium on Educational Ad-
vances in Artificial Intelligence (EAAI-18), pages
5141–5148, New Orleans, Louisiana, USA. AAAI
Press.

Rahul Gupta. 2019. Data augmentation for low re-
source sentiment analysis using generative adversar-
ial networks. In ICASSP 2019-2019 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 7380–7384. IEEE.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P. Xing. 2017. Toward con-
trolled generation of text. In Proceedings of the
34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Re-
search, pages 1587–1596, International Convention
Centre, Sydney, Australia. PMLR.

Zhiting Hu, Zichao Yang, Tiancheng Zhao, Haoran Shi,
Junxian He, Di Wang, Xuezhe Ma, Zhengzhong Liu,
Xiaodan Liang, Lianhui Qin, Devendra Singh Chap-
lot, Bowen Tan, Xingjiang Yu, and Eric Xing. 2018.
Texar: A modularized, versatile, and extensible tool-
box for text generation. In Proceedings of Workshop
for NLP Open Source Software (NLP-OSS), pages
13–22, Melbourne, Australia. Association for Com-
putational Linguistics.

Diederik P Kingma and Max Welling. 2013. Auto-
encoding variational bayes. ArXiv, abs/1312.6114.

Varun Kumar, Hadrien Glaude, Cyprien de Lichy, and
Wlliam Campbell. 2019. A closer look at feature
space data augmentation for few-shot intent classi-
fication. In Proceedings of the 2nd Workshop on
Deep Learning Approaches for Low-Resource NLP
(DeepLo 2019), pages 1–10, Hong Kong, China. As-
sociation for Computational Linguistics.

Matt J. Kusner and José Miguel Hernández-Lobato.
2016. Gans for sequences of discrete elements
with the gumbel-softmax distribution. ArXiv,
abs/1611.04051.

Guillaume Lample, Ludovic Denoyer, and
Marc’Aurelio Ranzato. 2017. Unsupervised
machine translation using monolingual corpora
only. ArXiv, abs/1711.00043.

Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean,
Alan Ritter, and Dan Jurafsky. 2017. Adversar-
ial learning for neural dialogue generation. ArXiv,
abs/1701.06547.

Kevin Lin, Dianqi Li, Xiaodong He, Ming-Ting Sun,
and Zhengyou Zhang. 2017. Adversarial ranking
for language generation. In Advances in Neural In-
formation Processing Systems 30, pages 3155–3165.
Curran Associates, Inc.

Jie Lu, Vahid Behbood, Peng Hao, Hua Zuo, Shan
Xue, and Guangquan Zhang. 2015. Transfer learn-
ing using computational intelligence: A survey.
Knowledge-Based Systems, 80:14–23.

Nikolaos Malandrakis, Minmin Shen, Anuj Goyal,
Shuyang Gao, Abhishek Sethi, and Angeliki Met-
allinou. 2019. Controlled text generation for data
augmentation in intelligent artificial agents. In Pro-
ceedings of the 3rd Workshop on Neural Generation
and Translation, pages 90–98, Hong Kong. Associa-
tion for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics, ACL ’02, page 311–318, USA.
Association for Computational Linguistics.

Ashwin Ram, Rohit Prasad, Chandra Khatri, Anu
Venkatesh, Raefer Gabriel, Qing Liu, Jeff Nunn,
Behnam Hedayatnia, Ming Cheng, Ashish Nagar,
Eric King, Kate Bland, Amanda Wartick, Yi Pan,
Han Song, Sk Jayadevan, Gene Hwang, and Art Pet-
tigrue. 2018. Conversational AI: The science behind
the alexa prize. ArXiv, abs/1801.03604.

Sebastian Schuster, Sonal Gupta, Rushin Shah, and
Mike Lewis. 2019. Cross-lingual transfer learning
for multilingual task oriented dialog. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 3795–3805, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

125

Burr Settles. 2009. Active learning literature survey.
Technical report, University of Wisconsin-Madison
Department of Computer Sciences.

Richard S Sutton, David A. McAllester, Satinder P.
Singh, and Yishay Mansour. 2000. Policy gradi-
ent methods for reinforcement learning with func-
tion approximation. In Advances in Neural Informa-
tion Processing Systems 12, pages 1057–1063. MIT
Press.

Ziang Xie, Sida I. Wang, Jiwei Li, Daniel Lévy, Aim-
ing Nie, Dan Jurafsky, and Andrew Y. Ng. 2017.
Data noising as smoothing in neural network lan-
guage models. ArXiv, abs/1703.02573.

Jingjing Xu, Xuancheng Ren, Junyang Lin, and
Xu Sun. 2018. Diversity-promoting gan: A cross-
entropy based generative adversarial network for di-
versified text generation. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3940–3949, Brussels, Bel-
gium. Association for Computational Linguistics.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu.
2017. Seqgan: Sequence generative adversarial nets
with policy gradient. In Thirty-First AAAI Con-
ference on Artificial Intelligence, pages 2852–2858.
AAAI Press.

Yizhe Zhang, Zhe Gan, Kai Fan, Zhi Chen, Ricardo
Henao, Dinghan Shen, and Lawrence Carin. 2017.
Adversarial feature matching for text generation. In
Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pages 4006–4015,
International Convention Centre, Sydney, Australia.
PMLR.

126

Proceedings of the 17th International Conference on Natural Language Processing, pages 127–137
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

BertAA: BERT fine-tuning for Authorship Attribution

Maël Fabien1,2, Esaú Villatoro-Tello1,3, Petr Motlicek1, and Shantipriya Parida1

1Idiap Research Institute, Martigny, Switzerland.
{firstname.lastname}@idiap.ch

2Ecole Polytechnique Fédérale de Lausanne, Switzerland.
mael.fabien@epfl.ch

3Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Mexico City, Mexico.
evillatoro@correo.cua.uam.mx

Abstract

Identifying the author of a given text can be
useful in historical literature, plagiarism de-
tection, or police investigations. Authorship
Attribution (AA) has been well studied and
mostly relies on a large feature engineering
work. More recently, deep learning-based ap-
proaches have been explored for Authorship
Attribution (AA). In this paper, we introduce
BertAA, a fine-tuning of a pre-trained BERT
language model with an additional dense layer
and a softmax activation to perform authorship
classification. This approach reaches competi-
tive performances on Enron Email, Blog Au-
thorship, and IMDb (and IMDb62) datasets,
up to 5.3% (relative) above current state-of-
the-art approaches. We performed an exhaus-
tive analysis allowing to identify the strengths
and weaknesses of the proposed method. In ad-
dition, we evaluate the impact of including ad-
ditional features (e.g. stylometric and hybrid
features) in an ensemble approach, improving
the macro-averaged F1-Score by 2.7% (rela-
tive) on average.

1 Introduction

Authorship Analysis is the field of Natural Lan-
guage Processing that studies the characteristics of
a text and extracts information on its author. It is
made of 3 sub-tasks, which include author profil-
ing, i.e. detecting sociolinguistic attributes such as
gender or age, authorship verification which identi-
fies the degree of similarity of texts, and authorship
attribution (El et al.). Authorship Attribution (AA)
is the process of attributing a text to the correct au-
thor among of closed set of potential writers. AA is
widely used in plagiarism detection or attribution
of historical literature (Li). This classification task
is also well known in forensic investigations (Yang
and Chow, 2014).

AA has been studied on short texts (Aborisade
and Anwar, 2018), such as Tweets as well as

longer texts, such as judgments of a few thousand
words on average (Sari et al., 2018). The main
challenge in AA is the extraction of relevant fea-
tures characterising the author’s identity. Major-
ity of approaches proposed in the past relied on
a large amount of feature engineering, in order to
reflect both the content and the style of the au-
thor (Madigan et al., 2005; Aborisade and Anwar,
2018; Seroussi et al., 2014; Bozkurt et al., 2007).

In this paper, we propose a method, BertAA, that
relies on the fine-tuning of a pre-trained BERT lan-
guage model, to which we add a dense layer and
a softmax activation for authorship classification,
trained for a few epochs. This is one of the very
first attempts to analyze the performances of pre-
trained language model fine-tuning for in-domain
AA, especially for a large number of authors (up
to 100). As most Deep-Learning methods for AA,
BertAA does not require text preprocessing nor fea-
ture engineering. Our method offers state-of-the-art
(SOTA) performances on well-known corpora, with
a relative accuracy improvement of up to 5.3%. We
also illustrate the strengths and weaknesses of such
a system. We also show that building an ensemble
architecture, which also incorporates stylometric
and hybrid features tends to improve the macro-
averaged F1-score. Finally, we set a benchmark for
the full IMDb corpus (Seroussi et al., 2014) for 5,
10, 25, 50, 75, and 100 authors, which, to the best
of our knowledge, has never been studied in its full
format for AA.

The next section discusses the relevant ap-
proaches developed in the literature. Section 3
presents the corpora used as well as a brief explo-
ration of each of the sources. Section 4 details the
architectures of BertAA, while Section 5 describes
the results we obtained, and Section 6 discusses the
strengths and weaknesses of our method, as well as
future work directions. Finally, Section 7 depicts
our conclusions.

127

2 Related work

Traditionally, AA largely relies on the process of
extracting features related to content or style of an
author (Stamatatos, 2009). More recently, some
approaches propose to use deep learning methods
for AA tasks, whether relying on a previous fea-
ture extraction step or not. The following sections
briefly describe these various methods.

2.1 Traditional methods

Term Frequency - Inverse Document Frequency
(TF-IDF) is used in AA at the word or the word
or character N-gram level. It captures the words,
the stems, or the combinations of words or letters
that an author uses. Some recent works combine
the votes of several classifiers on several levels of
N-grams (Muttenthaler et al.). Such methods are
referred to in the literature as being content-related
classifiers (Sari et al., 2018).

In addition, stylometric features reflect the style
of the author (Sari et al., 2018). The main hypothe-
sis behind this feature extraction is that each author
has its own writing style (e.g use of punctuation, av-
erage word length, sentence length, number of up-
per cases...). Features reflecting the style are used
as an input for a LR usually, as seen in (Madigan
et al., 2005; Aborisade and Anwar, 2018; Madigan
et al.). An optional step of text pre-processing is
often added (Allison and Guthrie), and more specif-
ically through stop-words removal and stemming.
Sari et al. (2018) reached an accuracy of 95.9% on
the IMDb62 dataset (Seroussi et al., 2014), 1.1%
(absolute) above a character N-gram classifier, by
including stylometric features in a classifier. Soler-
Company and Wanner (2017) also showed that in-
cluding syntactic and discourse features can help
achieve SOTA performances in author and gender
identification.

To combine the numerous sources of input fea-
tures, AA is also performed using ensemble learn-
ers, made for example of several SVM classifiers
(Bacciu et al., 2020). Each classifier is trained on
certain features related to distinct concepts, such as
style, content, author profiling, etc.

2.2 Deep Learning based methods

While overcoming the burden of feature engineer-
ing, deep learning-based methods have reached
SOTA results, whether through the use of Long
Short-Term Memory (LSTM) (Qian et al.) at both
the sentence and article-level or using multi-headed

Recurrent Neural Network (RNN) (Bagnall, 2016)
for on short multi-lingual texts. Convolutional
Neural Networks (CNN) have also been widely
explored for AA and can extract information from
raw signals in speech processing or computer vi-
sion.

Ruder et al. (2016) explored CNNs at the word
and character level for AA and found that CNNs
at the character level tend to outperform other sim-
ple approaches based on SVMs for example, while
CNNs at the N-gram level have been shown to per-
form competitively (Shrestha et al., 2017). Zhang
et al. (2018) proposed a Syntax-augmented CNN
model which outperforms other approaches on the
Blog authorship and the IMDb62 datasets.

Siamese networks are well known in computer
vision, e.g. for facial recognition tasks (Wu et al.,
2017). Saedi and Dras (2019), used Convolutional
Siamese Networks to perform AA. They compared
their approach with a BERT fine-tuning over 3
epochs and showed that Siamese Networks are
more robust over large-scale AA tasks (N > 50).
This type of approach has the advantage of being
able to evaluate the similarity between texts, as
shown in (Qian et al.).

In 2020, Barlas and Stamatatos (2020) leveraged
pre-trained language models (BERT, ELMo, ULM-
FiT, GPT-2) for the specific case of cross-topic and
cross-domain AA on the CMCC dataset (Goldstein-
Stewart et al., 2009), on a subset of 21 authors. The
authors used a multi-headed classifier with a de-
multiplexer. In an N-authors classification task (N
typically < 100), N classifiers would be trained,
each of them seeing predominantly data from one
author. In prediction, the text to classify is passed
through all classifiers, and after normalization, the
scores are compared. This work shows that BERT
seems to work best on large vocabularies, and out-
performs multi-headed RNNs.

Contrary to previous work, in this paper we per-
form an exhaustive analysis on the performance
of pre-trained language models, we identify the
advantages and limitations on three well-known
benchmark datasets. In addition, we evaluate the
impact of incorporating stylometric and hybrid fea-
tures through ensemble techniques.

3 Authorship Attribution Corpora

Several corpora have been studied for the task of
AA. In this section, we briefly describe each corpus
we used as well as its key features. The AA task

128

we performed focuses on identifying the author of
a text among a list of the top N authors for whom
we collected the largest number of texts.

3.1 Enron Email corpus

Enron Email corpus has been widely studied over
the previous decade since the bankruptcy of En-
ron. 517’401 emails from around 160 employees
were made public, and data preparation for email
classification was then done by Klimt and Yang
(2004). The emails mainly contain conversations of
managers at Enron, and given the fraudulent nature
of the emails, it is commonly used as a study case
for criminal network investigations (Aven, 2015).

Emails were collected from the “Sent” folder
of each of the 160 employees. Since around 13%
of the emails contained the name of the sender,
as a signature or side information in a forwarded
message, we dropped these observations. We also
removed all messages of less than 10 tokens to
apply the same processing as Ruder et al. (2016).
Our end corpus contained 130’000 emails. Emails
are on average 150 tokens long, and the median
length is 61 tokens.

Enron Email corpus has already been stud-
ied for several Authorship Analysis tasks, in-
cluding Authorship Verification (Halvani et al.,
2020; Brocardo et al., 2013), as well as for AA
tasks (Neumann and Schnurrenberger; Li; Allison
and Guthrie). Gender identification and sentiment
analysis were also studied by Clough et al. (2011).

3.2 IMDb Authorship Attribution Corpus

The IMDb Authorship Attribution corpus was in-
troduced by Seroussi et al. (2014). 271’000 movie
reviews were produced by 22’116 distinct authors,
with an average of 12.3 texts per author. Texts are
on average 121 tokens long. No preprocessing or
filtering was applied to the corpus.

Most of the works that we have found referred
to the IMDb62 dataset, a truncated version of the
IMDb Authorship Attribution Corpus with 62 au-
thors and 1’000 texts per author. We chose to
benchmark our solution on the IMDb62 against
other approaches, but also to evaluate the perfor-
mance of our model on the full version of the cor-
pus since it contains a class imbalance (closer to a
real-life scenario) and has more data, with an aver-
age of 3’900 texts per author for the top 5 authors.
The full version of the corpus has, to the best of
our knowledge, never been studied for AA for a

various number of authors. Hence, our approach
sets a benchmark.

3.3 Blog Authorship Attribution Corpus

The Blog Authorship Attribution corpus is a corpus
of blog articles from 2004 and before, collected
from blogger.com. It was introduced by Schler et al.
as part of a study on the effects of age and gender on
blogging. More than 680’000 posts are available,
from more than 19’000 authors. An average of 35
posts was collected per author. No preprocessing
or filtering was applied to the corpus. Although it
might seem surprising, it is worth mentioning that
this dataset is the one containing the shortest texts
on average (79 tokens for the top 5 authors, vs 190
for Enron). Many of the blog posts collected were
replies to existing blog posts or short articles.

For our experiments, we considered the top 5, 10,
25, 50, 75, and 100 authors with the largest number
of texts. Table 1 presents the summary statistics
of the length and number of documents per author,
in the various configurations considered, for each
dataset. As a summary, Enron has rather long texts,
a large number of texts per author with a large
associated standard deviation. IMDb reviews are
shorter and the number of texts per author is lower
than for Enron. Finally, for the Blog dataset, the
texts are short, and the number of texts per author
is smaller than for Enron, with fewer variability
than for IMDb.

Dataset N Avg. Num. Tokens Avg. Nb. Texts
5 190 (± 375) 11205 (± 2324)

10 201 (± 419) 8745 (± 3052)
25 185 (± 375) 5626 (± 3230)

Enron 50 183 (± 361) 3685 (± 3014)
75 194 (± 386) 2774 (± 2779)

100 208 (± 717) 2259 (± 2567)
5 106 (± 184) 3900 (± 2197)

10 127 (± 185) 2817 (± 1895)
25 110 (± 167) 1873 (± 1434)

IMDb 50 104 (± 152) 1324 (± 1155)
75 102 (± 158) 1080 (± 1005)
100 102 (± 157) 932 (± 907)

IMDb62 62 341 (± 223) 1000 (± 0)
5 79 (± 191) 2659 (± 780)

10 91 (± 184) 2350 (± 639)
25 99 (± 174) 1832 (± 599)

Blog 50 98 (± 167) 1466 (± 562)
75 120 (± 209) 1270 (± 538)

100 126 (± 228) 1122 (± 533)

Table 1: Descriptive statistics for the 4 datasets. N:
number of authors, Avg. Num. Tokens: average num-
ber of tokens per text, Avg. Nb. Texts: average number
of texts. Standard deviation in parenthesis.

129

4 BertAA : BERT-based Authorship
Attribution

Content-related features in AA take into account
the topics and the semantics of the text. Recent
works on language representation models have
however shown that transformers such as BERT
(Devlin et al., 2019) reach SOTA performances
for various tasks, hence improving GLUE score
as well as several other metrics. It has been exten-
sively used for text classification tasks (Sun et al.,
2020), and BERT is known to be well-performing
at extracting semantic and syntactic information.

To the best of our knowledge, no systematic re-
view of the performance of fine-tuned pre-trained
language models for AA has been reported yet,
and such classifier has never been combined with
a stylometric and hybrid features in an ensemble
model. Hereby, we introduce BertAA, a fine-tuning
of BERT with a dense layer and a softmax activa-
tion, trained for a few epochs for AA. The output
dimension of the dense layer corresponds to the
number of authors in the corpus.

BERT is made of 12 Transformer blocks and
12 self-attention heads. The input size, i.e. the
maximum length of tokens is 512, and the hidden
layer representation dimension is 768 (Vaswani
et al., 2017). As described by Sun et al. (2020),
to use BERT as a classifier, a simple dense layer
with softmax activation is added on top of the final
hidden state h of the first token [CLS], through a
weight matrix W , and we predict the probability of
label c the following way:

p(c | h) = softmax(Wh). (1)

Then, all weights, including BERT’s ones and
W , are adapted, in order to maximize the log-
probability of the correct label. The training is
done using a Cross-Entropy loss function. We used
a pre-trained BERT available from the Transformer
library (Wolf et al., 2020), trained on large corpora.
The fine-tuning of BERT for the AA task was done
on a Tesla P100-PCIE-16GB.

Additionally, we incorporate stylometric and hy-
brid features to BertAA, in 2 models called BertAA
+ Style and BertAA + Style + Hybrid through a LR.
Thus, our system is able to account for content,
stylometric, and hybrid features. The architecture
of BertAA + Style + Hybrid is presented in Figure
1.

Figure 1: BertAA + Style + Hybrid architecture.

The stylometric classifier first extracts the lexi-
cal stylometric features as proposed by Sari et al.
(2018). The features extracted are the length of
text, the number of words, the average length of
words, the number of short words, the proportion
of digits and capital letters, individual letters and
digits frequencies, hapax-legomena, a measure of
text richness, and the frequency of 12 punctuation
marks. A LR is trained on these features. The
hybrid features we extract are the frequencies of
the 100 most frequent character-level bi-grams and
tri-grams. Classification is then done using a LR.
Finally, the output probabilities of Bert classifier,
the stylometric, and the hybrid ones are concate-
nated and classified using an additional LR.

5 Results

Parameters we chose for our architectures are pre-
sented in Table 2.

Model Parameter Value
Hybrid feat. Char. N-grams (2,3)

Penalty l2
Tolerance 0.0001

LR C 1.0
Max Iterations 100

Intercept True
Config bert-base-cased

BERT Epochs 1 to 5
Input token length 512

Table 2: Parameters of the experiments.

We ran the experiments on 5, 10, 25, 50, 75, and
100 authors for the full IMDb, the Blog, and Enron
datasets presented above. Our model was trained

130

on 5 epochs for each experiment unless specified
otherwise. The results are presented in Table 3. We
picked the top N authors with the largest amount
of texts, for each of the datasets, and kept 20% of
test data using a stratified approach, meaning that
the proportions of each class are kept equal in the
training and testing set. We report the results of
BertAA, BertAA + Style and BertAA + Style + Hy-
brid. We compare our approach with a word-level
TF-IDF - LR model with stemming and stop-words
removal. We also add as a benchmark the perfor-
mance of a LR trained only on stylometric features,
and an additional LR trained on the character-level
N-gram hybrid features.

BertAA outperforms the TF-IDF and LR bench-
mark on all experiments, with an average rela-
tive accuracy gain of 14.3%. It reaches a com-
petitive performance on 5 authors on the Enron
dataset, since only 2 samples were not classified
correctly out of 4104, hence leading to an accuracy
of 99.95%.

Comparing results on Enron to other approaches
in literature is not trivial since it largely depends
on the data preparation that was done. We decided
to remove short emails, and remove utterances con-
taining the name of the sender (as a signature for
example), but not all papers involving Enron data
for AA precisely describe their data preparation.
Furthermore, we found no results in the literature
on IMDb full-corpus for the top N authors. Hence,
our results set a benchmark on the full IMDb, on
average 8.2% above a word-level TF-IDF. Next,
we compare our results with current SOTA on the
IMDb62 and the Blog Authorship datasets.

5.1 How does the performance compare to
SOTA?

In Table 4, we report the accuracy of our best
systems (no additional features, 5 epochs) on
the Blog Authorship corpus against the perfor-
mances of several CNN-based architectures, includ-
ing the character-level CNN presented in (Ruder
et al., 2016) and current SOTA Syntax-enriched
CNN(Zhang et al., 2018). We report results over
10 and 50 authors. For 10 authors, the accuracy
of our best BertAA system (no additional features,
5 training epochs) reaches 65.4% which is, to the
best of our knowledge, the current SOTA on the
Blog Authorship Corpus, and represents a relative
improvement of 2% over the Syntax CNN. When
the number of authors increases, our system dis-

plays an accuracy of 59.7%, which represents a
relative improvement of 5.3% accuracy compared
to the previous SOTA. The main characteristics of
the Blog Corpus are that texts are rather short on
average (respectively 91 and 98 tokens on average
for 10 and 50 authors), while the number of texts
per authors remains quite high on average, with
a rather small standard deviation, suggesting that
BertAA is well suited for datasets with short sen-
tences, and a large but balanced number of texts
per author.

Approach 10 50
Impostors (Koppel and Winter, 2014) 35.4 22.6
SCAP (Frantzeskou et al., 2006) 48.6 41.6
LDAH-S (El et al.) 52.5 18.3
CNN (Ruder et al., 2016) 61.2 49.4
Continuous N-gram (Sari et al., 2017) 61.3 52.8
N-gram CNN (Zhang et al., 2018) 63.7 53.1
Syntax CNN (Zhang et al., 2018) 64.1 56.7
BertAA 65.4 59.7

Table 4: Accuracy on Blog Authorship

5.2 Are external features useful?

In order to assess the impact of external features,
we compute the accuracy per author on the Blog
dataset for 10 authors. We compare the per-author
accuracy of a word-level TF-IDF + LR classifier
and BertAA, to identify whether TF-IDF outper-
forms our system on some classes in Figure 2.

Figure 2: Accuracy per author for TF-IDF and BertAA
(+Style) on the Blog Dataset (N=10)

On most authors, BertAA slightly outperforms
TF-IDF, although both methods reach good accu-
racies. However, BertAA brings additional value,
especially where TF-IDF performs poorly, e.g. on
Author 3 in the figure. In some specific cases, such
as for author “7” on the figure, TF-IDF achieves
a better performance than BertAA. In such a case,
adding the stylometric features improves the per-

131

Dataset N-Authors Baslines Proposed Method
Stylo. Char N-gram TF-IDF BertAA + Style + Style + Hybrid

5 75.0 84.4 98.0 99.95 99.95 99.95
10 54.9 70.5 96.4 99.1 99.1 99.1
25 35.6 53.2 92.7 98.7 98.7 98.7

Enron 50 20.4 44.8 90.8 98.1 98.2 98.2
75 17.3 40.6 90.1 97.6 97.5 97.5

100 15.8 36.9 88.3 97.0 97.0 97.1
5 65.8 92.1 98.1 99.6 99.6 99.6

10 44.6 79.2 93.9 98.1 98.2 98.2
25 25.5 55.8 84.1 93.2 92.9 92.9

IMDb 50 17.4 44.2 82.1 90.7 90.6 90.6
75 14.7 37.6 79.2 88.3 87.8 87.8

100 11.8 33.6 76.6 86.1 85.3 85.4
5 34.7 40.0 45.7 61.3 59.7 59.8

10 18.9 31.9 45.0 65.4 62.4 62.4
25 9.9 23.4 42.0 65.3 64.4 64.4

Blog 50 6.2 15.7 41.4 59.7 58.7 58.7
75 5.0 15.7 42.2 60.9 59.0 59.2

100 4.2 13.8 40.5 58.8 57.3 57.6

Table 3: Accuracy on the number of authors for all approaches on the 3 datasets.

formance of our model on this author. But what
is the overall impact of additional features on the
model performance?

Adding stylometric and hybrid features in the
first experiment on the Blog corpus, with 10 au-
thors, the accuracy decreases from 65.4 to 62.4%.
However, the macro-averaged F1-score we report
using these features is higher, at 61.4% instead of
56.7% when no features are added.

This behavior of BertAA is illustrated in the con-
fusion matrices in Figure 3, in which we report the
accuracy per class (i.e. per author). Surprisingly,
BertAA is stuck at 0% accuracy on certain authors,
as it tends to allocate all the texts to a sub-set of
authors, which can lead to a good accuracy but a
lower macro-averaged F1-score. On the other hand,
adding other features (stylometric and hybrid) im-
proves the macro-averaged F1-score, but reduces
the accuracy in that specific case.

According to our experiments, as illustrated in
Figure 4, the F1-score on the Blog Authorship cor-
pus for 5, 10, 25, 50, 75, and 100 authors improves
by 2.70% (relative) when stylometric features are
added to BertAA, and by 2.73% (relative) when
including hybrid features.

In the blog corpus, more than 2’300 texts are
collected per author, for the top 10 authors, which
offers a sufficient quantity of training data, and a
limited number of authors. But this does not guar-
antee that our model behaves well under a smaller
set of training data and a wider classification task,
such as on the IMDb62 dataset.

Figure 3: Confusion matrix of BertAA and BertAA +
Style + Hybrid on the Blog corpus

132

Figure 4: Macro-averaged F1-score when including
stylometric and hybrid features according to number of
authors.

5.3 More authors, less data

We ran additional experiments on the IMDb62
dataset with a larger number of authors (62), and
fewer training samples per author (1’000). To repli-
cate the setup of most methods presented in Table
5, 20% of the data were used as a test sample. The
split is made randomly, since no standardized train-
ing and testing corpus exists for all these datasets.
In Table 5, we report the performance of the various
BertAA architectures and compare our approaches
to various methods including current SOTA.

Approach Accuracy
LDA+Hellinger (El et al.) 82
Word Level TF-IDF 91.4
CNN-Char (Ruder et al., 2016) 91.7
Comp.Att.+Sep.Rec. (Song et al., 2019) 91.8
Token-SVM (Seroussi et al., 2014) 92.52
SCAP (Frantzeskou et al., 2006) 94.8
Cont. N-gram Char (Sari et al., 2017) 94.8
(C+W+POS)/LM (Kamps et al., 2017) 95.9
N-gram + Style (Sari et al., 2018) 95.9
Syntax CNN(Zhang et al., 2018) 96.2
BertAA + Style + Hybrid - 1 epoch 88.7
BertAA + Style - 3 epochs 91.1
BertAA + Style + Hybrid - 5 epochs 92.3
BertAA + Style + Hybrid - 10 epochs 93.0

Table 5: Accuracy of various approaches on IMDb62

The Syntax-enriched CNN presented in (Zhang
et al., 2018) reached an accuracy of 96.2%. Most
other approaches lie between 91 and 94%. Consid-
ering that IMDb62 offers 1’000 training samples
per author, the training of BertAA over a single
epoch did not perform well. We then increased
the number of training epochs and reached 92.3%

at 5 epochs, and up to 93.0% at 10 epochs. This
highlights the limitations of our model in situations
with less training data and more authors.

Figure 5 plots the relative accuracy of BertAA
over the number of authors for all three datasets.
The starting point at 100 represents the accuracy
reached by the model at 5 authors. A decreasing
trend would therefore illustrate that the model ac-
curacy is negatively impacted by a larger number
of authors. On Enron and the Blog, the decrease in
accuracy is limited, since 95 to 97% of the perfor-
mance on 5 authors is maintained at 100 authors.
The largest decrease occurs for IMDb dataset, at
around 87% of the accuracy at 5 authors for 100
authors. This can likely be explained by the fact
that IMDb comments are published publicly on
the IMDb website, and that many authors might
read comments of a movie before publishing theirs.
Words, topics, punctuation, or phrases might there-
fore be re-used by some authors when publishing
their comments.

Figure 5: Relative impact of the number of authors on
accuracy, base being the case with 5 authors.

Since the accuracy increases over the number of
epochs on IMDb 62, in the next section, we further
explore the impact of the number of training epochs
on the model performance.

5.4 How much fine-tuning is too much?

In literature, the recommended number of epochs
for BERT has been set between 2 and 4 (Sun et al.,
2020), 3 being a common choice. In order to ex-
plore the effect of the number of training epochs
on the model’s accuracy, we report in Figure 6
the accuracy for the IMDb62 dataset using several
models (BertAA, BertAA + Style, BertAA + Style
+ Hybrid), and compare it to the baseline TF-IDF.
BertAA + Style appears to be the best perform-
ing model and starts to offer better performances

133

than TF-IDF after 4 epochs. However, no peak
performance is reached, and the accuracy is still
improving after 10 epochs, although to a lesser ex-
tent. The impact of the training epochs on a dataset
with 62 authors is higher since BertAA is not per-
forming as well, but we can suppose that the impact
of the number of epochs is reduced on a smaller
set of authors. We have chosen to train our models
on 5 epochs for most of our experiments since it
offers a good tradeoff between the training time
and accuracy.

Figure 6: Accuracy over the number of epochs

6 Discussion

Our approach can be summarized as an extrapo-
lation of BERT’s general outstanding scores, for
AA. We show that reaching SOTA results can be
achieved using only a single dense layer and a soft-
max activation on top of a pre-trained BERT with
a few training epochs. We highlighted that BertAA
performs well on rather short texts, few imbalances
in the number of texts per author, and a large num-
ber of texts per author.

Previous works (Sari et al., 2018) have shown
that using stylometric and hybrid features improves
the accuracy of AA tasks. We also show that adding
such features when leveraging pre-trained language
models can improve the macro-averaged F1-Score
by 2.7% (relative) on average, although impacting
the accuracy.

The use of BertAA should be limited to cases
where BERT is itself a good candidate, i.e. when
there are sufficient training data per author. This
condition might be hard to reach in real applica-
tions for police investigations. Short texts and few
imbalances have also been identified as require-
ments for better model performances. Our model
is also currently unable to perform text similarity
evaluation in the context of Authorship Verifica-

tion.
There are many possible extensions to this work.

According to our experiments on Enron, Blog Au-
thorship, and IMDb corpora, AA can successfully
leverage transformers-based language representa-
tion models. So far, we have not performed further
pre-training of BERT on the target domain, which
could also help BertAA. We have not tried yet to
use another pre-trained language model. Future
works should also explore other model architec-
tures like RoBERTa(Liu et al., 2019), or try to ex-
tract additional stylometric, hybrid, profiling, or
content-related features. Including the computa-
tion of similarity metrics on embeddings learned
through the BERT fine-tuning would also be a way
to compare the similarity between texts for Au-
thorship Verification tasks. We will also explore
BertAA in AA tasks on ASR transcripts, where
punctuation and capital letters are not present for
example.

7 Conclusion

With the rise of Deep Learning and Transformers in
Natural Language Processing, feature engineering
and text preprocessing are less needed.

In this work, we presented an approach based on
fine-tuning of a pre-trained BERT for author clas-
sification. This is one of the very first attempts
to analyze the performances of pre-trained lan-
guage model fine-tuning for in-domain AA. We
showed that our approach, which leverages BERT,
reaches competitive performances on three well-
known benchmark datasets, even on a large number
of authors. The model best performs when suffi-
cient training data per author are available, there is
no large class imbalance, and texts remain rather
short.

We also show that in a large scale AA task,
adding stylometric and hybrid features to BertAA
in an ensemble model can improve the macro-
averaged F1-score by 2.7% (relative) on average.
Finally, we set a new benchmark on the full IMDb
Authorship Attribution Corpus for 5, 10, 25, 50, 75,
and 100 authors. Future works will explore adding
features to BertAA, further pre-training BERT
on target-domain, exploring other pre-trained lan-
guage models, and extending our approach to Au-
thorship Verification. 1

1Code and datasets are available here

134

Acknowledgment

This work was supported by the European Union’s
Horizon 2020 research and innovation program
under grant agreement No. 833635 (project ROX-
ANNE: Real-time network, text, and speaker ana-
lytics for combating organized crime, 2019-2022).
The second author, Esaú Villatoro-Tello, was sup-
ported partially by Idiap, SNI-CONACyT, CONA-
CyT project grant CB-2015-01-258588, and UAM-
C Mexico during the elaboration of this work.

References
Opeyemi Aborisade and Mohd Anwar. 2018. Classifi-

cation for Authorship of Tweets by Comparing Lo-
gistic Regression and Naive Bayes Classifiers. In
2018 IEEE International Conference on Information
Reuse and Integration (IRI), pages 269–276.

Ben Allison and Louise Guthrie. Authorship Attribu-
tion of E-Mail: Comparing Classifiers Over a New
Corpus for Evaluation. page 5.

Brandy L. Aven. 2015. The Paradox of Corrupt Net-
works: An Analysis of Organizational Crime at En-
ron. Organization Science, 26(4):980–996. Pub-
lisher: INFORMS.

Andrea Bacciu, Massimo La Morgia, Alessandro
Mei, Eugenio Nerio Nemmi, and Julinda Stefa.
2020. Cross-Domain Authorship Attribution Com-
bining Instance-Based and Profile-Based Features.
page 14.

Douglas Bagnall. 2016. Author Identification
using Multi-headed Recurrent Neural Networks.
arXiv:1506.04891 [cs]. ArXiv: 1506.04891.

Georgios Barlas and Efstathios Stamatatos. 2020.
Cross-Domain Authorship Attribution Using Pre-
trained Language Models. In Ilias Maglogiannis,
Lazaros Iliadis, and Elias Pimenidis, editors, Artifi-
cial Intelligence Applications and Innovations, vol-
ume 583, pages 255–266. Springer International
Publishing, Cham. Series Title: IFIP Advances in
Information and Communication Technology.

İlker Nadi Bozkurt, Özgür Bağlıoğlu, and Erkan Uyar.
2007. Authorship attribution: performance of var-
ious features and classification methods. In 22nd
International Symposium on Computer and Informa-
tion Sciences, ISCIS 2007 - Proceedings, pages 158–
162. IEEE. Accepted: 2016-02-08T11:41:59Z.

Marcelo Luiz Brocardo, Issa Traore, Sherif Saad, and
Isaac Woungang. 2013. Authorship verification
for short messages using stylometry. In 2013 In-
ternational Conference on Computer, Information
and Telecommunication Systems (CITS), pages 1–6,
Athens, Greece. IEEE.

Paul Clough, Colum Foley, Cathal Gurrin, Gareth
Jones, Wessel Kraaij, Hyowon Lee, and Vanessa
Murdock, editors. 2011. Advances in Information
Retrieval: 33rd European Conference on IR Resarch,
ECIR 2011, Dublin, Ireland, April 18-21, 2011, Pro-
ceedings. Information Systems and Applications,
incl. Internet/Web, and HCI. Springer-Verlag, Berlin
Heidelberg.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of Deep Bidirectional Transformers for Language
Understanding. arXiv:1810.04805 [cs]. ArXiv:
1810.04805.

Sara El, Manar El Bouanani, Ensias Mohammed, Mo-
hammed Ben, Abdallah Regragui, and Madinat Al.
General Terms Authorship analysis.

Georgia Frantzeskou, Efstathios Stamatatos, Stefanos
Gritzalis, and Sokratis Katsikas. 2006. Source Code
Author Identification Based on N-gram Author Pro-
files. In Artificial Intelligence Applications and In-
novations, IFIP International Federation for Infor-
mation Processing, pages 508–515, Boston, MA.
Springer US.

Jade Goldstein-Stewart, Ransom Winder, and Roberta
Sabin. 2009. Person Identification from Text and
Speech Genre Samples. In Proceedings of the 12th
Conference of the European Chapter of the ACL
(EACL 2009), pages 336–344, Athens, Greece. As-
sociation for Computational Linguistics.

Oren Halvani, Lukas Graner, Roey Regev, and
Philipp Marquardt. 2020. An Improved Topic
Masking Technique for Authorship Analysis.
arXiv:2005.06605 [cs]. ArXiv: 2005.06605.

Jaap Kamps, Giannis Tsakonas, Yannis Manolopou-
los, Lazaros Iliadis, and Ioannis Karydis. 2017. Re-
search and Advanced Technology for Digital Li-
braries: 21st International Conference on The-
ory and Practice of Digital Libraries, TPDL
2017, Thessaloniki, Greece, September 18-21,
2017, Proceedings. Springer. Google-Books-ID:
it0zDwAAQBAJ.

Bryan Klimt and Yiming Yang. 2004. The Enron
Corpus: A New Dataset for Email Classification
Research. In David Hutchison, Takeo Kanade,
Josef Kittler, Jon M. Kleinberg, Friedemann Mat-
tern, John C. Mitchell, Moni Naor, Oscar Nierstrasz,
C. Pandu Rangan, Bernhard Steffen, Madhu Sudan,
Demetri Terzopoulos, Dough Tygar, Moshe Y. Vardi,
Gerhard Weikum, Jean-François Boulicaut, Floriana
Esposito, Fosca Giannotti, and Dino Pedreschi, edi-
tors, Machine Learning: ECML 2004, volume 3201,
pages 217–226. Springer Berlin Heidelberg, Berlin,
Heidelberg. Series Title: Lecture Notes in Computer
Science.

Moshe Koppel and Yaron Winter. 2014. Determining
if two documents are written by the same author:
Determining If Two Documents Are Written by the

135

Same Author. Journal of the Association for Infor-
mation Science and Technology, 65(1):178–187.

Xuan Li. Authorship Attribution on the Enron Email
Corpus. page 27.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach. arXiv:1907.11692 [cs]. ArXiv:
1907.11692.

David Madigan, Alexander Genkin, David D Lewis,
Shlomo Argamon, Dmitriy Fradkin, Li Ye, and
David D Lewis Consulting. Author Identification on
the Large Scale. page 20.

David Madigan, Alexander Genkin, David D. Lewis,
and Dmitriy Fradkin. 2005. Bayesian Multino-
mial Logistic Regression for Author Identification.
AIP Conference Proceedings, 803(1):509–516. Pub-
lisher: American Institute of Physics.

Lukas Muttenthaler, Gordon Lucas, and Janek Amann.
Authorship Attribution in Fan-Fictional Texts given
variable length Character and Word N-Grams.
page 9.

Hendrik Neumann and Martin Schnurrenberger. E-
Mail Authorship Attribution applied to the Extended
Enron Authorship Corpus (XEAC).

Chen Qian, Tianchang He, and Rao Zhang. Deep
Learning based Authorship Identification. page 9.

Sebastian Ruder, Parsa Ghaffari, and John G. Bres-
lin. 2016. Character-level and Multi-channel Con-
volutional Neural Networks for Large-scale Author-
ship Attribution. arXiv:1609.06686 [cs]. ArXiv:
1609.06686.

Chakaveh Saedi and Mark Dras. 2019. Siamese
Networks for Large-Scale Author Identification.
arXiv:1912.10616 [cs]. ArXiv: 1912.10616 ver-
sion: 1.

Yunita Sari, Mark Stevenson, and Andreas Vlachos.
2018. Topic or Style? Exploring the Most Useful
Features for Authorship Attribution. In Proceedings
of the 27th International Conference on Computa-
tional Linguistics, pages 343–353, Santa Fe, New
Mexico, USA. Association for Computational Lin-
guistics.

Yunita Sari, Andreas Vlachos, and Mark Stevenson.
2017. Continuous N-gram Representations for Au-
thorship Attribution. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 2, Short
Papers, pages 267–273, Valencia, Spain. Associa-
tion for Computational Linguistics.

Jonathan Schler, Moshe Koppel, Shlomo Argamon,
and James Pennebaker. Effects of Age and Gender
on Blogging. page 6.

Yanir Seroussi, Ingrid Zukerman, and Fabian Bohnert.
2014. Authorship Attribution with Topic Models.
Computational Linguistics, 40(2):269–310.

Prasha Shrestha, Sebastian Sierra, Fabio González,
Manuel Montes, Paolo Rosso, and Thamar Solorio.
2017. Convolutional Neural Networks for Author-
ship Attribution of Short Texts. In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
2, Short Papers, pages 669–674, Valencia, Spain. As-
sociation for Computational Linguistics.

Juan Soler-Company and Leo Wanner. 2017. On the
Relevance of Syntactic and Discourse Features for
Author Profiling and Identification. In Proceedings
of the 15th Conference of the European Chapter
of the Association for Computational Linguistics:
Volume 2, Short Papers, pages 681–687, Valencia,
Spain. Association for Computational Linguistics.

Wei Song, Chen Zhao, and Lizhen Liu. 2019. Multi-
Task Learning for Authorship Attribution via Topic
Approximation and Competitive Attention. IEEE
Access, 7:177114–177121. Conference Name:
IEEE Access.

Efstathios Stamatatos. 2009. A survey of modern au-
thorship attribution methods. Journal of the Ameri-
can Society for information Science and Technology,
60(3):538–556.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang.
2020. How to Fine-Tune BERT for Text Classifica-
tion? arXiv:1905.05583 [cs]. ArXiv: 1905.05583.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is
All You Need. arXiv:1706.03762 [cs]. ArXiv:
1706.03762.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, and Jamie Brew. 2020. HuggingFace’s Trans-
formers: State-of-the-art Natural Language Process-
ing. arXiv:1910.03771 [cs]. ArXiv: 1910.03771.

Haoran Wu, Zhiyong Xu, Jianlin Zhang, Wei Yan,
and Xiao Ma. 2017. Face recognition based on
convolution siamese networks. In 2017 10th In-
ternational Congress on Image and Signal Process-
ing, BioMedical Engineering and Informatics (CISP-
BMEI), pages 1–5.

Min Yang and Kam-Pui Chow. 2014. Authorship At-
tribution for Forensic Investigation with Thousands
of Authors. In ICT Systems Security and Privacy
Protection, IFIP Advances in Information and Com-
munication Technology, pages 339–350, Berlin, Hei-
delberg. Springer.

Richong Zhang, Zhiyuan Hu, Hongyu Guo, and Yongyi
Mao. 2018. Syntax Encoding with Application in
Authorship Attribution. In Proceedings of the 2018

136

Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2742–2753, Brussels, Bel-
gium. Association for Computational Linguistics.

137

Proceedings of the 17th International Conference on Natural Language Processing, pages 138–143
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

1

Abstract

This paper proposes language independent natural

language generator for Tree Adjoining Grammar (TAG)

based Machine Translation System. In this model, the

TAG based parsing and generation approach considered

for the syntactic and semantic analysis of a source

language. This model provides an efficient and a

systematic way of encapsulating language resources

with engineering solution to develop the machine

translation System. A TAG based Generator is

developed with existing resources using TAG

formalism to generate the target language from TAG

based parser derivation. The process allows syntactic

feature-marking, the Subject-Predicate Agreement

marking and multiple synthesized generated outputs in

complex and morphological rich language. The

challenge in applying such approach is to handle the

linguistically diversified features. It is achieved using

rule-based translation grammar model to align the

source language to corresponding target languages.

Nevertheless, this paper also describes the process of

lexicalization and explain the state charts, TAG based

adjunction and substitution function and the complexity

and challenges beneath parsing-generation process.

1 Introduction

Machine Translation is a sub-field of

(computational linguistics) under natural language

processing (NLP) where computer is act as a

human translator. It processes natural language

constructs to automate the process of language

translation. Every machine translation system

requires programs for translation and

automated dictionaries and grammars to support

translation. Among the various statistical and rule

based methodologies, we have researched on

Grammar based model for English to Indian

language Translation. Lexicalized Tree Adjoining

Grammar (LTAG) is a non Chomsky formalism

initially proposed in (Joshi et al., 1975) considered

to be mildly context grammar that is ideal for any

natural language.

The proposed Translation scheme is based on

compatible Tags of the source and target

languages. A TAG Parser is act as compliers used

to analyze the source sentence based on the Tree

Adjoining Grammar and construct the source

derivation which is the summarization of the state

chart processing. TAG Generator is like an

interpreter that interprets the source derivation to a

target derivation and lexicalizes the target

Derivation into Derived Tree Generator which

gives us the target Sentence accordingly.

The basic motivation to use this TAG Grammar

model is that it is a rule based language

independent feature oriented approach. Any

complex agglutinative language can be

represented using Tags and their unification

features. The translation accuracy of this approach

depends on the Tree Grammar rather than “bag of

corpus”. While any statistical approach translation

accuracy depends on the corpus, more the corpus

size better will be the output. We can still build a

robust model for Indian languages with complex

verb and noun morphology. Generation of the tree

grammar for the source and Target language

requires good linguistic knowledge and expertise

for providing feature with the grammar.

Related research work of TAG Generator in NLP

is presented in Section-2 as Literature survey.

Section-3 elaborates more about basic flow of

TAG Generator considering the TAG based MTS.

Detailed architecture along with internal modules

description have also been explained in this

section. While Section-4 talks about results and

analysis. Conclusion of the paper is done in

Section-5.

2 Literature Survey

There has been a fair amount of research in the

field of Tree Adjoining Grammar based generation

of Machine Translation (MT). Some closely

related research work (Joshi et al., 1997) is

reported to address the similar work. (Joshi et al.,

1997) discussed that TAG may be an appropriate

formalism for generation because of their syntactic

TREE ADJOINING GRAMMAR BASED “LANGUAGE INDEPENDENT

GENERATOR"

Pavan Kurariya, Prashant Chaudhary, Jahnavi Bodhankar, Lenali Singh, Ajai Kumar and Hemant Darbari

Centre for Development of Advanced Computing, Pune, India

pavank@cdac.in, cprashant@cdac.in, jahnavib@cdac.in, lenali@cdac.in, ajai@cdac.in and darbari@cdac.in

138

2

attributes. The same observation was found in the

work of (J. firgen Wedekind et al. 1988), who

applies TAGs to the task of generation. Several

researchers describe the properties of TAGs for

extracting the syntactic processing of a natural

language essential for natural-language generation.

Although, generation is not a problem in Machine

Translation Application as any system that is based

on the TAG formalism has to build a generation

component by which a TAG can articulate

appropriately with semantic information. In this

paper, we discuss one such mechanism where

source and target grammar are aligned by defining

a relation between the rule sets. The recent

research in this field can be viewed as an effort to

utilize Syntactic and semantic feature during the

generation process. As discussed by (J. firgen

Wedekind et al. 1988) requires a property of a

grammar which specifies that complements be

semantically connected to their head while (Stuart

M. Shieber et al. 1988) defines a notion of

semantic information, a compositional property

which guarantees that it can be locally determined

whether phrases can contribute to forming an

expression with a given meaning. Generation

approach that reorder top-down generation (Marc

Dymetman et al. 1988) so as to make available

information that utilize the top- down recursion

also fall into the localizing information. Semantic-

head-driven generation (Yves Schabes et al. 1989)

uses semantic heads and their complements as a

locus of semantic locality.

3 Workflow of TAG Generator

As earlier said, TAG Generation act like

interpreters, just like Java virtual machine (JVM)

in the Java Programming language which interpret

the byte code to machine code, like wise TAG

Generator interpret the source derivation to target

Language. TAG Generation compresses into three

parts: Transfer Model, Derivation generation,

Derived tree generator.

As shown in figure 1, Transfer model is a

linguistic based model in which source tree is

mapped with the target tree i.e. every node of the

source tree is mapped with the node of target tree

which is called as Link Information. Link

Information is an agreement between a source tree

and the target tree, illustrate the node mapping

between the language pair. Derivation Generation

process the Derivation Parser (byte code in java)

convert it into intermediate Derivation understand

by the Generator intermediate process called the

Derived Tree Generator. Derived Tree Generator is

the Lexicalization process of the Derivation

Generator which gives us the target output and

language based feature required for synthesis.

3.1 Tree Vector

Tree vector is a very important structure for parser

and generator. The tree vector is like a pool for

TAG trees, from which the lexicalized trees are

spooled up for parsing and generation. The tree

vector is a conventional structure implicitly

defined as an input to the parser. The tree vector

holds maps between trees, tree names and

lexicons. There is a string array which holds the

segmented sentence with all the words in it. Each

word is a key to map, holding the set of tree

lexicalized by that word. It also contains a reverse

map where a tree is a key to a set of lexicon that

uses this particular tree. The most interesting

concept of the tree vector is the idea of non

repeating trees. The tree vector stores exactly one

copy of every tree even if it is lexicalized by many

words in the sentence.

3.2 Multithreaded TAG Parser &

Derivation

Figure 2, depicts monolithic hybrid parser for Tree

Adjunction Grammar (constraint). It is modified

multithreaded implementation of 'Early-Type

Parsing Algorithm' by Arvind Joshi (Joshi et al.

1997). In this multithreaded parser, every parse

requires multithreading and the parser clones a

new thread but with a different current state. Multi

threaded parser implements the higher

RECOGNIZER algorithm. It is an offline

recognizer it is designed to identify the first

successful parse of an input string. The

termination of the thread of the successfully parse

is meant to be the end of that iteration. The

'RECOGNIZER' is a non-backtracking algorithm,

which instead multi-threads all possibilities at a

decision point. The main decisions involves the

operation of adjunction and substitution as which

tree should be adjuncted or substituted at a given

node. The initiation of the parser itself is parallel.

Externally the parser starts with 'n' sentence initial

Figure 1: Basic architecture of TAG Generator

139

3

trees, each of which initiates a parse in a different

thread. This means that multi-threading occurs at 2

levels, one at the start and then at the parsing level.

3.3 Transfer Model

It is a linguistic based model in which grammar is

written in the tree format for the source and target

language. In this model, the source and target

grammar are aligned by defining a relation

between the rule sets. Similarly of two generative

grammar can be mathematically proved to be the

similarity in their rule sets and not the language

generated. The translation model that we are

defining reflects from the proposal in [Abeille,

Schabes and Joshi, 1990] is in fact manipulation

of multiple similar Grammars. Consider the

following illustration where two TAG trees are

drawn, similar in nature. The mapping between

the nodes is evident here. But there is one

problem as the computability of the

representation. Through it is complete with

respect to the information conveyed; it is

computationally redundant. That means the

generator will have to compute the actual links

from the lexical link given.

Link-info:

1.S_r=2.S_r.~1.NPadjn=2.NPadjn.~1.NP_0=2.N

P.~1.VPadjn=2.VPadjn.~1.VP=2.VP.~1.PP=2.PP

_1.~1.V=2.ADJ.~

3.4 Target derivation generation
There was an observation during the research on

the TAG Generator that how TAG Parser

communicates with the TAG Generator. TAG

Parser keeps all the parsing information in the

states, are stacked in the state chart. TAG

Generator doesn’t know about the parsing

algorithm, state and state chart. To process state

chart, you have to know the flow of the parsing so

we need one structure which keep the

summarization of the state chat and it could be

understandable by Generator that interpret in

target language.

To summarize the state chart information, we

adopted the derivation structure(see figure 3)

which is a record of how the elementary trees of a

TAG are put together by the operations of

substitution and adjoining in order to obtain the

derived tree whose yield is the string being

parsed. The nodes of the derivation tree are

labeled by the names of the elementary trees and

the edges are labeled by the addresses of the tree

labeling the parent node in which the trees

labeling the child nodes are either substituted or

adjoined.

Generator derivation is the kernel, building the

target derivation and tree vector (see figure 4). It

also dynamically builds the target tree vector,

which is used to clone tree and stitching the clone

together to get the final derivation tree. We build

the target derivation from the parser derivation.

Every node of the parser derivation is mapped

with the Target derivation node. During mapping,

name of the source elementary tree will be

mapped with the target elementary tree, source

lexicon will be replace with the target lexicon and

Translation model identify in which node of the

parent tree, child tree will be adjuncted , it is

indicated by gorn number.

Major advantages to make derivation is to save

memory, don’t need to know how the parser

Figure 2: Workflow of TAG Generator

Figure 3: Parser derivation

Figure 4: Generated derivation

140

4

analyze the sentence and easily understandable by

generation process. Lexicalization of the

generation process could be done by only

derivation information, not need of extra

information. But there is one drawback, it is very

sensitive about grammar, mapping between the

nodes in the trees (source and target) should be

proper mapped otherwise operation will give the

wrong output.

3.5 Parse Tree Builder (Derived Tree

Generator)
Another concern in our generation process is

when and where will the actual lexicalization of

the derived tree happen? The lexicon that a tree is

to be lexicalized with is present in the derivation

node mapped to that tree. The lexicon that a tree is

to be lexicalized with is present in the derivation

node mapped to that tree. So this property of the

derivation map is used to Preserve and still

achieve strong lexicalization of the derived tree

that is generated. The target derivation node will

preserve the additional information required for

smoothing and morph synthesis, so no external

map or structure are required to carry them.

The derivation tree summarizes all the translate

information stores in the state chart and

compresses it to minimal size (see figure 5),

easier to manipulate. But to see the actual

derivation of how the sentence emerged from the

grammar trees, we require the translate tree or

more commonly, just, the translate. It is stitching

of the entire set of tree used in deriving this

particular sentence. But although it is a straight

forward problem with a linear time algorithm, it

has vast temporal space complexities, when we

come to implementation. The TAG grammar

derives the sentence in a lexical order and other

order should not be assumed. To make it

manipulatable in post and pre-order space, we

need to use different maps and at many levels.

The implementation becomes further cumbersome

when the gorn indices used for locating

adjunctions and substitutions, changes with each

physical operation.

TAG Generation approach give us lot of feature in

terms of subject object agreement marker, which

gives us the information of the subject, Object and

main verb; Possessive case marker in the Indian

language like ‘Ne’, ’Ko’, ’Ke-Pass’; multiple

synonym generation; multiple output generation

based on the context.

TAG Generation approach give us lot of feature

in terms of subject object agreement marker,

which gives us the information of the subject,

Object and main verb; Possessive case marker in

the Indian language like ‘Ne’, ’Ko’, ’Ke-Pass’;

multiple synonym generation; multiple output

generation based on the context.

4 Results and Experiments

Sample sentences covering different type of

grammatical structures were generated using TAG

Generator in different languages. One of the

examples taken from English to Hindi Translation

process, here figure 7 and figure8 depict

derivation trees created in source and target

language. It indicates syntactic relationship

between word and how this information has

utilized during translation process. Here Tree

Vector (see figure 6) is also shown for source

sentence.

Source Sentence: The Hawa-Mahal is the most

recognizable monument of Jaipur.

Figure 6: Derived Generation

Figure 5 : Tree Vector

Figure 7: Derived Tress of Parser
141

5

Generator Output: म ल र र

 र र |

Figure 8: Derived Tress of Generator

4.1 TAG Generator Performance

Analysis with PARAM Shavak

Aim of this experiment is to analyze Performance

of TAG Generator using multi-core programming

on PARAM Shavak*. Virtual Machine has been

created by VMware to analyze the performance of

Generator. Various test have been carried out to

evaluate the Performance of EILMT System with

different cores through vnc viewer . During the

Test CPU usages and memory Utilizations has

been observed.

TAG generator performance experiment on

PARAM Shavak with different number of cores.

Data Number of Cores

Time in Second

 1 core 2

core

4

core

6

core

8

core

12

core

16

core

Sample 1

(217 words)

36 34 32 29 23 20 17

Sample 2

 (240 words)

32 21 16 14 12 12 11

Sample 3

(480 words)

58 36 28 26 24 23 21

Sample 4

 (960 words)

110 74 52 49 46 42 40

Table 1: Performance experiment table

Figure 10: TAG generator performance experiment

on PARAM Shavak

Above graph shows as we increase sample size,

execution time decreases with each added cores

during experiment while CPU usage increased 90-

99 % and Memory utilization has been observed

(2.1 to 2.8 GB) during test run

*PARAM Shavak: Supercomputer in a Box

solution, aims to provide computational resource

with advanced technologies to perform the high-

end computations on a larger scale for the

scientific, engineering and academic

programmers. PARAM Shavak is a ready-to-use

affordable supercomputer pre-loaded with all the

required system software and applications from

selected scientific and engineering domains.

5 Conclusion

In this paper, we have discussed some of the

major tasks involved in the development of

TAG generator using TAG formalism for

translation from English to Hindi Language. All

the examples illustrated above are taken from

the output generated by the machine translation

system developed by us. The effectiveness of

this approach is tested by experiments on

sample corpus abstract taken from existing

resources. We have implemented TAG

generator as a part of research in Machine

Translation system based on Tree Adjoining

Grammar. Firstly, we carried out experiments

on web application (integrated MT System

using TAG based Parser and Generator)

running on Windows and Linux platform to

provide a baseline. We have demonstrated that

Parser and Generator are two core components

in Machine Translation System. The system can

handle simple and complex sentences with

considerably good accuracy rate.

Figure 11: TAG generator performance experiment on

PARAM Shavak

142

6

References

Joshi, A. K., Levy, L., and Takahashi, M. (1975). Tree

Adjunct Grammars. Journal of Computer and System

Sciences.

Joshi, A. K and Yves Schabes. 1997. Tree Adjoining

Grammars. In Handbook of Formal Languages,

volume 3, pages 69–123. Springer-Verlag, Berlin.

Nederhof, M.-J. (1998). an alternative LR algorithm

for TAGs. In Proceedings of the 36th Annual Meeting

of the Association for Computational Linguistics and

16th International Conference on Computational

Linguistics, Montreal, Canada.

Khalil Sima’an. 2000. Tree-gram parsing: Lexical

dependencies and structural relations. In Proceedings

of the 38th Annual Meeting of the Association for

Computational Linguistics, Hong Kong, China

Prolo, C. A. (Feb., 2002b). LR parsing for Tree

Adjoining Grammars and its application to corpus-

based natural language parsing. Ph.D. Dissertation

Proposal, Department of Computer and Information

Science, University of Pennsylvania.

Karin Harbusch and Jens Woch. 2000d. Reuse of

plan–based knowledge sources in a uniform tag–

based generation system. Under submission, see:

http://www.uni-koblenz.de/~harbusch/plantotag.ps.

Schabes, Y. and Vijay-Shanker, K. (1990).

Deterministic left to right parsing of tree adjoining

languages. In Proceedings of 28th Annual Meeting of

the Association for Computational Linguistics, pages

276–283, Pittsburgh, Pennsylvania, USA.

Tomita, M. (1985). Efficient Parsing for Natural

Language. Kluwer Academic Publishers, Boston,

MA, USA.

Nicolas Nicolov. 1998. Memoisation in sentence

generation with lexicalized grammars. In Abeill´e et

al.(Abeill´e et al., 1998), pages 124–127.

XTAG Research Group, T. (1998). A Lexicalized

Tree Adjoining Grammar for English. Technical

Report IRCS 98-18, University of Pennsylvania.

David D. McDonald and James D. Pustejovsky.

TAGs as a grammatical formalism for generation.

In Proceedings of the 23rd Annual Meeting of the

Association for Computational Linguistics, pages

94-103, University

J. firgen Wedekind. Generation as structure driven

derivation. In Proceedings of the 12th International

Conference on Computational Linguistics, pages

732- 737, Budapest, Hungary, 1988.

Stuart M. Shieber. A uniform architecture for

parsing and generation. In Proceedings of the 12th

International Conference on Computational

Linguistics, pages 614-619, Karl Marx University of

Economics, Budapest, Hungary, 22-27 August 1988.

David D. McDonald and James D. Pustejovsky. TAGs

as a grammatical formalism for generation. In

Proceedings of the 23rd Annual Meeting of the

Association for Computational Linguistics, pages 94-

103, University

J. firgen Wedekind. Generation as structure driven

derivation. In Proceedings of the 12th International

Conference on Computational Linguistics, pages 732-

737, Budapest, Hungary, 1988.

Stuart M. Shieber. A uniform architecture for parsing

and generation. In Proceedings of the 12th

International Conference on Computational

Linguistics, pages 614-619, Karl Marx University of

Economics, Budapest, Hungary, 22-27 August 1988.

Marc Dymetman and Pierre Isabelle. Reversible logic

grammars for machine translation. In Proceedings of

the Second International Conference on Theoretical

and Methodological Issues in Machine Translation of

Natural Languages, Pittsburgh, Pennsylvania, 1988.

Carnegie-Mellon University.

Yves Schabes and Aravind K. Joshi. The relevance of

lexicalization to parsing. In Proceedings of the

International Workshop on Parsing Technologies,

pages 339-349, Pittsburgh, Pennsylvania, 28-31

August 1989. Carnegie-Mellon University.

143

Proceedings of the 17th International Conference on Natural Language Processing, pages 144–148
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Exploration of Cross-lingual Summarization for Kannada-English
Language Pair

Vinayaka R Kamath Rachana Aithal K R K Vennela Mamatha HR
Department of Computer Science & Engineering

PES University, India
vinayakarkamath@pesu.pes.edu

{rachanaaithal88, kvennela1998}@gmail.com
mamathahr@pes.edu

Abstract

Cross-lingual summarization(CLS) is a pro-
cess in which given a document in source lan-
guage aims at generating summary in a differ-
ent, destination language. Low resource lan-
guages like Kannada greatly benefit from such
systems because they help in delivering a con-
cise representation of the same information in
a different popular language. We propose a
novel dataset generation pipeline and a first
of its kind dataset that will aid in CLS for
both English-Kannada and Kannada-English
pair. This work is also an attempt to in-
spect the existing systems and extend them to
the Kannada-English language pair using our
dataset.

1 Introduction

With the advancement in technology, language
should not be a barrier to gain knowledge when
everyone has access to the same information. The
need for an intelligent system that understands and
analyzes text in low resource languages while de-
livering concise representation of the text in a well
known language without losing out on any infor-
mation is paramount. Cross-lingual summariza-
tion systems fit these requirements perfectly. For a
given document in the source language, the primary
objective of the system is to generate meaningful
summary in the target language (different from
source language) without discarding any crucial
information. These systems extend resources avail-
able in low resources languages like Kannada to
everyone who can understand a well known lan-
guage such as English.

Monolingual summarization is extensively stud-
ied due to the availability of resources while cross-
lingual summarization systems are relatively un-
popular due to the lack of training corpus. To
tackle this, we present a one of it’s kind dataset
for training a CLS system for Kannada-English
language pair along with our experimentation. A

robust pipeline for the generation of dataset is de-
signed using round trip translation strategy from
(Zhu et al., 2019) and a back translation strategy
proposed by (Duan et al., 2019) using the News-
room dataset from (Grusky et al., 2018) as our
primary backbone. We have successfully extended
several methods from (Wan, 2011), (Jhaveri et al.,
2019) and some baselines from (Shen et al., 2018)
to Kannada-English language pair using our dataset.
Section 2 describes the dataset generation pipeline
and the experimentation carried out. The results
and inferences are discussed in section 3 while the
conclusions are briefed in section 4.

2 Experimentation

2.1 Dataset Construction

This section describes the methods used to con-
struct the very first Kannada-English summariza-
tion dataset. The absence of a CLS corpus for
Kannada-English language pair is a significant hin-
drance. To overcome this, we propose a novel
pipeline and a newly constructed high quality
dataset that will aid in CLS for Kannada-English
language pair.

The pipelined process of translation followed by
summarization of the content in source language in-
troduces a lot of noise in the generated data. More-
over, the process thoroughly utilises a third party
”automated machine translation system”. To ele-
vate the quality, back translation strategy was im-
plemented using the English content as pivot as
specified in Fig.1a. This ensured that there was
little dependency on third party systems and min-
imal noise in the generated data. However, this
method can only be successful if a good quality
source dataset is used. Cornell newsroom is one
such backbone that we used while building our
dataset. The Cornell Newsroom dataset(Grusky
et al., 2018) is a large monolingual dataset for train-
ing and evaluating summarization systems. It con-

144

(a) Translation Approach Comparison (b) Round Trip Translation Procedure

Figure 1: Illustrations of methods used to create the dataset

tains 1.3 million articles and summaries written by
authors and editors in the newsrooms of 38 major
publications.

Filtering noisy outliers is crucial to ensure high-
est quality possible. The Round Trip Transla-
tion(RTT) mechanism described in (Zhu et al.,
2019) is used to achieve this. The RTT strategy
is used to acquire high-quality large-scale cross
lingual summarization dataset from existing large-
scale monolingual dataset(Fig.1b). It can be ob-
served that the current monolingual translators are
not very proficient. This may result in addition
of considerable amount of noise in the dataset if
it is constructed by direct translation. Therefore,
to improve the quality of parallel corpus the RTT
mechanism is employed. This involves calculation
rouge score between the reference content and hy-
pothesis content which we obtained after round trip
translation. This is proceeded by the filtering of the
dirty samples by choosing samples above a thresh-
old value. This ensures that the dataset is reliable
and efficient. The threshold is decided by manu-
ally sampling the records of the dataset at different
values of the rouge scores and visually inspecting
the quality of the record. The records are assessed
for sentence completion, preservation of semantic
meaning and external noise. A suitable threshold
is which acts as a cutoff value for noisy records.
A heuristic threshold is chosen by trading off the
number of records in the dataset to the peak quality
of the records. The same procedure is followed to
generate summaries(including RTT summaries) as
well, this is to make sure that the dataset maps both
English content to it’s corresponding Kannada sum-
mary as well as the Kannada content to it’s English

summary. This ensures that the dataset is capable
of aiding in training both Kannada to English as
well as English to Kannada CLS systems.

As a result of our proposed system, we con-
structed a high quality dataset of 23,113 records
that supports interchangeability of source-target
languages. The whole dataset is made publicly
available along with the rouge scores to filter the
records as per the requirements of the application.

2.2 Cross Lingual Summarization Systems

Extending the current state-of-the-art CLS method-
ologies to the regional language of Kannada can
accelerate the process of designing a robust sys-
tem that can be used to generate good quality sum-
maries for the content in Kannada. This section
briefly describes the methods extended to Kannada
as illustrated in Figure 2.

2.2.1 Baselines
Early translation systems are used as baselines.
During early translation, the process of translation
and summarization are stacked in that order to form
a simple cross-lingual summarizer. This system
relies on the good quality translators and summa-
rizers available for a high resource language like
English. In our work, four mono-lingual summa-
rization algorithms namely LSA, LexRank, Luhn
and TextRank are used to extract summaries from
the translated documents.

Latent Semantic Analysis (LSA) (Steinberger
and Jezek, 2004) is an algebraic-statistical method
that extracts hidden semantic structure of words
and sentences. It relies on Term Frequency-Inverse
Document Frequency (TF-IDF) and Singular Value
Decomposition (SVD) to achieve summarization

145

Figure 2: Schematic of the complete experimentation stack

of the text. The matrix constructed using TF-IDF is
subjected to decomposition using SVD, there after
the topic method is used to extract concepts and
sub-concepts to select important sentences. These
selected sentences are ranked and presented as a
concise summary. LexRank (Erkan and Radev,
2004) is an unsupervised approach to text summa-
rization based on graph-based centrality scoring of
sentences. The algorithm recommends sentences
that are very similar to the others in the document,
thus curbing redundant information in the output.
Luhn algorithm (Torres-Moreno, 2014) takes a
naive approach based on TF-IDF that concentrates
on the window size of non-important words be-
tween words of high importance. The summary is
generated by assigning weights to the words and
recommending sentences with maximum weight
values. TextRank (Mihalcea and Tarau, 2004) is a
graph based sentence ranking algorithm that uses
PageRank algorithm to attain convergence. The al-
gorithm is very similar to LexRank but uses simpler
methods to accelerate the computation.

2.2.2 Extended Models
This section describes the sub-modular function
maximization based summarization algorithms that
were adopted and used for cross-lingual settings.
coRank(Jhaveri et al., 2019) and simFusion(Xi
et al., 2005) were extended to Kannada-English
language pair and a thorough analysis of the re-
sults was performed to understand the semantic
suitability of the techniques.

coRank method leverages both the Kannada lex-
icon information and the English-side information

in a co-ranking way. The source Kannada sentences
and the translated English sentences are simulta-
neously ranked in a unified graph-based algorithm.
The saliency of each Kannada sentence relies not
only on the Kannada sentences linked with it, but
also the corresponding English sentences associ-
ated with it and the same holds true for English
sentences. simFusion algorithm uses the Kannada
side information for English sentence ranking in
the graph-based framework. The similarity value
between two English sentences is computed by
linearly fusing the similarity value between the cor-
responding two Kannada sentences with its very
own. The graph is constructed using the similar-
ity in both the source and the target languages. In
both the methods, the sentences with the highest
saliency scores are compiled together to give the
summary in the target language.

3 Results

The rouge scores of the round trip translated cor-
pus with the records from the newsroom dataset
were recorded. This was done in order to inspect
the records and set an appropriate threshold to
filter out the noisy records. Removing these un-
wanted records helped in increasing the quality of
the dataset. The same observation was recorded for
the summaries as well. This enabled the dataset to
be more flexible with the interchangeability of the
source and destination languages.

The threshold was decided after inspecting the
distribution of the rouge scores between round trip
translated data and the original summary. Our ex-

146

Algorithm Rouge 1 Rouge 2 Rouge l
CLS Baselines LSA 17.911 5.611 12.4041

LexRank 19.6429 6.2439 14.2806
Luhn 19.1805 6.2301 13.8486
TextRank 19.3113 6.2806 13.5528

CLS Graphical coRank 18.7916 6.3136 13.1178
simFusion 18.3779 6.0298 12.8286

Popular Seq2Seq + Attention (Rush et al., 2015) 5.99 0.37 5.41
Summarization Fast-RL (Keneshloo et al., 2019) 21.93 9.37 19.61
Systems ExtConSumm (Mendes et al., 2019) 39.40 27.80 36.20
on Newsroom Modified P-G (Shi et al., 2019) 39.91 28.38 36.87

Table 1: Results from Experimentation.

(a) Distribution of Content Rouge
Scores

(b) Distribution of Summary Rouge
Scores

(c) Correlation between coRank and
simFusion Results

Figure 3: Analysis of the results

perimentation of manual inspection by evenly sam-
pling 30% of the records by 3 volunteers yielded
0.24 with variance of 0.03, the next stages of the
experiments were carried forward with this thresh-
old in mind. Figures 3a and 3b helped in filtering
the records by providing the overview of the dis-
tribution. The attempt to check for redundancy in
the outputs between the results exhibited by the
simFusion and coRank algorithms were done. Al-
though both of them follow a graphical approach,
Figure 3c proved that the information captured by
these algorithms were quite different. There was
very little correlation between the scores of two
algorithms for the same set of records, this implies
that an ensemble of both these models can provide
maximum outreach.

The rouge scores achieved from the experimen-
tation with the different CLS methods are depicted
in Table 1. The set of CLS experiments were con-
ducted with Kannada as the source language and
English as the destination language for the task at
hand. These results are compared among them-

selves as well as other popular summarization sys-
tems on Newsroom dataset, since a cross-lingual
summarization system for Kannada-English pair
does not exist yet.

4 Conclusion

In this paper, we proposed a first of its kind dataset
that consists of content-summary mappings for the
Kannada-English language pair. Since Kannada is
a low resource language, the dataset can aid for fur-
ther experimentation on cross lingual applications.
The newly designed dataset generation pipeline has
also been proven to generate high quality records
considering the CLS methods that has been success-
fully extended to Kannada-English language pair
using the dataset. Table 1 shows that the results
from our experiments are comparable to that of
those that have used the same corpus for designing
systems. These results can act as a solid founda-
tion for further exploration. The results from the
Table 1 also act as a proof of correctness for the
experimental setup. We believe that the first set

147

of CLS experiments for Kannada presented in this
paper has set reasonable benchmarks with adequate
resources to carry forward computational linguis-
tic experiments for a low resource language. We
intend to design/implement systems that use the
translated content along with the source content
to perform better at CLS tasks centered around
Kannada as a part of our future work.

References
Xiangyu Duan, Mingming Yin, Min Zhang, Boxing

Chen, and Weihua Luo. 2019. Zero-shot cross-
lingual abstractive sentence summarization through
teaching generation and attention. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 3162–3172.

Günes Erkan and Dragomir R Radev. 2004. Lexrank:
Graph-based lexical centrality as salience in text
summarization. Journal of artificial intelligence re-
search, 22:457–479.

Max Grusky, Mor Naaman, and Yoav Artzi. 2018.
Newsroom: A dataset of 1.3 million summaries with
diverse extractive strategies. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 708–719, New
Orleans, Louisiana. Association for Computational
Linguistics.

Nisarg Jhaveri, Manish Gupta, and Vasudeva Varma.
2019. clstk: The cross-lingual summarization tool-
kit. In Proceedings of the Twelfth ACM Interna-
tional Conference on Web Search and Data Mining,
pages 766–769.

Yaser Keneshloo, Naren Ramakrishnan, and Chan-
dan K Reddy. 2019. Deep transfer reinforcement
learning for text summarization. In Proceedings of
the 2019 SIAM International Conference on Data
Mining, pages 675–683. SIAM.

Afonso Mendes, Shashi Narayan, Sebastião Miranda,
Zita Marinho, André FT Martins, and Shay B Co-
hen. 2019. Jointly extracting and compressing doc-
uments with summary state representations. arXiv
preprint arXiv:1904.02020.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into text. In Proceedings of the 2004 con-
ference on empirical methods in natural language
processing, pages 404–411.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 379–389, Lisbon, Portugal.
Association for Computational Linguistics.

Shi-qi Shen, Yun Chen, Cheng Yang, Zhi-yuan Liu,
Mao-song Sun, et al. 2018. Zero-shot cross-lingual
neural headline generation. IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing,
26(12):2319–2327.

Tian Shi, Ping Wang, and Chandan K. Reddy. 2019.
LeafNATS: An open-source toolkit and live demo
system for neural abstractive text summarization. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics (Demonstrations), pages 66–71,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Josef Steinberger and Karel Jezek. 2004. Using latent
semantic analysis in text summarization and sum-
mary evaluation. Proc. ISIM, 4:93–100.

Juan-Manuel Torres-Moreno. 2014. Automatic text
summarization. John Wiley & Sons.

Xiaojun Wan. 2011. Using bilingual information for
cross-language document summarization. In Pro-
ceedings of the 49th Annual Meeting of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies-Volume 1, pages 1546–1555.
Association for Computational Linguistics.

Wensi Xi, Edward A. Fox, Weiguo Fan, Benyu Zhang,
Zheng Chen, Jun Yan, and Dong Zhuang. 2005.
Simfusion: Measuring similarity using unified rela-
tionship matrix. In Proceedings of the 28th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR
’05, page 130–137, New York, NY, USA. Associa-
tion for Computing Machinery.

Junnan Zhu, Qian Wang, Yining Wang, Yu Zhou, Jiajun
Zhang, Shaonan Wang, and Chengqing Zong. 2019.
Ncls: Neural cross-lingual summarization. arXiv
preprint arXiv:1909.00156.

148

Proceedings of the 17th International Conference on Natural Language Processing, pages 149–154
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Hater-O-Genius Aggression Classification using Capsule Networks

Parth Patwa1 Srinivas PYKL1 Amitava Das2

Prerana Mukherjee1 Viswanath Pulabaigari1

1Indian Institute of Information Technology Sri City, India 2Wipro AI Labs, India
1{parthprasad.p17, srinivas.p, prerana.m, viswanath.p}@iiits.in

2amitava.das2@wipro.com

Abstract

Contending hate speech in social media is one
of the most challenging social problems of our
time. There are various types of anti-social
behavior in social media. Foremost of them is
aggressive behavior, which is causing many
social issues such as affecting the social lives
and mental health of social media users.
In this paper, we propose an end-to-end
ensemble-based architecture to automatically
identify and classify aggressive tweets.
Tweets are classified into three categories -
Covertly Aggressive, Overtly Aggressive, and
Non-Aggressive. The proposed architecture is
an ensemble of smaller subnetworks that are
able to characterize the feature embeddings
effectively. We demonstrate qualitatively that
each of the smaller subnetworks is able to
learn unique features. Our best model is an
ensemble of Capsule Networks and results in
a 65.2% F1 score on the Facebook test set,
which results in a performance gain of 0.95%
over the TRAC-2018 winners. The code and
the model weights are publicly available at
https://github.com/parthpatwa/
Hater-O-Genius-Aggression-
Classification-using-Capsule-
Networks.

1 Introduction

Even though social media offers several benefits to
people, it has caused some negative effects due to
the misuse of freedom of speech by a few people.

Aggression is a behavior that is intended to
harm other individuals who do not wish to be
harmed (O’Neal, 1994). Aggressive words are
commonly used to inflict mental pain on the victim
by showing covert aggression, overt aggression
or by using offensive language (Davidson et al.,
2017).

The process of manually weeding out aggres-
sive tweets from social media is expensive and in-

definitely slow. So, there is a growing need to build
and analyze automatic aggression classifiers.

In this paper, we propose an architecture that is
an ensemble of multiple subnetworks to identify
aggressive tweets, where each subnetwork learns
unique features. We explore different word em-
beddings for dense representation (Mikolov et al.,
2013), deep learning (CNN, LSTM), and Cap-
sule Networks (Sabour et al., 2017). Our best
model (figure 1) uses Capsule Network, and gives
a 65.20% F1 score, which is a 0.95% improve-
ment over the model proposed by Aroyehun and
Gelbukh (2018). We also release the code and the
model weights.

2 Related Work

The challenge of tackling antisocial behavior like
abuse, hate speech, and aggression on social media
has recently received much attention. Researchers
like Nobata et al. (2016) tried detecting abusive
language by using Machine Learning and linguis-
tic features. Other researchers like Badjatiya et al.
(2017) used CNNs and LSTMs, along with gradi-
ent boosting, to detect hate speech.

The TRAC-2018 shared task (Kumar et al.,
2018a), aimed to detect aggression, was won by
Aroyehun and Gelbukh (2018), who used deep
learning, data augmentation, and pseudo labeling
to get a 64.25% F1 score. Another team Risch and
Krestel (2018), used deep learning along with data
augmentation and hand-picked features to detect
aggression. However, in order to develop an end-
to-end automated system, one cannot use hand-
picked features as they may vary from dataset to
dataset. Srivastava et al. (2018) experimented with
capsulenets for detecting aggression and achieved
a 63.43% F1 score. Our work differs from theirs as
we experiment with architectures (Fig. 1) that are
an ensemble of multiple subnetworks. Recently,

149

Khandelwal and Kumar (2020) used pooled biL-
STM and NLP features to achieve 67.7% F1 score
on the TRAC-2018 Facebook data.

The TRAC-2020 shared task (Kumar et al.,
2020) released a data set (Bhattacharja, 2010)
of aggression and misogyny in Hindi, English
and Bengali posts. Risch and Krestel (2020) tried
an ensemble of BERT to achieve the best per-
formance on most tasks. Safi Samghabadi et al.
(2020) used BERT in a multi-task manner to solve
the task, whereas Kumari and Singh (2020) used
LSTM and CNNs.

3 Dataset

To identify the type of aggression, we use the
English train dataset, and the Facebook (fb) test
dataset provided by the 2018 TRAC shared task
(Kumar et al., 2018a). The data collection and
annotation method is described in Kumar et al.
(2018b). The training data is combined with the
augmented data provided by Risch and Krestel
(2018). The final distribution is given in table 1.
The data has English-Hindi code-mixed tweets,
which are annotated with one of three labels:

• Covertly Aggressive (CAG): Behavior that
seeks to indirectly harm the victim by us-
ing satire and sarcasm (Kumar et al., 2018b).
E.g., ”Irony is your display picture at one end
you are happy seeing some one innocent dy-
ing and at other end you are praying to not
kill an innocent”

• Overtly Aggressive (OAG): Direct and ex-
plicit form of aggression which includes
derogatory comparison, verbal attack or abu-
sive words towards a group or an individual
(Roy et al., 2018). E.g., ”Shame on you ass-
holes showing some other video and making
it a fake news u chooths i hope each one you
at *** news will rot in hell”

• NAG: Texts which are not aggressive. E.g.,
”hope car occupants are safe and un-
harmed.”

We observe that the dataset contains some tweets
which have improbable annotations. For exam-
ple, the tweet ”Mr. Sun you are wrong, Pak-
istan produces one thing that is ’ terrorists’ and
through CPEC Pak will increase the supply of this
product throughout world. Wait you will feel the
touch of their product in your Muslim dominated

Table 1: Data distribution

Class Train Test

Covertly Aggressive 14,187 144
Overtly Aggressive 9,137 142
Non-Aggressive 16,188 630

Total 39,512 916

province.” is labeled as NAG; ”#salute you my
friend” is labeled as OAG. To have a fair compari-
son with the results of previous works, we don’t do
anything to address this. The dataset is imbalanced
with maximum tweets labeled as NAG.

4 Preprocessing and Embeddings

The tweets are first converted to lower case. Next,
we remove digits, special characters, emojis, urls,
and stop words. We restrict the continuous repe-
tition of the same character in a word to 2 (e.g.
’suuuuuuper’ is converted to ’suuper’). Each tweet
is tokenized and converted into a sequence of inte-
gers. The maximum sequence length is restricted
to 150. To have dense representation of tokens, the
following word embedding features are used:

• Glove++: Given the word, we first check
whether it is present in Glove pre-trained 6b
100d embeddings, and use the embedding if
it exists. For Out-Of-Vocabulary words, we
use the word vectors that we train on the en-
tire data using the Gensim library.

• Aggression Embeddings: To have distin-
guishing features to separate aggressive
tweets from non-aggressive tweets, we create
aggression word embeddings. We take all the
tweets classified as OAG and CAG and train
word vectors on them.

• Char Trigram: To get sub-word informa-
tion, we create character trigram embeddings.

5 Proposed Architecture

We propose an architecture that combines features
that are learned from an ensemble of subnetworks
and leverages the feature representation to classify
aggression. All models optimize the categorical
crossentropy loss function using adam optimizer.
All the dense layers, except the final layer, have
ReLu activation. All the CNN layers are followed
by dropout = 0.5. Every model is an ensemble of

150

Figure 1: Architecture of CN1 model

smaller subnetworks. Each subnetwork (SN) has
the following configuration:

• Embedding layer - Each token in the input
sequence is represented by its word vector.
Word embeddings help to capture the mean-
ing of the word.

• Convolutional layer - A convolutional layer,
having reLu activation function, to extract
spatial features.

• Max-pooling layer of size 2 or 3 in case of
Deep Learning models.

• Capsule layer to better preserve spatial in-
formation, in case of Capsulenet models.

Each SN of the model uses a different configu-
ration for the CNN layer or embedding. Therefore
each SN learns different information and generates
different features. The output of each SN is flat-
tened and merged and is passed as input to dense
layers. The last dense layer has three neurons and
a softmax activation function, which gives a prob-
ability score to each of the three classes, and the
one with the highest score is the predicted class.

5.1 Deep Learning (DL) Models

The following are the DL baselines:
DL1: It is an ensemble of three subnetworks.

All three SNs use Glove++ embeddings for the
embedding layer. The CNN layers in each SN have
kernel sizes 3,5 and 7, respectively.
DL2: It is an ensemble of 9 SNs. Each max-
pooling layer is followed by a biLSTM layer, hav-
ing 200 units, to capture long term dependencies.
SN 1-3 use Glove++ embeddings. SN 4-6 use Ag-
gression embeddings. SN 7-9 use Character-level
trigram embeddings. CNN layer in SN 1,4,7 has
kernel size = 3, in SN 2,5,8 has kernel size = 5 and
in SN 3,6,9 has kernel size = 7.

5.2 Capsule Network (CN) Models

The main difference between CN models and
DL models is that the CN models use a cap-
sule layer instead of max-pooling layer. The cap-
sule layer has 10 capsules of 16 dimension each.
Max-pooling reduces computational complexity
but leads to the loss of spatial information.

Capsules are a group of neurons that are rep-
resented as vectors. The orientation of the feature
vector is preserved in capsules. They use a func-
tion called squashing for non-linearity. Dynamic

151

DL models CN models
DL1 57.17% CN1 65.20%
DL2 60.34% CN2 62.70%

Table 2: Weighted F1 scores of DL and CN models

Routing is used to route the feature vector of the
lower-level capsule to the appropriate next level
capsule (Sabour et al., 2017). Dynamic Routing is
based on a coupling coefficient that measures the
similarity between vectors that predict the upper
capsule and the lower capsule and learns which
lower capsule should be directed to which upper
capsule (Kim et al., 2018). Through this process,
capsule layers preserve spatial information, learn
semantic representation, and ignore words that are
insignificant.
CN1: The architecture is shown in figure 1. It
is an ensemble of 3 subnetworks. Each SN uses
Glove++ embeddings, and the CNN layers have
kernel size = 3,4 and 5, respectively.
CN2: Like CN1, but there is an additional biL-
STM layer, having 300 units, after the capsule
layer.

6 Results and Discussion

From table 2, we see that the CN models perform
better than DL models. Both the CN models are
comparable to the models proposed by Srivastava
et al. (2018). This validates the usefulness of cap-
sule networks for aggression detection. CN1 gives
the best results and is better than the best model
proposed by Aroyehun and Gelbukh (2018). DL2
works better than DL1, as it captures more infor-
mation. The performance drops from CN1 to CN2,
despite CN2 having an additional biLSTM layer.
This shows that a more complex model is not nec-
essarily better, which is in agreement with the ob-
servations of Aroyehun and Gelbukh (2018). This
could be due to over-fitting.

Figures 3, 4 and 5 are t-SNE (van der Maaten
and Hinton, 2008) graphs, which depict the out-
put of SN1-3 of CN1, respectively. We visualize
the feature embeddings in all the SNs, and we ob-
serve that each SN is able to characterize the fea-
tures distinctly due to the variability in the network
configurations. When all the SNs are combined in
an ensemble network, the feature representation is
further improved. The inter-class variability is pre-
dominant, as can be validated in Fig. 6. This can
be attributed to the fact that all 3 SNs have com-

Figure 2: Confusion matrix of CN1 model

Figure 3: Flatten vector of subnetwork1

Figure 4: Flatten vector of subnetwork2

Figure 5: Flatten vector of subnetwork3

plimentary feature representations.
As observed from the confusion matrix of CN1

model (Fig. 2), NAG is the easiest to detect.

152

Figure 6: Performance of Output Layer

It is because most of the tweets in the data are
NAG. The performance is better on OAG than on
CAG, despite there being more training examples
of CAG as OAG is more explicit and hence easier
to identify, as opposed to the more indirect CAG
(Davidson et al., 2017). CAG, because of its covert
nature is the most difficult to classify. The con-
fusion of CAG can also be observed in figure 6,
where CAG is overlapping with NAG and OAG.

The confusion can also be seen by analyzing
some CAG tweets predicted as NAG:
”Hundreds of people were killed by your friends in
Bombay, where were you at that time.”
”What’s next? Soon we will be told to have a bul-
lock cart and give up cars? Or live in a shed using
candles?”
”Chit fund operators n loan sharks r more honest”

7 Conclusion and Future Work

We perform experiments to identify aggressive
tweets by applying DL and Capsule Networks
on preprocessed data. We show that capsulenets
are efficient for aggression detection. We use an
ensemble-based model and qualitatively show that
each subnetwork learns unique features which
help in classification. Our best model uses capsu-
lenets and results in a 65.20% f1 score, which is an
improvement over most of the existing solutions.

In the future, we would like to explore other
capsulenet architectures using different routing al-
gorithms. A more in-depth analysis of CAG tweets
could improve the performance on them.

8 Acknowledgement

We thank the anonymous reviewers for their con-
structive feedback. We also thank Rohan Suku-
maran and Harshit Singh for fruitful discussions
and proofreading.

References
Segun Taofeek Aroyehun and Alexander Gelbukh.

2018. Aggression detection in social media: Us-
ing deep neural networks, data augmentation, and
pseudo labeling. In TRAC - 2018, pages 90–97.

Pinkesh Badjatiya, Shashank Gupta, Manish Gupta,
and Vasudeva Varma. 2017. Deep learning for hate
speech detection in tweets. In Proceedings of the
26th International Conference on World Wide Web
Companion, WWW ’17 Companion, pages 759–
760, Republic and Canton of Geneva, Switzerland.
International World Wide Web Conferences Steer-
ing Committee.

Shishir Bhattacharja. 2010. Bengali verbs: a case of
code-mixing in Bengali. In Proceedings of the 24th
Pacific Asia Conference on Language, Information
and Computation, pages 75–84, Sendai, Japan.

Maral Dadvar, Dolf Trieschnigg, Roeland Ordelman,
and Franciska de Jong. 2013. Improving cyberbul-
lying detection with user context. In Advances in
Information Retrieval, pages 693–696.

Thomas Davidson, Dana Warmsley, Michael Macy, and
Ingmar Weber. 2017. Automated hate speech detec-
tion and the problem of offensive language. ICWSM
’17, pages 512–515.

Anant Khandelwal and Niraj Kumar. 2020. A unified
system for aggression identification in english code-
mixed and uni-lingual texts. In Proceedings of the
7th ACM IKDD CoDS and 25th COMAD, CoDS
COMAD 2020, page 55–64, New York, NY, USA.
Association for Computing Machinery.

Jaeyoung Kim, Sion Jang, Sungchul Choi, and Eun-
jeong L. Park. 2018. Text classification using cap-
sules. CoRR, abs/1808.03976.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018a. Benchmarking aggression
identification in social media. In TRAC-2018, pages
1–11.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and
Marcos Zampieri. 2020. Evaluating aggression
identification in social media. In Proceedings of the
Second Workshop on Trolling, Aggression and Cy-
berbullying, pages 1–5, Marseille, France. European
Language Resources Association (ELRA).

Ritesh Kumar, Aishwarya N. Reganti, Akshit Bha-
tia, and Tushar Maheshwari. 2018b. Aggression-
annotated corpus of hindi-english code-mixed data.
CoRR, abs/1803.09402.

Kirti Kumari and Jyoti Prakash Singh. 2020.
AI ML NIT Patna @ TRAC - 2: Deep learning
approach for multi-lingual aggression identification.
In Proceedings of the Second Workshop on Trolling,
Aggression and Cyberbullying, pages 113–119,
Marseille, France. European Language Resources
Association (ELRA).

153

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-SNE. Journal of Machine
Learning Research, 9:2579–2605.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Chikashi Nobata, Joel Tetreault, Achint Thomas,
Yashar Mehdad, and Yi Chang. 2016. Abusive lan-
guage detection in online user content. In Proceed-
ings of the 25th International Conference on World
Wide Web, WWW ’16, pages 145–153, Republic and
Canton of Geneva, Switzerland. International World
Wide Web Conferences Steering Committee.

Edgar C. O’Neal. 1994. Human aggression, second
edition, edited by robert a. baron and deborah r.
richardson. new york, plenum, 1994, xx + 419 pp.
Aggressive Behavior, 20(6):461–463.

Julian Risch and Ralf Krestel. 2018. Aggression identi-
fication using deep learning and data augmentation.
In TRAC-2018, pages 150–158.

Julian Risch and Ralf Krestel. 2020. Bagging BERT
models for robust aggression identification. In Pro-
ceedings of the Second Workshop on Trolling, Ag-
gression and Cyberbullying, pages 55–61, Marseille,
France. European Language Resources Association
(ELRA).

Arjun Roy, Prashant Kapil, Kingshuk Basak, and Asif
Ekbal. 2018. An ensemble approach for aggression
identification in english and hindi text. In TRAC-
2018, pages 66–73.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton.
2017. Dynamic Routing Between Capsules. arXiv
e-prints, page arXiv:1710.09829.

Niloofar Safi Samghabadi, Deepthi Mave, Sudipta Kar,
and Thamar Solorio. 2018. RiTUAL-UH at TRAC
2018 shared task: Aggression identification. In Pro-
ceedings of the First Workshop on Trolling, Aggres-
sion and Cyberbullying (TRAC-2018), pages 12–18,
Santa Fe, New Mexico, USA. Association for Com-
putational Linguistics.

Niloofar Safi Samghabadi, Parth Patwa, Srinivas
PYKL, Prerana Mukherjee, Amitava Das, and
Thamar Solorio. 2020. Aggression and misogyny
detection using BERT: A multi-task approach. In
Proceedings of the Second Workshop on Trolling,
Aggression and Cyberbullying, pages 126–131,
Marseille, France. European Language Resources
Association (ELRA).

Saurabh Srivastava, Prerna Khurana, and Vartika
Tewari. 2018. Identifying aggression and toxicity in
comments using capsule network. In TRAC-2018,
pages 98–105.

Yequan Wang, Aixin Sun, Jialong Han, Ying Liu, and
Xiaoyan Zhu. 2018. Sentiment analysis by capsules.

In Proceedings of the 2018 World Wide Web Confer-
ence, WWW ’18, pages 1165–1174, Republic and
Canton of Geneva, Switzerland. International World
Wide Web Conferences Steering Committee.

Wei Zhao, Jianbo Ye, Min Yang, Zeyang Lei, Suofei
Zhang, and Zhou Zhao. 2018. Investigating capsule
networks with dynamic routing for text classifica-
tion. CoRR, abs/1804.00538.

154

Proceedings of the 17th International Conference on Natural Language Processing, pages 155–160
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

A New Approach to Claim Check-Worthiness Prediction and Claim
Verification

Shukrity Si
Jalpaiguri Govt. Engg College

India
sukriti.si98@gmail.com

Anisha Datta
Jalpaiguri Govt. Engg College

India
dattaanishadatta@gmail.com

Sudip Kumar Naskar
Jadavpur University

India
sudip.naskar@cse.jdvu.ac.in

Abstract
The more we are advancing towards a modern
world, the more it opens the path to falsifica-
tion in every aspect of life. Even in case of
knowing the surrounding, common people can
not judge the actual scenario as the promises,
comments and opinions of the influential
people at power keep changing every day.
Therefore computationally determining the
truthfulness of such claims and comments
has a very important societal impact. This
paper describes a unique method to extract
check-worthy claims from the 2016 US pres-
idential debates and verify the truthfulness
of the check-worthy claims. We classify the
claims for check-worthiness with our modified
Tf-Idf model which is used in background
training on fact-checking news articles (NBC
News and Washington Post). We check the
truthfulness of the claims by using POS,
sentiment score and cosine similarity features.

1 Introduction

Today we live in a world where falsehood seems to
reflect everywhere be it in administration, sports,
entertainment sector and even in the education field.
Many popular and influential personalities seem to
be vulnerable in keeping their words. The opinions
and comments they make, their claims keep chang-
ing frequently. Therefore we can not blindly rely
on present news. During the 2016 US presidential
campaign, people came to realize how fake news
could be spread in mainstream news channels and
social media. (Alexandre Bovet, 2019) reported
the influence of fake news on social media during
the election. They showed that about 171 million
tweets were made during the election among which
25% were fake or extremely biased. Many journal-
ists started investigation into identifying the actual
truth. However, it was a time consuming and te-
dious task to do the work manually. This problem

gave rise to the concept of automatic fact and claim
checking. Research has been going on since then
to effectively tackle this problem which has proved
to be a very challenging problem. Typically for the
claim verification task, relevant evidence related
to the claims is collected first and then the claim
is compared with the evidence to know the actual
fact. (Giovanni Luca Ciampaglia and Flammini.,
2015) did this with the help of knowledge graph
taken from Wikipedia.

We propose a suitable rule based approach with
the help of feature engineering for the task. Our
work consists of two tasks, first we extract the
claims which are check-worthy and then we ver-
ify the truthfulness of these check-worthy claims.
We carried out our experiments on the dataset of
the Fact Checking Master (Preslav Nakov and Mar-
tino., 2018) shared task, organized in CLEF-2018,
which deals with fact checking on the U.S. Presi-
dential debate articles of 2016.

Extraction of check-worthy claims is carried out
in two processes i.e. supervised and unsupervised
approach. In unsupervised approach, the check-
worthy claims are extracted with POS tags and
K-Means Clustering algorithm. Dataset related to
claims can be generated from any conversation with
the help of this method. In supervised approach,
we have collected some fact checking news articles
(NBC News and Washington post) for background
training and a modified Tf-Idf model is created to
classify the claims whether check-worthy or not.
Cosine similarity, Sentiment scores and POS tags
are also used here. On comparing with the original
labels, this model gives an accuracy of 98.6% when
passed along with GBM.

Claim verification is performed by comparing
the classified check-worthy claims with the fact
checking news articles to verify their truthfulness.
POS tagging, Cosine similarity are used to search
for the explanations of the claims from the arti-

155

cles. With all these features together we make a
hypothesis for the final classification.

These two tasks are consecutively done in a
work (Pepa Gencheva and Koychev, 2017) pre-
viously. Else there are many works to influence
on individual approaches of the model. The paper
is divided into many sections, section 2 describes
related works, dataset in section 3, features and
proposed methodology in section 4 and 5 respec-
tively, results in section 6 and conclusion is given
in section 7.

2 Related Works

Fact-Checking has become a trending topic re-
cently. Zhou and Zafarani (2018) provides a survey
on fake news research and their study focuses on
fake news from four perspective – the false knowl-
edge it carries, its writing style, its propagation pat-
terns, and the credibility of its creators and spread-
ers. Pepa Gencheva and Koychev (2017) extracted
the check-worthy claims by comparing them with
some popular news articles and verified the truthful-
ness of the claims using Support Vector Machines
(SVM) and Feed-Forward Neural Networks (FNN).

Mihai Surdeanu and Manning (2010) used Con-
ditional Random Field (CRF) for legal claim identi-
fication. Firstly they used Optical Character Recog-
nition (OCR) to convert PDF documents into text
and then they used four types of CRF architectures
for the actual task. Datta and Si (2020) reported
a work on fake news identification in which senti-
ment scores and Tf-Idf are used as features to build
a Majority Voting model with four classifiers - Gra-
dient Boosting, Random Forest, Extra Tree and
XGBoost classifiers to identify fake news. Ghanem
et al. (2019) showed that false news has various
emotional patterns to mislead the readers and with
the emotional sentiment features they propose an
LSTM model for the classification task.

Suzuki and Takatsuka. (2016) proposed a
keyword-extraction model for verifying patent
claims. RoyBar-Haim and Slonim performed claim
stance classification by automatic expansion of the
initial sentiment lexicon and by using SVM with
unigrams. Naeemul Hassan and Tremayne (2015)
developed a system called ClaimBuster which mon-
itors Twitter and retweets the check-worthy factual
claims it finds and produces true - false verdicts
for these types of factual claims. Moin Nadeem
(2019) reported an end to end fact-checking system,
FAKTA, using document retrieval from various me-

dia sources, evidence extraction and linguistic anal-
ysis. Dieu-Thu Le and Blessing (2016) used Con-
volutional Neural Networks for the task. Rob En-
nals and Rosario. (2010) developed another fact-
checking system, DisputeFinder, which works on
already verified claims. Ayush Patwari and Bagchi.
(2017) used LDA topic modeling, POS tuples and
Bag-of-Words as features and SVM is used for
clustering. Wang. (2017) and Nicole OBrien and
Boix. (2018), proposed different models to classify
factuality of claims aimed at only input claims and
their metadata.

3 Dataset

We carried out our experiments on the dataset of
the Fact Checking Master (Preslav Nakov and Mar-
tino., 2018) shared task, organized in CLEF-2018.
The dataset contains stated claims of the U.S. Pres-
idential debates (2016) with a total of 1,403 sen-
tences in the first Presidential debate and 1,303
sentences in the second Presidential debate. There
are four speakers - Holt (host of the first Presiden-
tial debate), Cooper (host of the second Presidential
debate), Hillary Clinton and Donald Trump. All
the claims made by Mr. Trump and Ms. Clinton in
these debates can be sensed manually since all of
the claims show some actions happened in the past,
or any comments or actions from the opponent in
the past. Observing the patterns, we analysed the
prominent features and developed our models.

4 Proposed Methodology

4.1 Claim Check-Worthiness Prediction

In the dataset, there are many statements which
should be prioritized to be fact-checked as claims.
We emply both supervised and unsupervised ap-
proach for this task.

4.1.1 Supervised Approach
We used modified Tf-Idf model with Gradient
Boosting classifier for the work. Term Frequency
(tf) measures how frequently a term occurs in a
document or text. Since every document is differ-
ent in length, it is possible that a term can appear
more frequently in the longer documents than in
the shorter ones. Thus, term frequency is normal-
ized by the document length, i.e., the total number
of terms in the document.

Idf is generally defined by the logarithm of the
ratio of total number of documents in the dataset
and the number of documents with that term in

156

them. The idf calculation is modified in our model.
We have taken the statements from the data as docu-
ments in Tf calculation. The modified Idf is defined
as the logarithm of the ratio of total no. of doc-
uments (the explanations from the fact-checking
articles) and number of documents with the term
in them. In case of normal Tf-Idf count, the docu-
ments (or, sentences) used in both Tf and Idf belong
to the same article. But in our case, Tf count takes
the actual data but Idf count takes the fact-checking
news articles for consideration. The reason behind
this modification is to check word similarity be-
tween a claim and an explanation. The more the
similarity is, the more an explanation is related
to the claim. This process helps in background
knowledge training.

Modified Idf =

loge
Total no. of documents in thearticles

No. of documents with the term

But in case, if the term is not present in the
Fact-Checking articles, the Idf count is taken as 0.
Now the Tf and Idf is multiplied to calculate the
modified Tf-Idf count(feature model).

Modified Tf−Idf = Tf ∗Modified Idf (1)

Therefore we modify Tf-Idf in this way to build
a feature matrix which can help us to establish a
relation between the background articles and the
statements.

If the calculated Tf-Idf is a non-zero number,
then the term is present in the background article.
This increases the chance of the statement with the
term to be classified as a check-worthy claim as
it is related to one of the explanations present in
the articles. As this is a supervised approach, we
use the labels of our data. In the data, if the state-
ment is a check-worthy claim then it is assigned
to 1 or otherwise 0. The Tf-Idf feature model is
now fitted into Gradient Boosting classifier for final
classification.

4.1.2 Unsupervised Approach
In this approach, our main goal is to extract the
check-worthy claims from the debate dataset with-
out any labels. This approach can be used in future
to create new dataset related to claims from any de-
bates, conversations or interviews. Here we study
the data very carefully to understand the features
of check-worthy claims which are described below.

Features - Now an example of a claim is -
“Ford is leaving, you see that, their small car divi-
sion leaving, Thousands of jobs leaving Michigan,
leaving Ohio.”
In this case, ‘leave’ verb is in continuous tense,
and there are proper nouns like ‘Ford’, ‘Michigan’,
‘Ohio’. So the statements containing proper nouns
and continuous tense have a great chance to be
check-worthy claims.
“He approved NAFTA, which is the single worst
trade deal ever approved in this country.”
This is a claim made by Trump. The adjective
‘bad’ is in superlative form in this sentence, verb
‘approve’ is in past tense and a connective word
‘which’ is used here. Now if any person uses other
person’s statements in indirect speech with a con-
nective word, then there is a strong possibility that
the sentence is a check-worthy claim. Because the
person may change other’s statement in his own
way, and the statement should be checked whether
it was actually stated or not. Now if anyone says
- “Paolo Coelho said that he was the best writer of
the world.” This sentence is a claim indeed. Paolo
Coelho might say that he is one of the best writer
of the world, but the person distorted his statement.
So this type of claims are check-worthy.

Therefore with all these features, we have made
separate matrices and merged them all together.
This merged feature matrix is passed along with a
unsupervised machine learning algorithm called ’K-
means Clustering’ to create two clusters of check-
worthy claims and non-claims.

We have used these two approaches for the clas-
sification. Among them the supervised approach is
more suitable for our work, it gives better results
than the other. But the unsupervised approach can
help us to generate claim dataset without any labels.
But this model needs further modification.

4.2 Claim Verification

After extracting the check-worthy claims from the
dataset, we are now left with 17 and 16 claims for
the 1st and 2nd presidential debate respectively.
These claims now need to be checked for truthful-
ness by comparing with the existing fact-checking
articles. The second part of the dataset contains
labels of the claims according to their truthfulness.
There are 3 labels as True, False and Half-True.
So, the next task is to make a suitable model to
classify the check-worthy claims. Now this work
is divided into two parts, first part is the extraction

157

of related explanations for all the claims and the
second part is to verify whether the claims are true
or not by comparing with the explanations. We
have used NBC news and Washington post fact-
checking articles to get the true explanations of the
check-worthy claims. They are described below.

4.2.1 Explanation Extraction
The first goal of this task is to find the proper ex-
planations of the claims. We have used Cosine
Similarity algorithm with the help of POS tags.

• POS tags - We compare each check-worthy
claim with all the explanations given in the
NBC news and Washington post articles. The
first step is to POS tag each sentence. Some
of the tags are given more importance than the
others. These are - nouns (proper nouns), nor-
mal pronouns and possessive pronouns, verbs
(past, continuous and participle tenses), adjec-
tives, adverbs and connectives (‘that’, ‘which’,
etc.). These tags increase the chance of get-
ting similar sentences. Therefore, all these
POS tags are taken into consideration and a
single feature matrix is formed by merging
them all together.

• Cosine Similarity - We compute cosine sim-
ilarity between combined POS tagged list of
each of the check-worthy claims and the com-
bined POS tagged list of each explanation of
the fact-checking articles. The maximum out-
put gives out the true explanation. Now the
true explanations are placed beside the claims
to check for the truthfulness.

4.2.2 Truthfulness Detection
The next task is to compare each check-worthy
claim with its explanation and verify whether the
claim is true or not. For this, we use sentiment
scores and then build a new hypothesis which is
used in the classification task.

Sentiment Score - We use VADER model
(Hutto, 2014) to get the sentiment scores. It calcu-
lates the positive, negative, neutral and compound
sentiment polarity for any sentence (in English
language). With the help of this model, we have
calculated the Sentiment Scores of each sentence,
separated out the compound scores to be more pre-
cise and then compared the scores of each claim
with its explanation. The compound score is cal-
culated as in Equation 2, where, a = (positive +

negative+ neutral) and α is a constant, say, t =
sentiment(claim)− sentiment(explanation).

Compound score =
a√

a2 + α
(2)

Now, this needs to be standardised further to get
the threshold value for every label (True, False and
Half-True). We have separated the claims from the
original dataset according to their labels. Then the
calculated t is placed accordingly, their means and
medians are calculated with respect to the labels.

Observing the results, we have chosen threshold
values for each label. The values are chosen as
given below.

If t ∈ [0.40,∞) , then the claim is True.

If t ∈ [0.20, 0.40) , then the claim is Half-True.

If t ∈ [−∞, 0.20) , then the claim is False.

We determine the threshold by calculating mean
and median of the variables, but if we look into
the scores, we can understand that the threshold
should work in right way. If any claim is false,
generally its explanation will carry negative words
like ’he didn’t’, ’it’s a lie’ etc. As we subtract the
sentiments, for false claims, it becomes negative.
And for true claims, the value is in positive range
and for half true it lies in between them. This is the
hypothesis we propose for claim verification.

This gives new labels for the claims. We have
compared them with the existing labels and got
reasonable scores for each label.

5 Results and Discussion

We calculate the values of accuracy, precision, re-
call and f-score for each model proposed in the
paper. Confusion matrices are also shown for re-
sult visualization for both the debate articles. All
the results are analysed below.

5.1 Claim Check-worthiness

We work on two dataset, 1st and 2nd US
presidential candidate debate articles. We
have used a modified version of Tf-Idf (a new
method we have proposed here) model to ex-
tract check-worthy claims. We have tested the
model with the original labels of the dataset
with the help of GBM classifier. The results
for both datasets are given in the table 1 and table 2.

158

Figure 1: Confusion Matrix of 1st debate article results

Figure 2: Confusion Matrix of 2nd debate article re-
sults

Table 1: Results on 1st-Presidential Debate-

Model Accuracy Precision Recall F-Score
GBM 98.65% 98.66% 98.64% 98.42%

Table 2: Results on 2nd-Presidential Debate-

Model Accuracy Precision Recall F-Score
GBM 99% 99.01% 99% 98.86%

Now we can see that the results of both debates
are very good. The confusion matrices for the
models on 1st and 2nd dataset are shown in figure
1 and 2 respectively.

Now there arise some cases of wrong predictions.
A few check-worthy claims are present which can-
not be extracted by our model but most of the pre-
dictions are correct. But there are no such extracted
claims which are not originally check-worthy. Here
we can conclude that our model is giving a very
good performance for the check-worthiness prob-
lem. Although we will work on it for improvement.

5.2 Claim Verification

We have used some features like- POS tagging,
Cosine Similarity and Sentiment Score on the
extracted check-worthy claims to extract the true
explanations from the fact-checking articles and
verify the truthfulness of the claims. This approach
on both the debate articles has brought good
results for the labels - True and False. But for label
Half-True, for some ambiguity, the result is not so
good like the others. For this reason, the overall
result has decreased. The individual results for

each label and on a whole are shown below in the
table 3, 4, 5, 6.

Results on 1st-Presidential Debate

Table 3:
Accuracy Precision Recall F-score
64.705% 74.50% 64.70% 62.64%

Table 4:
True False Half-True

Accuracy 75% 88% 33.3%

Results on 2nd-Presidential Debate

Table 5:
Accuracy Precision Recall F-score

62.5% 67.05% 62.5% 61.25%

Table 6:
True False Half-True

Accuracy 50% 77.7% 33.3%

All the predictions of our model is discussed
and we realise that the models are facing some
difficulties to classify the class half true. But if the
half-true label is considered as false then the result
is fine. But we are working on the improvement of
this model for the particular class half true.

6 Conclusion and Future Work

The method which we use gives a very good re-
sult in check-worthiness classification, and the ap-
proach we propose here is a modified version of
Tf-Idf for using background fact checking article.
This can help us to do further research in back-
ground training. Other approach we have used is
unsupervised approach, where we studied every
feature very carefully and built a model. Though
this model needs further modification but it can be
used to generate new data on claims from any de-
bate, conversation or interview. So it can contribute
to the field of dataset creation. Now for Claim truth-
fulness, we first extracted the proper explanations
from the articles, then applied our own threshold
for classification. This approach works good for
the class true and false, but for half true, it needs
tuning and modification.

Further we can apply our modified Tf-Idf model
in other researchers’ works and check the efficiency.
The model and hypothesis for truthfulness verifica-
tion needs further improvement. We will try to add
deep learning methods also. It can be concluded
that our proposed model is very versatile and can
be used in other fields as well.

159

References
Hernan A. Makse. Alexandre Bovet. 2019. Influence of

fake news in twitter during the 2016 us presidential
election. ArXiv:1803.08491v2 [cs.SI].

Dan Goldwasser Ayush Patwari and Saurabh Bagchi.
2017. Tathya:amulti-classifier system for detecting
check-worthy statements in political debates. In In
Proceedings of the 2017 ACM on Conference on In-
formation and Knowledge Management. Singapore,
CIKM ’17, pages 2259 to 2262.

Anisha Datta and Shukrity Si. 2020. A supervised
machine learning approach to fake news identifica-
tion. In Intelligent Data Communication Technolo-
gies and Internet of Things, pages 197–204, Cham.
Springer International Publishing.

Ngoc Thang Vu Dieu-Thu Le and Andre Blessing.
2016. Towards a text analysis system for political
debates. on. LaTeCH.

Bilal Ghanem, Paolo Rosso, and Francisco M. Rangel
Pardo. 2019. An emotional analysis of false infor-
mation in social media and news articles. ArXiv,
abs/1908.09951.

Luis M. Rocha-Johan Bollen Filippo Menczer Gio-
vanni Luca Ciampaglia, Prashant Shiralkar and
Alessandro Flammini. 2015. Computational fact
checking from knowledge networks. PLOS ONE
10(6):1 to 13.

E.E. Hutto, C.J. Gilbert. 2014. Vader: A parsimo-
nious rule-based model for sentiment analysis of so-
cial media text. eighth international conference on
weblogs and social media. (ICWSM-14). Ann Arbor,
MI, June 2014.

Ramesh Nallapati Mihai Surdeanu and Christopher
Manning. 2010. Legal claim identification: Infor-
mation extraction with hierarchically labeled data.
LREC.

Brian Xu Mitra Mohtarami-James Glass.
Moin Nadeem, Wei Fang. 2019. Fakta: An
automatic end-to-end fact checking system. In
Proceedings of NAACL-HLT 2019: Demonstrations,
pages 78 to 83 Minneapolis, Minnesota, June 2
to June 7, 2019. Association for Computational
Linguistics.

Chengkai Li Naeemul Hassan and Mark Tremayne.
2015. Detecting check-worthy factual claims in
presidential debates. In In Proceedings of the 24th
ACM International Conference on Information and
Knowledge Management. CIKM ’15, pages 1835–
1838.

Georgios Evan-gelopoulos Nicole OBrien,
Sophia Latessa and Xavier Boix. 2018. The
language of fake news: Opening the black-box of
deep learning based detectors. In InProceedings
of the Thirty-second Annual Conference on Neural
Information Process-ing Systems (NeurIPS)–AI for
Social Good.

Lluıs M‘arquez-Alberto Barron-Cede˜no
Pepa Gencheva, Preslav Nakov and Ivan Koy-
chev. 2017. A context-aware approach for detecting
worth-checking claims in political debates. RANLP.
Varna, Bulgaria, pages 267–276.

Tamer Elsayed Reem Suwaileh Lluıs M‘arquez Wa-
jdi Zaghouani Pepa Atanasova Spas Kyuchukov
Preslav Nakov, Alberto Barron-Cede˜no and Gio-
vanni Da San Martino. 2018. Overview of the clef
2018 checkthat!lab on automatic identfication and
verification of political claims. In In Proceedings
of CLEF. Avignon, France, pages 372 to 387.

John Mark Agosta Rob Ennals, Dan Byler and Barbara
Rosario. 2010. What is disputed on the web?. In
In Proceedings of the 4th workshop on Information
credibility. ACM, New York, NY, USA, WICOW ’10,
pages 67 to 74.

Charles Jochim RoyBar-Haim, Lilach Edelstein and
Noam Slonim. Improving claim stance classifica-
tion with lexical knowledge expansion and context
utilization. In Proceedings of the 4th Workshop on
Argument Mining, pages 32–38 Copenhagen, Den-
mark, September 8, 2017. c 2017 Association for
Computational Linguistics.

Shoko Suzuki and Hiromichi Takatsuka. 2016. Extrac-
tion of keywords of novelties from patent claims.
In Proceedings of COLING 2016, the 26th Inter-
national Conference on Computational Linguistics:
Technical Papers, pages 1192–1200, Osaka, Japan,
December 11 to 17 2016.

William Yang Wang. 2017. iar, liar pants on fire”:a new
benchmark dataset for fake news detection. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume2: Short
Papers), pages 422 to 426. Association for Compu-
tational Linguistics.

Xinyi Zhou and Reza Zafarani. 2018. Fakenews: A
survey of research, detection methods, and opportu-
nities. ArXiv:1812.00315v1 [cs.CL].

160

Proceedings of the 17th International Conference on Natural Language Processing, pages 161–169
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Improving Passage Re-Ranking with Word N-Gram Aware Coattention
Encoder

Chaitanya Sai Alaparthi and Manish Shrivastava
Language Technologies Research Centre (LTRC),

Kohli Centre on Intelligent Systems(KCIS),
International Institute of Information Technology, Hyderabad, India
chaitanyasai.alaparthi@research.iiit.ac.in

m.shrivastava@iiit.ac.in

Abstract

In text matching applications, coattentions
have proved to be highly effective attention
mechanisms. Coattention enables the learn-
ing to attend based on computing word level
affinity scores between two texts. In this pa-
per, we propose two improvements to coat-
tention mechanism in the context of passage
ranking (re-ranking). First, we extend the
coattention mechanism by applying it across
all word n-grams of query and passage. We
show that these word n-gram coattentions can
capture local context in query and passage
to better judge the relevance between them.
Second, we further improve the model per-
formance by proposing a query based atten-
tion pooling on passage encodings. We eval-
uate these two methods on MSMARCO pas-
sage re-ranking task. The experiment results
shows that these two methods resulted in a rel-
ative increase of 8.04% in Mean Reciprocal
Rank @10 (MRR@10) compared to the naive
coattention mechanism. At the time of writ-
ing this paper, our methods are the best non
transformer model on MS MARCO passage
re-ranking task and are competitive to BERT
base while only having less than 10% of the
parameters.

1 Introduction

Passage ranking (or re-ranking) is a key informa-
tion retrieval (IR) task in which a model has to
rank (or re-rank) set of passages based on how rel-
evant they are to a given query. It is an integral
part of conversational search systems, automated
question answering systems (QA), etc., The typical
answer extraction process in these systems consists
of two main phases. The first phase is ranking pas-
sages from the collection that most likely contain
the answers. The second phase is extracting an-
swers from these passages. The performance of
first phase significantly impact the performance of

extracting answers and the performance of the over-
all system. Thus it is important for a QA system to
effectively rank passages.

Attention mechanisms have shown tremendous
improvements in the deep learning based NLP mod-
els (Bahdanau et al., 2014; Wang et al., 2016; Yang
et al., 2016; Lu et al., 2016; Vaswani et al., 2017).
Attention allows the model to dynamically focus
only on certain parts of the input that helps in per-
forming the task at hand effectively. Coattentions
(Xiong et al., 2016) are class of attention mecha-
nisms which can be applied on text matching prob-
lems. They proved to be highly effective as they
enables the learning to attend based on comput-
ing word level affinity scores between two texts
thus helping in effectively deciding the relevance
between them.

This paper builds on previous work on coatten-
tion mechanism (Alaparthi, 2019) (we call it as
naive coattention encoder) to tackle the problem
of passage re-ranking. We recall that the coatten-
tion encoder attends across query and passage by
computing the word-level affinity scores. Similar
to (Hui et al., 2018), we argue that attending at
word-level limits the ability to capture local con-
text in the query-passage interactions. As an exam-
ple (which we later explain in section 5.3), for a
query: what is January birthstone color, the naive
coattention encoder can relate the passages describ-
ing passages such as November birthstone color,
April birthstone color, etc. This is likely because
of common matching terms birthstone and color
and semantically similar words January, Novem-
ber, April, etc. We demonstrate that extending the
coattentions to words and n-grams can improve
the matching signals, which will contribute to final
relevance scores.

In the naive coattention encoder, max-pooling
was applied on the coattention encodings to ob-
tain the co-dependent representation of the passage,

161

which forms the base in deciding the relevance.
We argue that using max-pooling limits the ability
to compose complex co-dependent representations.
Intuitively, we can leverage query to supervise the
co-dependent representation from coattention en-
codings of the passage. With this intuition, we pro-
pose a simple query-based attention pooling. We
show that query-based attention pooling can pick
the appropriate clauses which are distributed across
the coattention encodings. This allows the model
to only focus on relevant parts of passage coatten-
tion encodings, which are appropriate in judging
the relevance. Additionally, the final passage repre-
sentation is supervised by the query, which helps
the model to better judge the relevance.

To solve these challenges, we first extend the
coattention encoder to words and phrases by apply-
ing it across all word n-grams of query and passage.
For this purpose, similar to C-LSTM (Zhou et al.,
2015) and Conv-KNRM (Dai et al., 2018), we gen-
erate the word n-gram representations from the
word embeddings of query and passage using the
convolutional layers of different heights and multi-
ple filters. We then encode these n-gram sequences
using a BiLSTM to capture the long term dependen-
cies into n-gram encodings. A coattention encoder
is then applied on these n-gram encodings of query
and passage to get the coattention encoding of the
passage. The coattention encoder first generates
the co-dependent representations of query and pas-
sage by attending across all word n-grams from
query and passage. These co-dependent represen-
tations of passage are then fused with the n-gram
encodings of the passage using a BiLSTM to get
the coattention encoding of the passage. We show
that this coattention encoding can better capture
the local context between query and passage, thus
improving the overall judging power of the model.

To get the final representation of the passage,
Alaparthi (2019) applied max-pooling over time on
the coattention encoding of the passage (note that
coattention encoding is the outputs of BiLSTM).
This final representation forms the base in deciding
the relevance between query and passage. In this
paper, we apply a query based attention pooling on
the coattention encoding instead of max-pooling to
pick the appropriate clauses which are distributed
across the coattention encoding. We argue that,
query based attention pooling allows the model to
only focus on relevant parts of passage coatten-
tion encoding which are appropriate in judging the

relevance. Additionally, the final passage repre-
sentation is supervised by query, which helps the
model to better judge the relevance.

We experimented our methods on MS MARCO
passage re-ranking task 1 (Bajaj et al., 2016). Mak-
ing the coattention encoder n-gram aware (uni,bi-
grams) has increased the Mean Reciprocal Rank
@10 (MRR@10) from 28.6 to 29.9 (+4.5% relative
increase) when compared to the naive coattention
encoder. Replacing the max pooling layer with the
query based attention pooling has further improved
the MRR@10 to 30.9 (+8.08% overall relative in-
crease), resulting in the best non transformer based
model. We show that our methods are competitive
to BERT base despite having very less number of
parameters. Also, our methods can be easily trained
and requires much lesser computational resources.

To summarize, the key contributions of this work
are as follows: First, we extend the naive coat-
tention encoder to words and phrases making the
coattentions to capture local context. We call it
as n-gram coattention encoder. Second, we fur-
ther extend the n-gram coattention encoder with
query based attention pooling to pick the appropri-
ate clauses which are distributed across the coatten-
tion encoding of the passage. We call it as n-gram
coattention encoder with attention pooling. We
show that this can further improve the model in
deciding the relevance. Third, we apply our meth-
ods on MS MARCO passage re-ranking task and
show that our methods have outperformed all the
baselines including the previous best non BERT
model and are competitive to BERT base. Last, we
use examples to compare and discuss our methods
with naive coattention encoder.

In section 2, we discuss related work. Then in
section 3, we describe our two methods of improv-
ing naive coattention encoder. In section 4, we
describe the dataset, baselines and the settings we
used in all our experiments. Next, we analyze and
discuss the results in section 5. Finally, we con-
clude our work with future plans in section 6.

2 Related Work

Deep learning methods have been successfully ap-
plied to a variety of language and information re-
trieval tasks. By exploiting deep architectures, deep
learning techniques are able to discover from train-
ing data the hidden structures and features at dif-

1https://github.com/microsoft/
MSMARCO-Passage-Ranking

162

ferent levels of abstractions useful for the tasks.
Therefore a new direction of Neural IR is proposed
to resort to deep learning for tackling the feature en-
gineering problem of learning to rank, by directly
using only automatically learned features from raw
text of query and passage.

The first successful model of this type is Deep
Structured Semantic Model (DSSM) (Huang et al.,
2013) introduced in 2013, which is a neural rank-
ing model that directly tackles the adhoc retrieval
task. In the same year Lu and Li proposed Deep-
Match (Lu and Li, 2013) which is a deep matching
method applied to the community question answer-
ing and micro-blog matching tasks. Later from
2014 and 2015, there is a rapid increase in neural
ranking models, such as new variants of DSSM
(Shen et al., 2014), ARC I and ARC II (Hu et al.,
2014), MatchPyramid (Pang et al., 2016), etc.,

With the introduction of large scale datasets
such as MS MARCO (Bajaj et al., 2016), we
have seen a tremendous improvements in neural
ranking models. Well known architectures in-
clude DUET (Mitra et al., 2017), DUET V2 (Mitra
and Craswell, 2019), KNRM (Xiong et al., 2017),
Conv-KNRM (Dai et al., 2018), Coattention en-
coder (Alaparthi, 2019) including the transformer
based architectures such as BERT (Nogueira and
Cho, 2019), DuoBERT (Nogueira et al., 2019),
RepBERT (Zhan et al., 2020).

3 Methodology

In this section, we first describe with notations.
Next in section 3.2, we briefly describe the naive
coattention encoder first proposed in (Xiong et al.,
2016). In section 3.3 and 3.4, we describe our two
methods to improve the naive coattention encoder.

Notations Let Qemb = (xQ1 , . . . , x
Q
n) ∈ IRn×L

be the embeddings of words in query of length n,
where each word embedding is of dimension L.
Similarly, P emb = (xP1 , . . . , x

P
m) ∈ IRm×L denote

the same for words in passage of length m.

3.1 Naive Coattention Encoder

Coattention encoder can be applied on Qemb and
P emb to get the coattention encoding of the passage.
We first start with encoding the Qemb and P emb

using the same BiLSTM (Mueller and Thyagarajan,
2016) to share the representational power:

qt = BiLSTM(qt−1, x
Q
t) (1)

and
pt = BiLSTM(pt−1, xPt) (2)

Similar to (Merity et al., 2016; Xiong et al.,
2016), we also add sentinel vectors qφ, pφ to allow
the query to not attend to any particular word in
the passage. SoQ = (q1, . . . , qn, qφ) ∈ IR(n+1)×L

and similarly P = (p1, . . . , pm, pφ) ∈ IR(m+1)×L.
Next, we compute the affinity scores between

all pairs of query and passage words: L = P TQ.
We call L as affinity matrix. The affinity matrix is
normalized row wise to get the attention weights
AQ across the passage for each word in query. Sim-
ilarly, normalized column wise to get the attention
weights AP across the query for each word in the
passage:

AQ = softmax(L) (3)

and
AP = softmax(LT) (4)

Next, we compute the attention contexts, of the
passage in light of each word in the query:

CQ = PAQ (5)

Additionally, we compute the summariesCQAP

of the previous attention contexts in light of each
word in the passage. We also define CP , a co-
dependent representation of the query and passage,
as the coattention context:

CP = [Q;CQ]AP (6)

Here [x; y] is concatenation of vectors x and y
horizontally. The last step is the fusion of tem-
poral information to the coattention context via a
bidirectional LSTM:

ui = BiLSTMfusion(ui−1, ui+1, [pi; c
P
i]) (7)

We define U = [u1, . . . , um], the outputs of
BiLSTMfusion concatenated vertically, as the
coattention encoding of the passage. Here U ∈
IRm×L′ and L

′
is the dimension of the hidden state

in BiLSTMfusion.
For the rest of this paper, we treat the coattention

encoder as a module, defined as:

U = CoAttentionEncoder(Qemb, P emb) (8)

163

Figure 1: Architecture of ngram aware coattention encoder

3.2 Word N-Gram Coattention Encoder
In this section, we extend the naive coattention
encoder by applying it across all word n-grams
from query and passage as shown in Figure 1. To
compute the word h-gram representations of query
Qemb, where each h-gram representation is of di-
mension F , similar to (Zhou et al., 2015; Dai et al.,
2018), we apply F convolution filters of height h
and width L. Note that L is the dimension of the
word embeddings. For each window of h words,
a single filter filterf performs a weighted sum of
all word embeddings xQt:t+h parameterized by it’s
weights wf ∈ IRhL and bias bf ∈ IR:

vhf = wf · xQt:t+h + bf , vf ∈ IR (9)

Using F filters, we get F scores vh1 , .., v
h
F , each

describing xQt:t+h in a different perspective. These
vhf from F filters are concatenated into a single
vector and tanh activation is then applied to get
the F -dimensional embedding:

xQh
t = tanh([vh1 ; . . . ; vhF]) ∈ IRF , t = 1..n−h+1

(10)
We define h-gram sequence of the query as

Qh = [xQh
1 , ..., xQh

n−h+1] (11)

Note that padding is not applied to the sequence.
Similarly, we apply the same convolution filters to

get the h-gram representations of passage P emb:

Ph = [xPh
1 , . . . , xPh

m−h+1] (12)

Here Qh ∈ IR(n−h+1)×F and Ph ∈ IR(m−h+1)×F .
Using these convolutional layers of different
heights, we get different n-gram sequences.

Coattention encoder is applied on all Qi and Pj
∀i, j ∈ [1..H], H is a parameter, which denotes
the span of the n-gram. In this paper, we have only
experimented with uni,bi-grams i.e., H = 2. Note
that, H = 1 reduces to naive coattention encoder
i.e., unigrams/words. Coattention encoder applied
on Qi and P j generates a coattention encoding of
the passage denoted by:

Uij = CoAttentionEncoder(Qi, Pj)

∀i, j ∈ [1..H] (13)

Here Uij ∈ IR(m−j+1)×L′ and to recall,

Uij = [uij1 , uij2 , . . . , uijm−j+1] (14)

where uijt is the output from the BiLSTMfusion

at time step t. We call Uij as the coattention en-
coding of the passage Pj with respect to the query
Qi.

To get the relevance score, similar to (Alaparthi,
2019), a max-pooling layer over time can be ap-
plied on Uij to get the single representation (single

164

thought vector):

uij = max({uijt}t=1..m−j+1) ∈ IRL
′

(15)

We concatenate these representations uij∀i, j ∈
[1..H] horizontally to get a single vector u

′
a n-

gram aware coattention representation of passage.

u
′

= [u11;u12; . . . ;uH−1H ;uHH] ∈ IRH2L
′

(16)
The u

′
is then passed to a linear layer parameterized

by weightsWs ∈ IRH2L
′

to get the relevance score:

scoreP |Q = W T
s u
′

(17)

3.3 Coattention Encoder with Attention
Pooling

In the naive coattention encoder and in the previ-
ous section, max-pooling over time is applied on
the coattention encoding to get the single repre-
sentation capturing entire sense of the passage. In
this section, we propose a simple attention pool-
ing to select key parts from the coattention encod-
ing Uij of the passage using the query: q

′
= qi

n
′ ,

n
′

= n − i + 1. We also add sentinel vector d
′
φ

(Merity et al., 2016) to Uij to allow the query to
not attend to any particular clause in the passage:

uij =

t=m−j+1∑

t=1

αtuijt (18)

Where,

αt =
exp(uTijtq

′
)

∑k=m−j+1
k=1 exp(uTijkq

′)
(19)

Similar to previous section, uij∀i, j ∈ [1..H] can
then be concatenated horizontally into a single vec-
tor u

′
and this u

′
can be used to get the relevance

score.

4 Experimental Setup

This section describes our datasets, how training
and testing were performed and our implementa-
tion details.

4.1 Dataset and Learning rule

We perform all our experiments on Microsoft MA-
chine Reading COmprehension (MS MARCO) pas-
sage re-ranking task. The whole corpus consists

of 8.8M passages extracted from 3.6M web doc-
uments corresponding to 500K anonymized user
queries sampled from Bing’s search query logs.

For the ease of training, MS MARCO
team has released a pre-processed training set
triples.train.small.tsv1, which contain the triples
〈Q,P+, P−〉, where Q is the query, P+ and P−

are passages, P+ being more relevant. We train all
our models on triples.train.small.tsv2. We use the
Cross Entropy loss employed by a softmax function
on relevance scores scoreP+|Q and scoreP−|Q to
learn the parameters Θ of the models. Some sub-
set of query, passages are randomly chosen from
top1000.dev.tsv2 to tune the models. Finally, we
predict the ranks on top1000.eval.tsv2.

L(Θ) = −
∑

〈Q,P+,P−〉 ∈ S

logP (P+|〈Q,P+, P−〉))

(20)
where,

P (P+|〈Q,P+, P−〉)) =

exp(scoreP+|Q)

exp(scoreP+|Q) + exp(scoreP−|Q)
(21)

4.2 Hyperparameters

In all our experiments, we use FastText (Bo-
janowski et al., 2017) word embeddings of dimen-
sion 300. These FastText embeddings are trained
on all queries and passages from the training set,
we freeze these embeddings during the training.
All the other parameters of the model are initial-
ized using an uniform distribution U(−0.01, 0.01).
The number of filters in convolution layers is set
to 300. We only experiment with uni and bi-grams
i.e, H = 2. We use the BiLSTMs with 2 layers and
hidden sizes of 512 with dropout of 0.2 (Srivastava
et al., 2014) between the layers. ADAM optimizer
(Kingma and Ba, 2014) with initial learning rate of
0.001, β1 = 0.9, β2 = 0.999 is used. We truncate
the query and passage lengths to 30 and 150 words,
train our network until convergence with batch size
of 128. On a single 1080 Ti machine, training takes
around 8 hours to converge. We evaluate our model
on dev set every 500 steps and decay the learning
rate by a factor of 0.5 every 5,000 steps.

2https://github.com/microsoft/
MSMARCO-Passage-Ranking#
data-information-and-formating

165

Method MRR@10 Dev MRR@10 Eval Parameters
KNRM (Xiong et al., 2017) 21.8 19.8 -
Duet V2 (Mitra and Craswell, 2019)* 24.3 24.5 -
Conv-KNRM (Dai et al., 2018) 24.7 24.7 -
FastText + Conv-KNRM (Hofstätter et al.,
2019)

29.0 27.1 -

IRNet ** 27.8 28.1 -
Naive coattention encoder (Alaparthi, 2019) 28.8 28.6 6.9M§

N-gram coattention encoder (Ours) 31.0 29.9 (+4.54%) 9.6M §

+ attention pooling (Ours) 31.9 30.9 (+8.08%) 9.6M §

BERT Base 34.4 33.5 109M
BERT Large (Nogueira and Cho, 2019) 36.5 35.8 340M

Table 1: Comparison of the different methods. The variants of the coattention encoder benefits significantly from
the modifications described in this paper. * Official Baseline; ** Unpublished work; § These do not include the
parameters from word embeddings as we directly use the pre-trained FastText embeddings and do not update them
during the training.

5 Results and Discussion

In this section, we present the evaluation results of
our models and compare our models with various
baselines.

5.1 Comparision with Baselines

Table 1 lists the MRR@10 scores on Dev and Eval
sets. We compare the naive coattention encoder and
two proposed methods with the baselines including
BERT. From the table, we get the following obser-
vations: (1) Firstly, the naive coattention encoder
has performed better than the existing best non
BERT based models: Conv-KNRM and IRNet (2)
Applying the coattention encoder on uni-grams and
bi-grams resulted in an increase in MRR@10 on
eval from 28.6 to 29.9 (relative increase of 4.5%).
This indicates that the model can capture the more
robust interactions between query and passage. (3)
Using the query based attention pooling instead of
max-pooling over time further increased the score
by 3.3% indicating that the model can now focus
on the appropriate clauses in the passage leading
to better passage representation and appropriate
relevance score. (4) We can also observe that de-
spite having less number of parameters compared
to BERT, (9.6M vs. 109M), our models are com-
petitive to BERT (30.9 vs. 33.5).

5.2 Analysis with respect to query type

Table 2 lists the MRR@10 scores of naive coatten-
tion encoder (represented by A), n-gram coatten-
tion encoder (represented by B) and n-gram coat-
tention encoder with attention pooling (represented

Type # Queries A B C
what 2751 28.07 29.25 30.85
others 2274 31.21 32.17 33.86
how 837 23.28 23.8 25.73

where 283 37.6 37.69 39.32
who 278 28.9 29.91 33.66
when 189 23.42 26.38 23.92
define 173 27.84 29.21 28.31
which 120 21.03 22.35 23.53
why 75 19.55 23.31 22.92

Table 2: Comparision of naive coattention encoder (A)
with the two variants described in this paper with re-
spect to query type. In the table, B represents the n-
gram coattention encoder and C represents the n-gram
coattention encoder with attention pooling.

by C) which were evaluated using Dev set.
From the table, we can observe that, both the

n-gram coattention encoders consistently outper-
formed the naive coattention encoder. It is inter-
esting to see that plain n-gram coattention encoder
(with out attention pooling, represented by column
B) outperformed the n-gram coattention encoder
with attention pooling (column C) in case of when,
define, why type queries.

5.3 Qualitative Analysis

Table 3 lists the best passages ranked by the naive
coattention encoder and our methods described in
this paper for the various queries. In this section,
we qualitatively analyze the performances of the
coattention encoders.

166

Query Method Best Ranked passage

Naive coattention encoder For other people named Tom Corbett, see Tom Corbett (disambiguation). Thomas Wingett Tom Corbett, Jr.
(born June 17, 1949) is an American politician and attorney who served as the 46th Governor of Pennsylva-
nia from January 18, 2011 to January 20, 2015. He is a member of the Republican Party.

who is tom cavanagh?
N-gram coattention encoder Tom Cavanagh on Why Grant Gustin Deserves to Be THE FLASH in the Movies, Too. Share: Tom Ca-

vanagh is a national treasure. No, not just because he is the Tom in our beloved Mike and Tom Eat Snacks
podcast, or because of his chilling performance as Dr. Harrison Wells on The CW’s The Flash. But rather
because the Canadian actor is unafraid to speak his mind — which often happens to coincide with exactly
what we were thinking, too.

N-gram coattention encoder with
query attention

Grodd (via Harrison Wells) Thomas Patrick Tom Cavanagh (born October 26, 1963) is a Canadian actor.
He portrays the various iterations of Harrison Wells on The Flash.

Naive coattention encoder November Birthstone Color. The November birthstone color is usually light to dark yellow, however, topaz,
the official November birthstone comes in a range of great colors such as several shades of yellow, pale
green, blue, red, pink, black, and brown. Pure topaz is actually a colorless stone. The red and pink topaz
gets their color from chromium.

what is January birthstone color
N-gram coattention encoder Birthstone color list. January Birthstone Color. The birthstone for the month of January is the garnet, which

means that red is the commonly accepted January birthstone color. It signifies trust and friendship, which
makes it a good gift for a friend. The word garnet comes from the Latin word granatum, which means
pomegranate.

N-gram coattention encoder with
query attention

Birthstone color list. January Birthstone Color. The birthstone for the month of January is the garnet, which
means that red is the commonly accepted January birthstone color. It signifies trust and friendship, which
makes it a good gift for a friend. The word garnet comes from the Latin word granatum, which means
pomegranate.

Naive coattention encoder Napalm. Napalm is jellied gasoline. Its name is an acronym of naphthenic and palmitic acids, which are
used in its manufacture. While used in World War II and the Korean War, napalm became notorious in
Vietnam where it was used in three capacities.Possibly its most visual use was being dropped from aircraft
in large canisters which tumbled sluggishly to earth.apalm is jellied gasoline. Its name is an acronym of
naphthenic and palmitic acids, which are used in its manufacture.

why was napalm used
in the vietnam war

N-gram coattention encoder Napalm. U.S. troops used a substance known as napalm from about 1965 to 1972 in the Vietnam War;
napalm is a mixture of plastic polystyrene, hydrocarbon benzene, and gasoline. This mixture creates a
jelly-like substance that, when ignited, sticks to practically anything and burns up to ten minutes.

N-gram coattention encoder with
query attention

The US first used napalm during World War II in both the European and Pacific theaters, and also deployed
it during the Korean War. However, those instances are dwarfed by American use of napalm in the Vietnam
War, where the US dropped almost 400,000 tons of napalm bombs in the decade between 1963 and 1973.
Of the Vietnamese people who were on the receiving end, 60% suffered fifth degree burns, meaning that
the burn went down to the bone.

Naive coattention encoder 5. According to the lecture, what energy source is Earth using primarily for its internal processes? a.
[Interior heat] b. [Geothermal energy] c. [Solar energy] d. [Radioactive Decay] e. [Magma] 6. According
to the lecture, what energy source is Earth using primarily for its external/surficial processes? a. [Interior
heat] b. [Geothermal energy] c. [Solar energy] d.

what energy source is earth using
primarily for its internal heat

N-gram coattention encoder 5. According to the lecture, what energy source is Earth using primarily for its internal processes? a.
[Interior heat] b. [Geothermal energy] c. [Solar energy] d. [Radioactive Decay] e. [Magma] 6. According
to the lecture, what energy source is Earth using primarily for its external/surficial processes? a. [Interior
heat] b. [Geothermal energy] c. [Solar energy] d.

N-gram coattention encoder with
query attention

5. According to the lecture, what energy source is Earth using primarily for its internal processes? a.
[Interior heat] b. [Geothermal energy] c. [Solar energy] d. [Radioactive Decay] e. [Magma] 6. According
to the lecture, what energy source is Earth using primarily for its external/surficial processes? a. [Interior
heat] b. [Geothermal energy] c. [Solar energy] d.

Table 3: Best ranked passages by naive coattention encoder and it’s 2 variants

Considering the query Who is tom cavanagh?,
we can notice that naive coattention encoder al-
though ranked the passage which semantically an-
swers the query, it utterly fails as Tom Corbett and
Tom Cavanagh are completely different persons.
Although n-gram aware coattention encoder was
able to mark the passage containing Tom Cavanagh
as relevant, but it could not correctly capture the re-
quired sense from the passage. Finally, adding the
query attention to the n-gram coattention encoder
improved the ranking performance as we can see
that the model was now able to correctly rank the
passage.

Similarly, in case of query what is January birth-
stone color, naive coattention encoder has marked
the passage relevant which corresponds to Novem-
ber birthstone color. However, both the n-gram
coattention encoders have marked the correct pas-
sage as relevant, which is related to January birth-

stone. These two examples suggests that n-gram
coattention encoders are able to correctly capture
the local context and can capture the robust interac-
tions between query and passages, thus improving
the overall model performance.

In case of third query why was napalm used in
the vietnam war, the naive coattention encoder pre-
dicted the passage containing the terms napalm,
vietnam war. But the passage does not answer the
query. The n-gram coattention with attention pool-
ing marks the passage as relevant which describes
about the effects napalm has created in vietnam war
but the passage does not correctly answer the rea-
son for using napalm in vietnam war. Interestingly,
the n-gram coattention with out attention pooling
predicted the correct relevant passage.

Lastly, for the query what energy source is earth
using primarily for its internal heat, all the coat-
tention encoders predicted a passage which is not

167

relevant. One interesting observation is that, the
query is part of the passage itself. This shows that
the coattention mechanism has trouble discriminat-
ing the passage which is semantically similar to the
query but does not have an answer in it.

6 Conclusion and Future Work

In this paper, we proposed two simple extensions
to naive coattention encoder, namely, n-gram coat-
tention encoder which attends the words and word
n-grams to better capture the interactions between
query and passage. Later, we proposed simple
attention pooling to pick the appropriate clauses
which are distributed across the coattention en-
coding of the passage. Our experiments on MS
MARCO passage re-ranking task shows that our
models outperformed all the baselines including
the naive coattention encoder. We also compare
our methods with BERT and show that our methods
are competitive to BERT base despite having very
less number of parameters, thus our models are
very easy to train and are computationally efficient.

We have also compared the performance of coat-
tention encoders with respect to the query types
and also qualitatively analyzed the performances
by taking few examples. We show that n-gram coat-
tention encoders now capture the local context very
well and also show the delimitation of coattention
mechanism.

In the future, we would like to perform more
deeper analysis on delimitations of coattention
mechanism. Apart from this, our future line of
research would be as follows: Incorporating the
handcrafted features such as BM25 and study the
performance. It would be interesting to see how
the performance of the models will change with
respect to the context based embeddings such as
ELMo, BERT, etc.,

References
Chaitanya Sai Alaparthi. 2019. Microsoft ai challenge

india 2018: Learning to rank passages for web ques-
tion answering with deep attention networks. arXiv
preprint arXiv:1906.06056.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,
Jianfeng Gao, Xiaodong Liu, Rangan Majumder,
Andrew McNamara, Bhaskar Mitra, Tri Nguyen,

et al. 2016. Ms marco: A human generated machine
reading comprehension dataset. arXiv preprint
arXiv:1611.09268.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Zhuyun Dai, Chenyan Xiong, Jamie Callan, and
Zhiyuan Liu. 2018. Convolutional neural networks
for soft-matching n-grams in ad-hoc search. In Pro-
ceedings of the eleventh ACM international confer-
ence on web search and data mining, pages 126–
134.

Sebastian Hofstätter, Navid Rekabsaz, Carsten Eick-
hoff, and Allan Hanbury. 2019. On the effect of low-
frequency terms on neural-ir models. In Proceed-
ings of the 42nd International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, pages 1137–1140.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai
Chen. 2014. Convolutional neural network architec-
tures for matching natural language sentences. In
Advances in neural information processing systems,
pages 2042–2050.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry Heck. 2013. Learning deep
structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM
international conference on Information & Knowl-
edge Management, pages 2333–2338.

Kai Hui, Andrew Yates, Klaus Berberich, and Gerard
De Melo. 2018. Co-pacrr: A context-aware neu-
ral ir model for ad-hoc retrieval. In Proceedings of
the eleventh ACM international conference on web
search and data mining, pages 279–287.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh.
2016. Hierarchical question-image co-attention for
visual question answering. In Advances in neural
information processing systems, pages 289–297.

Zhengdong Lu and Hang Li. 2013. A deep architec-
ture for matching short texts. In Advances in neural
information processing systems, pages 1367–1375.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Bhaskar Mitra and Nick Craswell. 2019. An updated
duet model for passage re-ranking. arXiv preprint
arXiv:1903.07666.

Bhaskar Mitra, Fernando Diaz, and Nick Craswell.
2017. Learning to match using local and distributed

168

representations of text for web search. In Proceed-
ings of the 26th International Conference on World
Wide Web, pages 1291–1299.

Jonas Mueller and Aditya Thyagarajan. 2016. Siamese
recurrent architectures for learning sentence similar-
ity. In thirtieth AAAI conference on artificial intelli-
gence.

Rodrigo Nogueira and Kyunghyun Cho. 2019. Pas-
sage re-ranking with bert. arXiv preprint
arXiv:1901.04085.

Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and
Jimmy Lin. 2019. Multi-stage document ranking
with bert. arXiv preprint arXiv:1910.14424.

Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu,
Shengxian Wan, and Xueqi Cheng. 2016. Text
matching as image recognition. arXiv preprint
arXiv:1602.06359.

Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng,
and Grégoire Mesnil. 2014. Learning semantic rep-
resentations using convolutional neural networks for
web search. In Proceedings of the 23rd international
conference on world wide web, pages 373–374.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning
research, 15(1):1929–1958.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Yequan Wang, Minlie Huang, Xiaoyan Zhu, and
Li Zhao. 2016. Attention-based lstm for aspect-
level sentiment classification. In Proceedings of the
2016 conference on empirical methods in natural
language processing, pages 606–615.

Caiming Xiong, Stephen Merity, and Richard Socher.
2016. Dynamic memory networks for visual and
textual question answering. In International confer-
ence on machine learning, pages 2397–2406.

Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan
Liu, and Russell Power. 2017. End-to-end neural
ad-hoc ranking with kernel pooling. In Proceedings
of the 40th International ACM SIGIR conference on
research and development in information retrieval,
pages 55–64.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 conference of the North
American chapter of the association for computa-
tional linguistics: human language technologies,
pages 1480–1489.

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Min Zhang, and
Shaoping Ma. 2020. Repbert: Contextualized text
embeddings for first-stage retrieval. arXiv preprint
arXiv:2006.15498.

Chunting Zhou, Chonglin Sun, Zhiyuan Liu, and Fran-
cis Lau. 2015. A c-lstm neural network for text clas-
sification. arXiv preprint arXiv:1511.08630.

169

Proceedings of the 17th International Conference on Natural Language Processing, pages 170–174
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Language Model Metrics and Procrustes Analysis
for Improved Vector Transformation of NLP Embeddings

Thomas Conley
University of Colorado

Colorado Springs
1420 Austin Bluffs Pkwy

Colorado Springs, CO, USA
tconley@uccs.edu

Jugal Kalita
University of Colorado

Colorado Springs
1420 Austin Bluffs Pkwy

Colorado Springs, CO, USA
jkalita@uccs.edu

Abstract

Artificial Neural networks are mathematical
models at their core. This truism presents
some fundamental difficulty when networks
are tasked with Natural Language Processing.
A key problem lies in measuring the similarity
or distance among vectors in NLP embedding
space, since the mathematical concept of dis-
tance does not always agree with the linguistic
concept. We suggest that the best way to mea-
sure linguistic distance among vectors is by
employing the Language Model (LM) that cre-
ated them. We introduce Language Model Dis-
tance (LMD) for measuring accuracy of vec-
tor transformations based on the Distributional
Hypothesis (LMD Accuracy). We show the ef-
ficacy of this metric by applying it to a sim-
ple neural network learning the Procrustes al-
gorithm for bilingual word mapping.

1 Introduction

The Distributional Hypothesis (Firth, 1961) in-
spired the development of embeddings that cap-
ture the meaning of language based on how words
co-occur with each other (Mikolov et al., 2013a).
Natural Language Processing relies heavily on
these high dimensional vectors to represent words,
phrases, sentences or documents, in a form that
can be processed by deep neural networks which
were originally designed for tasks related to com-
puter vision. Input embeddings are transformed by
network layers into output vectors which represent
solutions to many NLP tasks (Ruder et al., 2019).

In order to learn these transformations, a network
must be able to calculate the difference between
predicted vectors and actual word vectors. This
distance calculation is a crucial part of measur-
ing loss, and performing back-propagation. These
core functions of neural networks have primarily
relied on mathematical processes without regard
to linguistic principles. We demonstrate that NLP

embedding transformation is better measured using
linguistic similarity functions rooted in knowledge
of languages rather than concepts such as Euclidean
or angular distance, which assumes vectors to be
“physical” objects.

1.1 Procrustes Analysis

Matrix transformation of vector spaces has been ac-
complished using Generalized Procrustes Analysis
(GPA), ever since a computationally viable solution
was devised (Gower, 1975). In particular, GPA has
been used to great effect in geo-spatial shape ma-
nipulation (Duta, 2015; Crosilla et al., 2019) and
qualitative data analysis (Maurı́cio et al., 2016).

Shapes are represented by a series of landmark
points in 2 or 3 dimensions. And in survey research,
qualitative opinion data is represented by a Likert
scale (Likert, 1932), occupying low dimensional
space. In both cases, the vector spaces must be
realigned and resized for meaningful comparison.
Although these fields seem to differ, they use data
structures that share characteristics with Natural
Language Processing.

The orthogonal Procrustes algorithm produces
an optimal transformation matrix R for mapping
one vector space to another and appears to be useful
in converting vector spaces for NLP tasks such as
bilingual word mapping (Kementchedjhieva et al.,
2018).

1.2 Procrustes Analysis for NLP tasks

Can a neural network learn to do Procrustes trans-
formation? The answer, yes, should be non-
controversial, since every neural network performs
tensor transformation of input to output. However,
tasks which require nuanced understanding of the
meaning of words, such bilingual word mapping,
are particularly difficult. Although there is some
success when massive amounts of text are avail-
able for training, the problem is more acute when

170

resources for learning are scarce, as in machine
translation of under resourced languages.

The difficulty with vector transformations in
NLP is based on the nature of the data. NLP trans-
formations by neural networks use distance mea-
surements designed to work in Lp space. This
implies numerical data. We show that such calcula-
tions of distance and accuracy are not as effective
as measurements based on language models.

1.3 Image data and language data

We consider image data as raw data with physical
dimensionality where, each dimension in a vec-
tor can be considered similar in measurement and
meaning. As such, this data occupies Lp space;
where vectors can be added together or multiplied
by scalars without loss of their inherent meaning.
For example, a vector representing a pixel is mea-
sured the same way, and has the same meaning,
regardless of where it is in the image.

Thus, distance measurement among image vec-
tors can use Lp norm or trigonometric calculations
such as cosine distance. One specific kind of eu-
clidean distance measurement is called Procrustes
Distance and is the basis of Procrustes Analysis
(Crosilla et al., 2019).

In NLP, distance measurement is less meaningful
when it is based on Euclidean axioms rather than
linguistic principles. Distance is the basis of er-
ror calculations and back-propagation, and so, the
ability to calculate the derivative of these functions
is essential for classic stochastic gradient descent
(SGD) which is employed by neural networks to-
day. Although there has been some research in
non-differentiable losses (Engilberge et al., 2019)
the mathematical requirements for these functions
are not always suitable for NLP.

As opposed to raw data, feature data consists
of vectors in which each dimension may have dis-
parate meaning and measurement. Feature data
does not exist in Lp space, and therefore measures
of distance that rely on Lp norm or trigonometric
calculations may not be meaningful. We consider
NLP embeddings to be feature data, although they
share some characteristics with raw data.

2 Language Models and Data

As in raw data, NLP vectors dimensions typically
share values that are treated similarly and are thus
undifferentiated in a sense. This seems to contra-
dict the assertion that each NLP embedding dimen-

sion has a specific unique meaning like feature data.
Instead, the meaning of a dimension is more like
probability, representing how often a word is used
with a particular meaning, rather than the actual
meaning of the word.

Vectors with dimensions that differ in meaning,
as in NLP embeddings, cannot be used with typ-
ical spatial measurements such as Lp norm and
cosine distance. We contend that NLP vector
distance can best be measured by the language
models which represent the vectors. Therefore, we
seek to replace mathematic calculations with pre-
dictions from language models. We simply rely
on the language model itself to provide a distance
measurement for our custom metric.

In this research, we use the Word2Vec model
(Mikolov et al., 2013b) to produce a custom bilin-
gual word mapping dataset. This dataset, combined
with the GenSim model of keyed vectors (Řehůřek
and Sojka, 2010), provides a distributional distance
measurement based on word movers distance (Kus-
ner et al., 2015).

Our neural network is a simple Multilayer Per-
ceptron (MLP) which accepts Spanish word vectors
as input and predicts English word vectors. This
simple model was chosen because it is analogous
to any layer found in innumerable, more complex,
neural networks. Showing improved efficacy in
this model should demonstrate improvement in any
NLP task.

p̂i

m.set(p̂i,3)

p̂j

m.set(p̂j,2)

person

woman

man

camera

tv

technology

hu
m
an
it
y

Figure 1: Illustration of the Distributional Hypothesis
and Language Model Distance. The accuracy of pre-
dicted vectors p̂i and p̂j , is based on membership in the
set of k = 2 or k = 3 neighbors.

171

3 Language Model Distance

An exact measurement of equality is not possible
for high-dimensional NLP embeddings. Embed-
dings of several hundred dimensions, and one-hot
encoded vectors on the order of tens of thousands
of dimensions, are particularly difficult to measure.

LMD(p̂, t,m, k) =

{
True, if t ∈ m.set(p̂, k)

False, otherwise
(1)

Instead, we suggest that the true measure of NLP
vector distance is best provided by the model which
defines the vectors. We present a family of metrics,
Language Model Distance (LMD), which calcu-
lates distance and equality among NLP vectors by
using the language model itself. LMD is defined
as in Equation 1 where the distance between pre-
dicted vector p̂ and known truth vector t, is pro-
vided by model m, given neighbor threshold k.

The distance measure is binary because it is
based on set inclusion, and not physical or Eu-
clidean distance. Thus, LMD can be used as a
measure of accuracy, and records a true positive
when t is within the neighborhood of the predicted
vector (t ∈ m.set(p̂, k)).

3.1 Measuring Accuracy with Language
Model Distance

Figure 1 illustrates the distributional hypothesis by
showing a simple clustering along 2 non-numeric
dimensions. The circles represent neighborhoods
m.set(p̂, k = 2) and m.set(p̂, k = 3). Note that
the predicted vectors (p̂) have no words directly
associated with them, because no exact match is
possible for floating point numeric vectors.

Thus we say that LMD Accuracy(k) measures
a positive result when truth vector (t) is within the
k sized neighborhood of the predicted vector (t ∈
m.set(p̂, k)). For example, LMD Accuracy(3)
measures the percentage of times that the true
word answer was among the top 3 closest predicted
words.

Distributional distance functions can be used in
neural network metrics, loss, or activation func-
tions, or used directly in similarity computation.
However, inserting external language models into
neural networks can be difficult as these networks
are firmly rooted in mathematics which is not com-
patible with linguistic processes.

We solve these difficulties by defining a simple
class shown in Figure 2. By including the language

model as a static member of the class, methods of
the class may be used as network internal functions
with access to external language models.

1: class Distribution

2: model← Target Language Model
3: method Accuracy

4: y pred← predicted vectors
5: y true← known true vectors
6: thresh← neighbor threshold
7: for each pred ∈ y pred do
8: y neighbors← model.closest(pred, thresh)
9: if pred ∈ y neighbors then

10: return True

11: end if
12: end for
13: return False

14: end method
15: end class

Figure 2: Implementation of Distributional Accuracy
based on Language Model Distance. A static language
model (line 2) allows linguistic functionality to be in-
cluded in purely mathematical models.

4 Learning Orthogonal Procrustes
Analysis

The Orthogonal Procrustes Algorithm is a process
for finding the optimal mapping of one set of vec-
tors to another. Typically, the vectors represent
points in 2 or 3 dimensional space, for image pro-
cessing, or they represent qualitative data measured
in few dimensions (Maurı́cio et al., 2016). After
resizing and repositioning of vectors, an optimal
rotation matrix R is produced by a method similar
to singular value decomposition.

This classic approach to vector transformation
has been explored as a solution for some NLP tasks
(Sen et al., 2019; Kim et al., 2019). Therefore we
ask: Can a neural network be trained to perform the
same optimal transformation for NLP embeddings
which occupy a much higher dimensional space?

Our task is to train a simple MLP to learn the
optimal mapping R, between two disparate vector
spaces representing a bilingual dataset. We mea-
sure the success of this task using LMD as the
basis for accuracy as in Figure 2 and Equation 1.

We create two separate language models from
a parallel corpus of European Parliament transla-
tions, the so called EuroParl dataset (Koehn, 2005).
We use the Word2Vec model in continuous bag-
of-words (CBOW) mode (Mikolov et al., 2013a)
to build two separate distributions. By using a
bilingual corpus, and training language models sep-

172

arately, we ensure that the models share a common
domain, but the vector spaces remain separate. For
training, we then map word vectors from one distri-
bution to the other, using a set of 1000 most com-
mon words pairs, obtained from from a language
learning website1.

4.1 Results
Our results show that Orthogonal Procrustes Anal-
ysis can be learned for multilingual mapping of
word vectors. Furthermore, Figure 3 demonstrates
that LMD is effective as a basis for measuring the
accuracy of this task.

Figure 3: Results of Learning Orthogonal Procrustes
Analysis showing a better measure of exact matches
with LMD Accuracy than with cosine similarity.

Figure 3 indicates that LMD Accuracy is better
at measuring similarity in NLP embeddings than
cosine similarity. In this plot, LMD Accuracy(1)
indicates that the model exactly predicted the
correct word in the output language. When
LMD Accuracy(1) is near 100% the value of cosine
similarity should be near 1 which would indicate an
exact match. The fact that cosine similarity cannot
measure this exact match shows a weakness in this
purely mathematical measurement compared with
our language model-based measurement.

5 Learning General Procrustes Analysis

To further test, we try to learn General Procrustes
Analysis; a much harder task because it requires
the network to generalize.

We have just shown that a simple neural net-
work can learn to transform vectors. This is non-
controversial since all neural networks perform this
task at every layer. However, not all networks are

1http://www.englishnspanish.com

able to generalize. Using the same network config-
uration as before, we now evaluate embeddings that
we have not seen in training, as is common. This is
equivalent to learning the Generalized Procrustes
Algorithm.

Figure 4: Results of Learning General Procrustes Anal-
ysis showing a comparable measure of exact matches
between LMD Accuracy and cosine similarity, when
generalization is required
.

Results in Figure 4 show that LMD Accuracy is
more like cosine distance when generalization is
required. Note that we use LMD Accuracy only
for metrics. This model uses cosine similarity
for error calculation and back-propagation. We
conclude that such Lp norm measurements can
only drive generalization as far as they are able to
measure accuracy.

The local variation in LMD Accuracy, evident
in Figure 4, may be significant as it may make
determining the derivative of the function difficult.
The derivative of LMD Accuracy must be worked
out before it can be incorporated into a loss function
and be used in back-propagation. The overall shape
of the curve, despite irregularities is encouraging
as the slope may be computed using ordinary least
squares in a calculation of rolling regression, or by
other numerical methods.

6 Conclusion

We suggest that language model metrics described
here may be incorporated directly into activation
and loss functions, and may be used as an error mea-
surement for back-propagation. We suggest this
basic enhancement would improve the Generalized
Procrustes Algorithm and other NLP processing in
general. This is left for future work.

173

References
Fabio Crosilla, Alberto Beinat, Andrea Fusiello,

Eleonora Maset, and Domenico Visintini. 2019. Or-
thogonal procrustes analysis. In Advanced Pro-
crustes Analysis Models in Photogrammetric Com-
puter Vision, pages 7–28. Springer.

Nicolae Duta. 2015. Procrustes Shape Distance, pages
1278–1279. Springer US, Boston, MA.

Martin Engilberge, Louis Chevallier, Patrick Pérez, and
Matthieu Cord. 2019. Sodeep: a sorting deep net to
learn ranking loss surrogates. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pages 10792–10801.

John Rupert Firth. 1961. Papers in Linguistics 1934-
1951: Repr. Oxford University Press.

John C Gower. 1975. Generalized procrustes analysis.
Psychometrika, 40(1):33–51.

Yova Radoslavova Kementchedjhieva, Sebastian
Ruder, Ryan Cotterell, and Anders Søgaard. 2018.
Generalizing procrustes analysis for better bilin-
gual dictionary induction. In 22nd Conference
on Computational Natural Language Learning
(CoNLL 2018), pages 211–220. Association for
Computational Linguistics.

Yunsu Kim, Petre Petrov, Pavel Petrushkov, Shahram
Khadivi, and Hermann Ney. 2019. Pivot-based
transfer learning for neural machine translation be-
tween non-english languages. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 865–875.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In MT summit, vol-
ume 5, pages 79–86. Citeseer.

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian
Weinberger. 2015. From word embeddings to doc-
ument distances. volume 37 of Proceedings of

Machine Learning Research, pages 957–966, Lille,
France. PMLR.

Rensis Likert. 1932. A technique for the measurement
of attitudes. Archives of psychology.

Angélica Maurı́cio, A.B. Palazzo, Valeria Caselato, and
Helena Bolini. 2016. Generalized procrustes analy-
sis and external preference map used to consumer
drivers of diet gluten free product. Food and Nutri-
tion Sciences, 07:711–723.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013a. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their composition-
ality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 3111–3119. Curran Associates, Inc.

Radim Řehůřek and Petr Sojka. 2010. Software
Framework for Topic Modelling with Large Cor-
pora. In Proceedings of the LREC 2010 Workshop
on New Challenges for NLP Frameworks, pages 45–
50, Valletta, Malta. ELRA. http://is.muni.cz/
publication/884893/en.

Sebastian Ruder, Ivan Vulić, and Anders Søgaard.
2019. A survey of cross-lingual word embedding
models. Journal of Artificial Intelligence Research,
65:569–631.

Sukanta Sen, Kamal Kumar Gupta, Asif Ekbal, and
Pushpak Bhattacharyya. 2019. Multilingual unsu-
pervised nmt using shared encoder and language-
specific decoders. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 3083–3089.

174

Proceedings of the 17th International Conference on Natural Language Processing, pages 175–180
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Cognitively Aided Zero-Shot Automatic Essay Grading

Sandeep Mathias1, Rudra Murthy1,2, Diptesh Kanojia1,3, and Pushpak Bhattacharyya1

1 Department of Computer Science & Engineering, IIT Bombay
2 IBM Research India Limited

3 IITB-Monash Research Academy
{sam,diptesh,pb}@cse.iitb.ac.in, rmurthyv@in.ibm.com

Abstract

Automatic essay grading (AEG) is a process
in which machines assign a grade to an es-
say written in response to a topic, called the
prompt. Zero-shot AEG is when we train a
system to grade essays written to a new prompt
which was not present in our training data. In
this paper, we describe a solution to the prob-
lem of zero-shot automatic essay grading, us-
ing cognitive information, in the form of gaze
behaviour. Our experiments show that using
gaze behaviour helps in improving the perfor-
mance of AEG systems, especially when we
provide a new essay written in response to a
new prompt for scoring, by an average of al-
most 5 percentage points of QWK.

1 Introduction

One of the major challenges in machine learning is
the requirement of a large amount of training data.
AEG systems perform at their best when they are
trained in a prompt-specific manner - i.e. the essays
that they are tested on are written in response to
the same prompt as the essays they are trained
on (Zesch et al., 2015). These systems perform
badly when they are tested against essays written
in response to a different prompt.

Zero-shot AEG is when our AEG system is used
to grade essays written in response to a completely
different prompt. In order to solve this challenge of
lack of training data, we use cognitive information
learnt by gaze behaviour of readers to augment our
training data and improve our model.

Automatic essay grading has been around for
over half a century ever since Page (1966)’s work
(Beigman Klebanov and Madnani, 2020). While
there have been a number of commercial sys-
tems like E-Rater (Attali and Burstein, 2006)
from the Educational Testing Service (ETS), most
modern-day systems use deep learning and neu-
ral networks, like convolutional neural networks

(Dong and Zhang, 2016), recurrent neural networks
(Taghipour and Ng, 2016), or both (Dong and
Zhang, 2016). However, all these systems rely
on the fact that their training and testing data is
from the same prompt.

Quite often, at run time, we may not have es-
says written in response to our target prompt (i.e.
the prompt which our essay is written in response
to). Because of the lack of training data, especially
when training a model for essays written for a new
prompt, many systems may fail at run time. To
solve this problem, we propose a multi-task ap-
proach, similar to Mathias et al. (2020), where we
learn a reader’s gaze behaviour for helping our sys-
tem grade new essays.

In this paper, we look at a similar approach pro-
posed by Mathias et al. (2020) to grade essays us-
ing cognitive information, which is learnt as an
auxiliary task in a multi-task learning approach.
Multi-task learning is a machine-learning approach,
where the model tries to solve one or more auxil-
iary tasks to solve a primary task (Caruana, 1998).
Similar to Mathias et al. (2020), the scoring of the
essay is the primary task, while learning the gaze
behaviour is the auxiliary task.

Contribution. In this paper, we describe a rel-
atively new problem - zero-shot automatic essay
grading - and propose a solution for it using gaze
behaviour data. We show a 5 percentage points
increase in performance when learning gaze be-
haviour, as opposed to without using it.

1.1 Gaze Behaviour Terminology

We use the following gaze behaviour terms as de-
fined by Mathias et al. (2020). An Interest Area
(IA) is a part of the screen that is of interest to us.
These areas are where some text is displayed, and
not the background on the left / right, as well as
above / below the text. Each word is a separate

175

and unique IA. A Fixation is an event when the
reader’s eye fixates on a part of the screen. We
are only concerned with fixations that occur inside
interest areas. The fixations that occur in the back-
ground are ignored. Saccades are eye movements
as the eye moves from one fixation point to the
next. Regressions are a type of saccade where the
reader moves from the current interest area to an
earlier one.

1.2 Organization of the Paper

The rest of the paper is organized as follows. Sec-
tion 2 describes the motivation for our work. Sec-
tion 3 describes some of the related work in the area
of automatic essay grading. Section 4 describes the
essay dataset, as well as the gaze behaviour dataset.
Section 5 describes our experiment setup. We re-
port our results and analyze them in Section 6 and
conclude our paper in Section 7.

2 Motivation

As stated earlier, in Section 1, one of the challenges
for machine-learning systems is the requirement
of training data. Quite often, we may not have
training data for an essay, especially if the essay
is written in response to a new prompt. Without
any labeled data, in the form of scored essays, we
cannot train a system properly to grade the essays.

Zero-shot automatic essay grading is a way in
which we overcome this problem. In zero-shot
automatic essay grading, we train our system on
essays written to different prompts, and test it on
essays written in response to the target prompt. One
drawback of this approach is that it would not be
able to use the properties of the target essay set in
training the model. Therefore, as a way to alleviate
this problem, we learn cognitive information, in the
form of gaze behaviour, for the essays to help our
automatic essay grading system grade the essays
better.

3 Related Work

While there has been work done on developing
systems for automatic essay grading, all of them
describe systems which use some of the essays the
system is tested on as part of the training data (as
well as validation data, where applicable) (Chen
and He, 2013; Phandi et al., 2015; Taghipour and
Ng, 2016; Dong and Zhang, 2016; Dong et al.,
2017; Zhang and Litman, 2018; Cozma et al., 2018;
Tay et al., 2018; Mathias et al., 2020).

One of the solutions to solve the problem was
using cross-domain AEG, where systems were
trained using essays in a set of source prompt /
prompts and tested on essays written in response
to the target prompt. Some of the work done to
study cross-domain AEG were Zesch et al. (2015)
(who used task-independent features), Phandi et al.
(2015) (who used domain adaptation), Dong and
Zhang (2016) (who used a hierarchical CNN lay-
ers) and Cozma et al. (2018) (who used string ker-
nels and super word embeddings). In all of their
works, they defined a source prompt which is used
for training and a target prompt which is used for
validation and testing.

To the best of our knowledge, we are the first
to explore the task of Zero-shot automatic essay
grading, as a way to alleviate the challenge of a lack
of graded essays (written in response to the target
prompt) for an automatic essay grading system. In
our approach, we do not use the target prompt
essays even for validation, thereby making it truly
zero-shot.

4 Datasets

In this section, we discuss our essay grading dataset
and the gaze behaviour dataset which we used.

4.1 Essay Dataset Details

For our experiments, we use the Automatic Stu-
dent Assessment Prize (ASAP)’s AEG dataset1.
This dataset is one of the most widely-used essay
grading datasets, consisting of 12,978 graded es-
says, written in response to 8 essay prompts. The
prompts are either argumentative, narrative, and
source dependent responses. Details of the dataset
are summarized in Table 1.

4.2 Gaze Behaviour Dataset

For our experiments, we use the same essay grad-
ing dataset as Mathias et al. (2020). We use 5 at-
tributes of gaze behaviour, namely dwell time (the
total time that the eye has fixated on a word), first
fixation duration (the duration of the first fixation
of the reader on a particular word), IsRegression
(whether or not there was a regression from a par-
ticular interest area or not), Run Count (the number
of times an interest area was fixated on), and Skip
(whether or not the interest area was skipped).

1The dataset can by downloaded from https://www.
kaggle.com/c/asap-aes/data.

176

Prompt ID Number of Essays Score Range Mean Word Count Essay Type

Prompt 1 1783 2-12 350 Persuasive
Prompt 2 1800 1-6 350 Persuasive

Prompt 3 1726 0-3 150 Source-Dependent
Prompt 4 1770 0-3 150 Source-Dependent
Prompt 5 1805 0-4 150 Source-Dependent
Prompt 6 1800 0-4 150 Source-Dependent

Prompt 7 1569 0-30 250 Narrative
Prompt 8 723 0-60 650 Narrative

Total 12976 0-60 250 –

Table 1: Statistics of the 8 prompts from the ASAP AEG dataset.

Essay Set 0 1 2 3 4 Total

Prompt 3 2 4 5 1 N/A 12
Prompt 4 2 3 4 3 N/A 12
Prompt 5 2 1 3 5 1 12
Prompt 6 2 2 3 4 1 12

Total 8 10 15 13 2 48

Table 2: Number of essays for each essay set which we
collected gaze behaviour, scored between 0 to 3 (or 4).

The gaze behaviour was collected from 8 dif-
ferent annotators, who read only 48 essays (out
of the almost 13,000 essays in the ASAP AEG
dataset) from the source dependent response essay
sets. Table 2 summarizes the distribution of essays
across the different essay sets that we collect gaze
behaviour data for.

Table 3 gives the details of the different annota-
tors used by Mathias et al. (2020). We evaluated
the annotator’s performance on 3 different metrics
- QWK, Close and Correct. QWK is the Quadratic
Weighted Kappa agreement (Cohen, 1968) between
the score given by the annotator and the ground
truth score from the dataset. Correct is the num-
ber of times (out of 48) that the annotator exactly
agreed with the ground truth score, and Close is the
number of times (out of 48) where the annotator
disagreed with the ground truth score by at most 1
score point.

More details about the dataset and its creation
are found in Mathias et al. (2020).

5 Experiment Setup

In this section, we describe our experiment setup,
such as the evaluation metric, network architecture

and hyperparameters, etc.

5.1 Evaluation Metric

For evaluating our system, we use Cohen’s Kappa
with Quadratic Weights, i.e. Quadratic Weighted
Kappa (QWK) (Cohen, 1968). This evaluation
metric is most frequently used for automatic essay
grading experiments because it is sensitive to dif-
ferences in scores, and takes into account chance
agreements (Mathias et al., 2018).

5.2 Network Architecture

Figure 1 shows the architecture of our system. The
essay is split into different sentences and each sen-
tence is tokenized and given as input at the Embed-
ding Layer. In this layer, for each token, we output
the corresponding word embedding, which is given
as input to the next layer - the Word-level CNN
layer.

The Word-level CNN layer learns local repre-
sentations of nearby words, as well as the gaze be-
haviour. The outputs of the word-level CNN layer
are then pooled at the word-level pooling layer to
get a sentence representation for each sentence.

Each sentence representation is then sent through
an LSTM (Hochreiter and Schmidhuber, 1997)
layer, whose output is pooled through a sentence-
level attention layer, to get the essay representation.

The essay representation from the sentence-level
attention layer is then sent through a Dense layer,
from which we learn the essay scores. For both the
tasks (learning gaze behaviour, as well as scoring
the essay), we minimize the mean squared error
loss.

177

ID Sex Age Occupation TA? L1 Language English Score QWK Correct Close
Annotator 1 Male 23 Masters student Yes Hindi 94% 0.611 19 41
Annotator 2 Male 18 Undergraduate Yes Marathi 95% 0.587 24 41
Annotator 3 Male 31 Research scholar Yes Marathi 85% 0.659 21 43
Annotator 4 Male 28 Software engineer Yes English 96% 0.659 26 44
Annotator 5 Male 30 Research scholar Yes Gujarati 92% 0.600 19 42
Annotator 6 Female 22 Masters student Yes Marathi 95% 0.548 19 40
Annotator 7 Male 19 Undergraduate Yes Marathi 93% 0.732 21 46
Annotator 8 Male 28 Masters student Yes Gujarati 94% 0.768 29 45

Table 3: Profile of the annotators

Figure 1: Architecture of our gaze behaviour system,
showing an input essay of n sentences, with the outputs
being the gaze behaviour (whenever applicable), and
the overall essay score.

5.3 Network Hyperparameters

We use the 50 dimension GloVe pre-trained word
embeddings (Pennington et al., 2014). We run
our experiments over a batch size of 200, for 50
epochs. We set the learning rate as 0.001, and
the dropout rate as 0.5. The word-level CNN
layer has a kernel size of 5, with 100 filters. The
sentence-level LSTM layer has 100 hidden units.
We use the RMSProp Optimizer (Dauphin et al.,
2015) with an initial learning rate of 0.001 and
momentum of 0.9. Along with the network hy-
perparameters, we also weigh the loss functions of
the different gaze behaviour attributes differently,
using the same weights as Mathias et al. (2020),
namely 0.05 for DT and FFD, 0.01 for IR and

RC, and 0.1 for Skip.

5.4 Normalization and Binning
While training our model, we scale the essay scores
for all the data (training, testing and validation) to
a range of [0, 1]. For calculating the final scores, as
well as the QWK, we rescale the predictions of the
essay score back to the score range of the essays.

We also bin the gaze behaviour attributes as de-
scribed in Mathias et al. (2020). Binning is done
to take into account the idiosyncracies of the gaze
behaviour of individual readers (i.e. some people
may read faster, others slower, etc.). Whenever we
use gaze behaviour, we scale the value of the gaze
behaviour bins to the range of [0, 1] as well.

5.5 Experiment Configurations
We run our experiments in the following configu-
rations. No Gaze is a single-task learning experi-
ment, where we only learn to score the essay. Gaze
is the multi-task learning approach, where we learn
gaze behaviour as an auxiliary task, and score the
essay as the primary task.

5.6 Evaluation Method
We use five-fold cross-validation to evaluate our
system. For each fold, the testing data consists of
essays from the target prompt and the training data
and validation data comprise of essays from the
other 7 prompts.

6 Results and Analysis

Table 4 gives the results of our experiments. The
results reported are on the target essay set for the
mean of the 5 folds. For each fold, we record
the performance of the model on the target essay
set, corresponding to the epoch which had the best
QWK for the development set. Table 4 reports the
mean performance for all 5 folds.

From the table, we see that in most of the essay
sets, we are able to see an improvement in perfor-

178

Target Essay Set No Gaze Gaze
Prompt 1 0.319 0.423*
Prompt 2 0.391 0.439*
Prompt 3 0.508 0.545*
Prompt 4 0.548 0.626*
Prompt 5 0.548 0.628*
Prompt 6 0.599 0.600
Prompt 7 0.362 0.420*
Prompt 8 0.316 0.286
Mean QWK 0.449 0.498*

Table 4: Results of our experiments with and without
using gaze behaviour. Improvements which are statisti-
cally significant (with p < 0.05), when gaze behaviour
is used, are marked with a *

mance. In order to verify if the improvements were
statistically significant, we use the 2-tailed Paired
T-Test with a significance level of p < 0.05. Sta-
tistically significant improvements where we use
gaze behaviour data are marked with a * next to
the result.

Out of the 8 essay sets, the only essay set where
the performance using gaze behaviour falls short
compared to when we do not use gaze behaviour is
in Prompt 8. One of the main reasons for this is that
the essays in Prompt 8 are very long compared to
the other essay sets. When they are absent from the
training data, the system is unable to learn about
the existence of long essays, which could also be
the reason that those essays are scored badly.

7 Conclusion and Future Work

In this paper, we discussed an important problem
for automatic essay grading, namely zero-shot au-
tomatic essay grading, where we have no labeled
essays written in response to our target prompt,
present at the time of training.

We showed that, by using gaze behaviour, we
are able to learn cognitive information which can
help improve our AEG system.

In the future, we plan to extend our work to
other tasks, like grading of essay traits, using gaze
behaviour.

References
Yigal Attali and Jill Burstein. 2006. Automated essay

scoring with e-rater R©v.2. The Journal of Technol-
ogy, Learning and Assessment (JTLA), 4(3).

Beata Beigman Klebanov and Nitin Madnani. 2020.
Automated evaluation of writing – 50 years and

counting. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7796–7810, Online. Association for Computa-
tional Linguistics.

Rich Caruana. 1998. Multitask Learning, pages 95–
133. Springer US, Boston, MA.

Hongbo Chen and Ben He. 2013. Automated essay
scoring by maximizing human-machine agreement.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1741–1752, Seattle, Washington, USA. Association
for Computational Linguistics.

Jacob Cohen. 1968. Weighted kappa: Nominal scale
agreement provision for scaled disagreement or par-
tial credit. Psychological bulletin, 70(4):213.

Mădălina Cozma, Andrei Butnaru, and Radu Tudor
Ionescu. 2018. Automated essay scoring with string
kernels and word embeddings. In Proceedings of
the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers),
pages 503–509, Melbourne, Australia. Association
for Computational Linguistics.

Yann Dauphin, Harm De Vries, and Yoshua Bengio.
2015. Equilibrated adaptive learning rates for non-
convex optimization. In Advances in neural infor-
mation processing systems, pages 1504–1512.

Fei Dong and Yue Zhang. 2016. Automatic features
for essay scoring – an empirical study. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 1072–1077,
Austin, Texas. Association for Computational Lin-
guistics.

Fei Dong, Yue Zhang, and Jie Yang. 2017. Attention-
based recurrent convolutional neural network for au-
tomatic essay scoring. In Proceedings of the 21st
Conference on Computational Natural Language
Learning (CoNLL 2017), pages 153–162, Vancou-
ver, Canada. Association for Computational Linguis-
tics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Sandeep Mathias, Diptesh Kanojia, Kevin Patel,
Samarth Agrawal, Abhijit Mishra, and Pushpak
Bhattacharyya. 2018. Eyes are the windows to the
soul: Predicting the rating of text quality using gaze
behaviour. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2352–2362, Mel-
bourne, Australia. Association for Computational
Linguistics.

Sandeep Mathias, Rudra Murthy, Diptesh Kanojia,
Abhijit Mishra, and Pushpak Bhattacharyya. 2020.
Happy are those who grade without seeing: A multi-
task learning approach to grade essays using gaze be-
haviour. In Proceedings of the 1st Conference of the

179

Asia-Pacific Chapter of the Association for Compu-
tational Linguistics and the 10th International Joint
Conference on Natural Language Processing, pages
858–872, Suzhou, China. Association for Computa-
tional Linguistics.

Ellis B Page. 1966. The imminence of... grading essays
by computer. The Phi Delta Kappan, 47(5):238–
243.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532–1543, Doha, Qatar. Asso-
ciation for Computational Linguistics.

Peter Phandi, Kian Ming A. Chai, and Hwee Tou Ng.
2015. Flexible domain adaptation for automated es-
say scoring using correlated linear regression. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
431–439, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Kaveh Taghipour and Hwee Tou Ng. 2016. A neural
approach to automated essay scoring. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 1882–1891,
Austin, Texas. Association for Computational Lin-
guistics.

Yi Tay, Minh Phan, Luu Anh Tuan, and Siu Cheung
Hui. 2018. Skipflow: Incorporating neural coher-
ence features for end-to-end automatic text scoring.

Torsten Zesch, Michael Wojatzki, and Dirk Scholten-
Akoun. 2015. Task-independent features for auto-
mated essay grading. In Proceedings of the Tenth
Workshop on Innovative Use of NLP for Building Ed-
ucational Applications, pages 224–232, Denver, Col-
orado. Association for Computational Linguistics.

Haoran Zhang and Diane Litman. 2018. Co-attention
based neural network for source-dependent essay
scoring. In Proceedings of the Thirteenth Work-
shop on Innovative Use of NLP for Building Educa-
tional Applications, pages 399–409, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

180

Proceedings of the 17th International Conference on Natural Language Processing, pages 181–190
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Abstract

Although the manual evaluation of essays
is a time-consuming process, writing
essays has a significant role in assessing
learning outcomes. Therefore, automated
essay evaluation represents a solution,
especially for schools, universities, and
testing companies. Moreover, the existence
of such systems overcomes some factors
that influence manual evaluation such as
the evaluator’s mental state, the disparity
between evaluators, and others. In this
paper, we propose an Arabic essay
evaluation system based on a support
vector regression (SVR) model along with
a wide range of features including
morphological, syntactic, semantic, and
discourse features. The system evaluates
essays according to five criteria: spelling,
essay structure, coherence level, style, and
punctuation marks, without the need for
domain-representative essays (a model
essay). A specific model is developed for
each criterion; thus, the overall evaluation
of the essay is a combination of the
previous criteria results. We develop our
dataset based on essays written by
university students and journalists whose
native language is Arabic. The dataset is
then evaluated by experts. The
experimental results show that 96% of our
dataset is correctly evaluated in the overall
score and the correlation between the
system and the experts’ evaluation is 0.87.
Additionally, the system shows variant
results in evaluating criteria separately.

1 Introduction

Automated essay scoring (AES) or so-called
automated essay evaluation (AEE) systems came

to facilitate the evaluation task of students’
writings. Assigning questions that demonstrate
writing skills, such as linguistic skills and
creativity, is crucial. However, the evaluation
process is laborious, particularly with a large
number of essays, such as during examination
boards.

AES systems assist essay authors, editorial
boards, publishers, and newspaper editors by
overcoming some of the shortcomings of
traditional evaluation. For instance, AES systems
reduce variabilities between instructors’
viewpoints or biases resulting from a good point in
essay that causes an evaluator to ignore other
mistakes (Janda et al., 2019). Moreover, AES
systems are tools that can assist both new
instructors and students for training and improving
writing skills.

For the English language, there have been many
studies drafted on AES in addition to the
development of commercial applications used in
English-learning institutes. In comparison, AES
systems for Arabic seem restricted to short-answer
questions with predefined answer models from
instructors. This limitation stems from
complexities of the Arabic language and a lack of
Arabic natural language processing (NLP)
resources.

In this paper, we attempt to fill this gap by
providing an Arabic essay evaluation system using
a machine learning method that does not require a
model essay.

2 Related Work

In English, there are several related efforts. For
example, the project essay grader (PEG) is one of
the earliest scoring systems. The system was based
on a statistical method to predict the score. PEG

Automated Arabic Essay Evaluation

Abeer Alqahtani Amal Alsaif
Department of Computer Science Department of Computer Science
Al Immam Mohammad Ibn Saud Al Immam Mohammad Ibn Saud

Islamic University(IMSIU) Islamic University(IMSIU)
Riyadh, Saudi Arabia Riyadh, Saudi Arabia

aakalqahtani@sm.imamu.edu.sa asmalsaif@imamu.edu.sa

181

succeeded in predicting the surface structure of an
essay, but it did not meet the semantic criteria
(Chung & O’Neil, 1997; Kukich, 2000).

In the intelligent essay assessor (IEA), latent
semantic analysis (LSA) is used to evaluate essay
content. In addition, IEA can be used to evaluate
writing style and detect plagiarism (Dessus and
Lemaire, 2001). The E-rater (Burstein, 2003) and
IntelliMetric (Elliot, 2003) are evaluation systems
that rely on linguistic features extracted by NLP
techniques to evaluate common criteria.

In contrast to previous systems, the Bayesian
essay test scoring system (BETSY) is non-
commercial and can be used for research. BETSY
uses Bayesian models to evaluate essays for
content and style (Dikli, 2006).

Although commercial systems have restrictions
to accessing system details, AES systems have
attracted the attention of many researchers. Most
studies, such as Surya et al. (2018), have focused
on the automatic student assessment prize (ASAP)
dataset.

Surya et al. (2018) used machine learning with
nine surfaces, deep features, and three algorithms
including support vector machine (SVM), k-
nearest neighbors (kNN), and linear regression.
The obtained accuracy ranges from 73% to 93%
according to the dataset class and the algorithms
used. In addition, Alikaniotis, Yannakoudakis, and
Rei (2016) and Dong and Zhang (2016) have
employed deep-learning algorithms and obtained
encouraging results.

In Arabic, there are several studies for short-
answer questions scoring. Nahar & Alsmadi (2009)
based on light stemming and assigning weights
over words in the model answer. For the system to
consider semantics, the instructor must manually
attach the synonyms. In comparison, Gomaa and
Fahmy (2014) combined similarity measures, such
as string, corpus, and knowledge-based similarity
for 610 Arabic short answers, which were
translated to English due to the lack of Arabic
resources. However, this approach requires great
effort for translation and then scoring.

Apart from semantics, Al-Shalabi (2016)
proposed a scoring system for online exams using
stemming and Levenshtein string-based similarity
measures. Shehab, Faroun, and Rashad (2018)
conducted a comparison between several string-
based (Damerau–Levenshtein and N-gram) and
corpus-based similarity measures (LSA and
DISCO) on 210 answers. They found that applying

N-gram with removing stop words produced the
best results.

Other than short-answer scoring, we only came
across three studies for essay scoring
(Alghamdi et al., 2014; Azmi, Al-Jouie, &
Hussain, 2019; Alqahtani & Alsaif, 2019).

First, Alghamdi et al. (2014) conducted a study
based on a linear regression algorithm. They used
LSA, the number of words, and spelling mistakes
to predict an essay’s score. The proposed system
was applied to 579 essays collected from
undergraduate university students and scored by
two instructors. The results showed that 96.72% of
essays were scored correctly, while the correlation
between the system and manual scoring was 0.78,
which is close to the value of 0.7 obtained by inter-
human correlation.

Second, Azmi, Al-Jouie, and Hussain (2019)
collected 360 essays from students in middle and
high schools. The essays were evaluated by two
school instructors according to criteria obtained
from a questionnaire given to instructors. The
criteria can be presented as semantic analysis,
writing style, and spelling mistakes. However,
there was a difference in assigning each criterion
weight, but the majority was 5%, 40%, and 10%
for semantic analysis, writing style and spelling
mistakes, respectively. The proposed system was
based on LSA to evaluate semantics while
rhetorical structure theory (RST) and other features
were used to evaluate the writing style. Finally, the
system employed AraComLex (Attia, Pecina,
Toral, Tounsi, & Genabith, 2011) to detect spelling
mistakes. The system achieved an accuracy of 90%
while the correlation to the manual evaluation was
0.756, which outperformed the inter-human
correlation of 0.709.

Both Alghamdi et al. (2014) and Azmi,
Al-Jouie, and Hussain (2019) relied on the LSA
approach, which requires domain-representative
essays. Furthermore, outputs of Alghamdi et al.
(2014) are given as an overall score without details
about the score for each criterion. In contrast,
Azmi, Al-Jouie, and Hussain (2019) employ rules
to evaluate writing style and spelling mistakes
separately. However, half of the assigned score is
based on LSA, which in turn requires pre-defined
models.

Recently, (Alqahtani & Alsaif, 2019) proposed a
rule-based system to evaluate Arabic essays
without the need to train on domain-representative
essays. They adopted an evaluation criteria scheme

182

based on Arabic literary resources and university
instructors’ experiences as following: spelling,
grammar, structure, cohesion, style and
punctuation marks. Then, scheme was given to two
experts to evaluate 100 essays for university
students. The system follows a set of rules to
evaluate the previous criteria based on some facts
and analyses to evaluate the overall score beside
the specific criteria scores. The system accuracy
was 73% in the overall score while there were
variations in evaluating criteria separately.
Although this study does need a model essay, it is
limited to set of rules that does not include
semantic.

Therefore, in this paper, we propose an Arabic
essay evaluation system does not need to train on
predefined essays represent domain by using a
machine learning algorithm and a wide range of
features to evaluate the specific criteria besides the
overall score.

3 Dataset

Our dataset can be classified into three parts:
essays written by undergraduate/graduate Arabic
native students with university-level; unedited
essays written to be published in one of the Saudi
newspapers and essays have been published in
different newspapers. Any handwritten copies
have been retyped by computer exactly as they
were written. Altogether, our dataset contains 200
(MSA) essays with an approximately average
length of 250 words (3KB) in several topics.

This dataset has been given to two Arabic
experts hold master’s degree in Arabic language
to evaluate essays following the criteria and the
evaluation rubric shown precisely in (Alqahtani &
Alsaif, 2019) which include: spelling, grammar,
structure, coherence and cohesion level, style and
punctuation marks.

Therefore, in spelling criterion, evaluators
concern about the correct spell of words;
therefore, they detect each spelling mistake and
classify it to one of four types: mistakes on
<hmzp/ء/ھمزة>, replacement letters, extra letters
and neglecting letters. For structure criterion, they
check the existence of four essential parts; title,
introduction, body and conclusion. In coherence,
they evaluate the coherence between the title and
remaining parts and check the cohesion between
essay parts. This criterion also concerns with the

correct use of connectives. To evaluate style of
essay, they consider, words repetition, length of
sentences, word choice and avoiding lengthy
speech. In addition, they evaluate the punctuation
marks according to the Arabic rules.

4 Automated Essay Evaluation

We intend to model Arabic essay evaluation based
on the supervised linear model Support Vector
Regression (SVR) (Awad & Khanna, 2015) along
with different levels of features. We develop a
specific model for each criterion. The overall
evaluation of an essay will be a combination of the
models’ outputs. We follow this procedure to
ensure that each criterion model takes the full
advantage of the used features hence more accurate
in the overall score. In addition, existence of
separated model per criterion will assist in the
future to provide a valuable feedback for the user.
In the preprocessing step, we applied
normalization, then stemming using Buckwalter
stemmer (Buckwalter, 2004). Our features
extracted by considering the criteria followed by
humans. According to the system output, which is
numeric scores, we try a wide range of features
represented by numbers at different levels
including:

A. Surface features

The surface features demonstrate only features
dealing with the text itself such as word frequency.
Each feature is followed by abbreviation for ease
of reference as follows:

Essay Length (F1): is measured by number of
tokens/words result of white space tokenization of
essay.

Number of paragraphs (F3, F4) and sentences
(F5): we considered each line as a paragraph so
that when the writer moves to the next line because
there is no space it is considered as one line (F3).
Additionally, we checked if number of paragraphs
is greater than one or not (F4). To count number of
sentences (F5), we divided essays by period,
comma and a list of connectives that usually used
to connect two sentences in Arabic according to
(Alsaif, 2012) study.

Words per essay parts (F6), (F7), (F8), (F9),
and (F16): knowing the length of a specific part of
essay, may lead to identifying its role in the essay,
(e.g., when the first part is the shortest, that may

183

indicate it is the title). Generally, distributing
features over essay parts lead to detect the effective
features to evaluate a specific criterion. So, in
separated features, we counted the number of
words in first paragraph/title (F6), second
paragraph /introduction (F7), last
paragraph/conclusion (F8), and number of
paragraphs in the middle/body (F9). Also, we
checked if the first paragraph length is less than or
equal to ten words (F16).

Average, maximum, and minimum length
(F10–F15): in separated features, based on
number of words we calculated the average length
of sentences (F10), longest paragraph (F12) and
the shortest paragraph (F13). Likewise, we
calculated the longest sentence (F14) and the
shortest sentence (F15).

Paragraph has a specific mark (F19–F22): for
example, the presence of some marks may indicate
the essence of paragraph. Separately, we checked
each essay part if it contains parentheses, colon or
question mark (F19–F22).

Number of <hmzp/ء/ھمزة> (F22) in essay: we
counted words that contain hmzp on AlOlf /أ and إ,
hmzp on AlwAw /ؤ, hmzp on line/ء and hmzp on
nbrp/ئ (F22) to assist in spelling evaluation.

B. Syntactic and Morphological

features

Parts of speech (POS) frequency in essay (F2–
F99): by using the (POS) tag provided by the
MADAMIRA analyzer (Pasha et al., 2014), we
counted the amount of punctuation (F23),
pronouns (F24), prepositions (F25), verbs (F26),
nouns (F27), adjectives (F28), adverbs (F29) and
numbers (F30) in the whole essay. In addition, we
calculated these features for essay parts
(paragraphs and sentences). Also, we checked
paragraphs and sentences that start with a specific
POS (adjectives and prepositions) separately (F31–
F99).

Number of nominal and verbal sentence
(F100) and (F101): for each sentence, we checked
the first three words. If the sentence included a
verb, it was considered as a verbal (F100),
otherwise; it was considered as a nominal phrase
(F101).

Spelling mistakes in the whole essay (F102–
F109): In line with Alqahtani and Alsaif (2019),
we used the FARASA spell checker (FARASA:
Advanced Tools for Arabic, 2019) to classify the

mistakes that FARASA provided into four classes:
mistakes on hmzp, replacement letters, extra
letters, and omission letters. Therefore, as features,
we counted the number of spelling mistakes in any
type of hmzp (F102), mistakes in replacement
(F103), extra letters (F0104), or omissions (F105).
Additionally, considering all the previous features,
if its value was more than or equal to one, we
assigned 1 to indicate a mistake; otherwise, we
assigned 0 (F106–F 109).

Aljzm/الجزم particles (F110) and (F111): we
counted number of aljzm particles in the essay as
they cause a change in the subsequent verbs (lm/لم,
lA AlnAhyp /لا الناھیة, lA AlOmr /لام الأمر, lmA/لما)
(F110) as well as the number of times they were
followed by a verb (F200). Also, we counted the
number of cases of aljzm particles followed by a
plural verb ending with n/ن, as this case affects the
word form (F201) (Ali, 2019).

kAn wOxwAthA /Kana and her Sisters/كان
 and (F113): we counted the number (F112)وأ خواتھا
of kAn wOxwAthA, which include: (kAn/كان,
ODHY /أضحى, mAzAl/مازال, lys/لیس, mAZl/ماظل,
OmsY /أمسى, mAft}/مافتئ, bAt/بات, SAr/صار, Zl/ظل,
mAAnfk/ انفكما , mAbrH/مابرح, mAdAm/مادام, OSbH
 as they may affect the surrounding word (أصبح
forms (F112) (Ali, 2018).

In~ wOxwAthA /Inna and her Sisters/إن وأخواتھا
(F114): Moreover, we counted number of In~
wOxwAthA: (On~ /أن, In~/إن, kOn /كأن, lkn/لكن,
lyt/لیت, lA/لا, lEl/لعل) in the essay for their effect on
words forms (Ali, 2018).

Morphological mistakes (F117–F119): to
count the number of words that were
morphologically incorrect, we counted the number
of words that could be analyzed by MADAMIRA
(F117), the number of words that could not be
analyzed by MADAMIRA (F118) and the number
of words that their lemmas were not included in
alWaseet or Contemporary dictionaries using
SAFAR platform (SAFAR: Software Architecture
For ARabic, 2013). In addition, we checked the
style of plural words so, if the type of word was
(p/plural) or the word ended with (ات) and its
lemma ended with (ه/ة), but it does not belong to
alWaseet or Contemporary dictionaries, then the
number of mistakes in sound feminine plural
increases (F119). These features may assist in
evaluate spelling and style criteria.

C. Lexical features

184

 Number of words without stop words (F123):
refers to the number of words without stop words
frequently used in Arabic text.

Introduction and conclusion keywords (F124–
F127): usually, the introductory section may
include some keywords used to pave a topic.
Likewise, the writer may use specific words to
conclude or summarize the essay. Therefore, we
have two features, the first for checking if the first
or second paragraph contains introductory
keywords such as (bdAyp/بدایة, ntHdv/نتحدث,
ntklm/نتكلم, nstErD/نستعرض, or AlmwDwE/الموضوع,
etc.) (F124). We did the same by checking the last
paragraph for the conclusion (F125). The common
words used to conclude in our dataset and Arabic
essays generally include (OrY/أرى, OxyrA/أخیرا,
Orjw/أرجو, wjhp nZr/ وجھة نظر, OqtrH/أقترح,
OtmnY/أتمنى, etc.) with their derivations. In (F126–
F127). Furthermore, we checked for the existence
of inappropriate words wrongly used to start or
conclude an Arabic essay such as (bsm Allh
AlrHmn AlrHym/ بسم الله الرحمن الرحیم, OmA bEd/
العالمینالحمد� رب /AlHmdllh rb AlEAlmyn ,أمابعد , SlY
Allh wbArk/صلى الله وبارك, etc.) which usually used
in other types of writing in Arabic.
Arabic Lexicon Features (F128–F133): we relied
on four Arabic lexicons to extract (F128–F133):
The Contemporary Arabic Language Dictionary;
alWaseet lexicon; the Arabic Wordlist for
spellchecking (Attia, Pecina, & Samih, 2012)
which contains 9 million words automatically
generated from the AraComLex open-source
finite-state transducer (30,000 lemmas), and a
billion-word corpus; and Obsolete Arabic Words
(Attia, Pecina, Toral, Tounsi, & Genabith, 2011)
which includes obsolete words or words that are
not in contemporary use, in the Buckwalter
Morphological Analyzer database. As separate
features, we checked the number of words that
belong to each of the obsolete list, alWaseet, and
Contemporary lexicons, as well as words that do
not belong to the spellchecking list. We proposed
these features to evaluate spelling and style criteria.

Punctuation features (F134–F161): for each
punctuation mark, we counted its frequency in the
essay. So, in separate features, we counted the
frequency of each of the following: question mark
(F134), exclamation (F135), period (F136),
comma (F137), semicolon (F138), quotation mark
(F139), parentheses (F140), dash (F141) and colon
(F142). Also, we counted the number of times the
writer repeats the same punctuation mark in one

use (F142) such as a repeating period (....) or
question mark (???), which represents one of the
common mistakes in Arabic writing. Furthermore,
we have additional features related to each
punctuation mark that can be broken down into
three categories: correct use, missing use, and
incorrect use of a punctuation mark. For the correct
use of a question mark (F143), we counted the
number of times a sentence contains question tools,
including hl/ھل, kyf/كیف, mA*A/ماذا, lmA*A/لماذا,
mA/لم, km/ كم, mtY/متى, or Ayn/أین, along with a
question mark. The question mark was considered
missing if a sentence contained one of the question
tools yet was missing a question mark (F144). In
case of an incorrect usage, we counted the number
of times a sentence contained a question mark
without the existence of a question tool (F145).

For correct use of the exclamation mark, we
counted the number of times an exclamation
existed in a sentence containing one of the
exaggerating styles, such as yAlyt/یالیت, b}s/بئس,
rA}E/رائع, or llh dr~/در �, or contained a word in
the pattern mA OfEl/ما أفعل (F146). A missing use
was considered if one of these keywords existed
while the exclamation mark was absent (F147). For
an incorrect use, we counted the number of times
an exclamation existed while the previous
indicators were missing (F148). For semicolons, to
detect correct usage we checked the word
following the semicolon. If the word had a
causative meaning, such as lOn/لأن,
bsbb/بسبب,ky/لكي, or the word started with the clitic
l/لـ or f/ف, then the number of correct uses of the
semicolon increases (F149). A missing use
considered when the previous indicators existed
and the semicolon mark was missing (F150). For
the wrong use of the semicolon, we counted the
number of times a semicolon was not followed by
those causative indicators (F151). Also, we
considered comma as an incorrect use if it was
involved in the paragraph containing discourse
connectives as presented in Alsaif (2012) (F152).
A comma also was classified as misused if a
paragraph containing connectives was missing a
comma (F153), and an incorrect use was
considered in the case of a comma followed by
causative indicators.

For the period mark, we counted the number of
correct usages if each paragraph ended with a
period (F154), and we increased the number of
missing period marks if the paragraph did not end
with a period. An incorrect usage of the period was

185

considered when a paragraph contained a period
before the end (F155). Moreover, we counted the
number of correct uses of the colon by checking the
existence of some words such as mvAl/مثال,
Al|typ/التالیة, AltAlyp/الآتیة, or mAyly/مایلي with a
colon mark. Also, a colon was considered correct
if it was involved in a sentence containing a word
referring to reported speech based on list of
attribution cues, as seen in a study by (Alsaif et al.
2018) (F156). We counted the number of times a
colon was missing when indicators were present
yet a colon was absent (F157). Conversely, the use
of a colon was considered wrong if a colon mark
was present while indicators were missing (F158).
Finally, for quotation marks, we counted the
number of correct uses by checking cases in which
quotation marks were preceded by one of the
words referring to reported speech, using the list of
attribution cues and where opening and closing
pairs of quotations were placed (F159). A missing
use of a quotation mark was considered when at
least one word of the list mentioned was present yet
quotation mark pairs or a single one was missing
(F160). An incorrect use was considered when a
quotation mark was present without a cue (F161).

D. Semantic features

Unlike traditional dictionaries, WordNet is
organized by semantic relations between synsets.
In this work, we use the Arabic WordNet AWN
(Arabic WordNet—Global WordNet Association,
2013) alongside the NLTK module to extract our
semantic features based on some relations such as
synonyms and antonyms between essay sentences.
First, we counted number of matched words not
only between two adjacent sentences but also all
essay sentences even matched words within the
same sentence (F162) to evaluate the coherence of
the essay. However, as a sentence can be expressed
using different synonyms, we counted the number
of synonyms in the entire essay (F203) and
between all sentences using Arabic WordNet
(AWN). These features also were applied over
essay paragraphs to measure the similarities
between essay parts (F163–F168). Moreover, we
used one of AraVec models (Bakr, Mohammad,
Eissa, & El-Beltagy, 2017), that proposed Arabic
Word Embedding for use in Arabic NLP. For each
sentence, we counted the similarity between its
words and all other sentences words (F169).

E. Discourse features

As some criteria require examination between
essay parts, such as coherence criterion, we
propose the following features:

Arabic discourse connectives (F170–F188):
we counted the number of connectives (F170)
according to the list of unambiguous discourse
connectives (Alsaif, 2012) in terms of discourse
function, so that at least 90% of their occurrences
in the Leeds Arabic Discourse Treebank (LADTB),
were annotated as discourse connectives.
Furthermore, we counted number of unique
connectives in the overall essay (F171). We also
distributed these two features over essay
paragraphs and sentences (F172–F179). In
addition, for each paragraph, we counted the ratio
of connectives (F180) and unique connectives to
the paragraph’s words (F181). We then counted the
ratio of number of words located between two
discourse connectives to the number of
connectives per paragraph in the essay (F182). In
the same way, we counted the ratio of connectives
(F183) and unique connectives to the sentences’
words (F184). Moreover, we counted the number
of times punctuation was not followed by a
connective or conjunction (F202). Using the POS
tag provided by MADAMIRA, we checked the
number of words with conjunction tags in the
overall essay (F185) as well as the number of
unique conjunctions (F186). Likewise, we applied
the same connectives features but with
conjunctions tools in (F187) and (F188).

5 Experiments and Results

All experiments in this study were carried out using
the WEKA tool (Witten et al., 1999), based on a
tenfold cross-validation for the entire dataset. We
built a specific model for each criterion: spelling,
coherence, structure, punctuation marks, and style.
Then, we computed the models’ results to predict
the overall score. During each model development,
we considered the size of our dataset, the
appropriate features, and the number of features to
achieve the most accurate model with the
minimum number of features possible to avoid
overfitting problems (Ying, 2019). It is worth
noting that we only included the effective features
in each model rather than including all features.
 To evaluate the system’s performance, we used
accuracy “Acc,” which refers to the number of
essays correctly evaluated by the system, as well as

186

Pearson’s correlation r to measure the relationship
and association between manual scores and system
scores (Benesty, Chen, Huang, & Cohen, 2009). As
our dataset contains fractions, and to align with
scoring in similar studies (Alghamdi et al., 2014;
Azmi, Al-Jouie, & Hussain, 2019; Alqahtani &
Alsaif, 2019), we considered a threshold value t in
our results. Therefore, an essay is considered as
correctly evaluated if the difference between the
manual score and the system score does not exceed
t. Alghamdi et al., (2014) set t to be approximately
17% of the overall score, whereas Azmi, Al-Jouie,
and Hussain (2019) set t to be 25% of the essay
score. In our case, although our dataset contains
many fractional numbers, we will show the results
when t = 17% and t = 25% in specific criteria
scores and the overall score. Table 1 shows score
distributions in our dataset and the threshold
values.

Table 1. Score distributions and the threshold

value per criterion.

A. Spelling model

 We attempted many different features in the
spelling model. However, the effective features
were found at the surface level, lexical level,
syntactical, and morphological levels as follows:
(F1–F23), F29, F100, F101, F114, F117, F123,
F133, F200, and F201, while the significant
features were based on features related to the
FARASA spellchecker (F102–F105). Using this
model, the number of essays that were evaluated
correctly in spelling represent 58% of our dataset
when t = 17%, while it increased to 77% when
t = 25%, as shown in Table 2. The variant between
these two results returns to the value of the
threshold and the number of fractions scores in
spelling in our dataset. Further, the model achieved
0.65 when t = 17% and 0.72 when t = 25% in
correlation r to manual evaluation. However, since

the model is almost based on FARASA features,
we analyzed this tool over our dataset by detecting
how many times FARASA detects actual mistakes
and corrects them in the right way; how many
times FARASA detects actual mistakes but does
not correct them as what should be; and how many
times FARASA detects a correct word as a mistake,
which were 2130, 85, and 250 cases, respectively.
However, there were 120 words corrected by
FARASA only because missing spaces in some
cases that usually difficult to detect by humans
such in mAh*A/what /ماھذا.

B. Structure model

Since a well-structured essay should contain

four parts; title, introduction, body and conclusion,
we included surface features (F3) and (F16) that
refer to the number of paragraphs and check if the
first paragraph is less than or equal to 10 words.
Also, we include lexical features (F124 and F126)
which related to check the existence of some
keywords usually used in the introduction and
conclusion parts. This model achieved 78% in Acc
and 0.74 in correlation r when t=17% and 91% in
Acc and 0.86 in correlation r when t=25 %. The
significant feature was (F16) which refers to check
if the first paragraph less than or equal 10 words
which assists to indicate the title of the essay.

C. Coherence model

Coherence criterion used to evaluate the extent

to which essay parts is related to the title, cohesion
between essay parts, using the appropriate
discourse connectives and diversity in connectives.
Therefore, we included surface features (F3, F19,
F20, F6–F10, F15, F12, F13), lexical features
(F124 and F125) and syntactic features (F23–F99).
Most of these features are generic and hold
information about essay parts (lengths, general
syntactic characteristics). These features are
utilized to figure out essay structure which in turn
assists to predict the extent of the appropriate
coherence. Furthermore, we include discourse
features (F170, F171, F202, F179, F137, F177,

Criteria score Threshold
at t=17%

Threshold
at t=25%

spelling 4 0.68 1
structure 4 0.68 1
coherence 4 0.68 1
Punctuation
marks

2 0.34 0.5

style 2 0.34 0.5
Overall
score

16 2.72 4

187

F187, F180–F182) since they related to
connectives between essays parts in addition to the
semantic features presented in (F62, F163, F169,
F168 and F203) to prevent relying on only the
matched words.
This model achieved 79% in accuracy and 0.65 in
r correlation in case of t = 17% while it increased
to 87% and 0.69 in accuracy and correlation r
respectively when t = 25%. However, in some
cases detecting cohesion automatically is very
difficult especially if the unrelated idea is
expressed within a short sentence.

D. Style model

As essay with a good style does not include
repeated words without using synonyms and does
not contain informal words while there is a good
choice of words and diversity in the length of
sentences (Ibrahim, 2006). We included surface
features (F1, F5, F4, F21, F10), which
predominantly investigate the length of paragraphs
and sentences, lexical features from (F123, F128–
F133, F134–F142) that check punctuation use, and
the number of words that may affect the style. We
also check morphological features (F117) as they
also affect the form of words, which in turn
sometimes leads to unknown or informal words.
Additionally, we include discourse features and
connectives (F170–F180) since punctuation might
be omitted by a writer, hence there are no
indications of paragraph and sentence lengths.
Also, we add semantic features (F162–F168 and
F203) to investigate synonymous words. However,
discourse and semantics have the most impact in
score prediction where the significant features
were the number of discourse connectives (F170)
and the number of synonyms in the whole essay

(F203). The style achieved 65% in Acc and 0.57in
correlation when t=17% while it increased to 78%
in accuracy and 0.65 in correlation when t=25% as
shown in Table2.

E. Punctuation marks model

We included surface features (F6–F9 and F12),

general syntactic features such as POS (F23–F29,
F31–F58) and features related to punctuation
marks which refer to correct, wrong, and missing
use for all marks (F134–F161). Also, we included
discourse connectives (F202, F184, F187), as they
separate the essay to sentences/clauses and that
may assist to detect some types of mistakes such as
the omission of placing comma. As each
punctuation mark has certain purposes (e.g., a
period used at the end of a sentence, or a comma
used within a sentence to separate it into clauses),
we tried to figure out the semantic impact by
including features (F162–F168) which refer to the
similarity between sentences. We noted that the
most two significant features were (F202) that
refers to the number of punctuations not followed
by conjunction or discourse connectives and
(F184), which refers to the ratio of unique
connectives to paragraph length. The punctuation
model achieved different results due to the
threshold value, as in Table 2.

In the overall score, we combined the results
obtained by all the previous criteria as predicted by
the models, then we calculated accuracy which was
90% and 96% when t = 17% and t = 25%
respectively.

In comparison to the similar studies
(Alghamdi et al., 2014) and (Azmi, Al-Jouie, &
Hussain, 2019), our system utilizes a wide range of
features to evaluate the common criteria and can

Criteria Level of features included per criterion t = 17% t = 25%
 Acc r Acc r

Spelling Surface+Lex+(Syn and Morph+Spelling) 58% 0.65 77% 0.72
Structure Surface +Lex 78% 0.74 91% 0.86
Coherence Surface+Lex+Syn and Morph+Sem+Disc 79% 0.65 87% 0.69
Punctuation
marks

Surface+(Lex/punctuations)+Syn/pos+Disc + Sem 75% 0.53 93% 0.74

Style Surface+Lex+Syn+Disc+Sem 65% 0.57 78% 0.65
Overall score A combination of the essay evaluation results in the

previous criteria
90% 0.82 96% 0.87

Table 2. Features levels used for criteria modeling with their results and the overall score
considering the threshold.

188

provide an evaluation of a specific criterion further
to the overall score. It also does not need to train
on representative-domain essays. Unfortunately,
we cannot provide an accurate comparison because
their datasets cannot be accessed. In addition, our
system applied to a larger dataset than that used in
Alqahtani and Alsaif (2019) and it supports
semantic aspects which not covered by their
system.

6 Conclusion

This paper introduced an Arabic essay
evaluation system based on the SVR algorithm and
features from different linguistic levels. Separately,
we conducted experiments to predict five criteria
scores; spelling, structure, coherence, style, and
punctuation marks. The essay holistic score was
assigned by a combination of the previous criteria
scores. The experiments conducted on our dataset
consisted of 200 essays. In the overall evaluation,
the proposed system achieved 96% accuracy and
0.87 in correlation with manual evaluation, while it
achieved 77%, 91%, 87%, 78%, and 93% in
accuracy for spelling, structure, coherence, style,
and punctuation marks, respectively. In the future,
we look forward to expanding our dataset as our
system performance improved by increasing the
dataset size from 100 essays to 200 essays.
Furthermore, we intend to involve some criteria
that have been annotated by humans but not yet
automated, such as grammar. Similar studies in
foreign languages have had promising results by
applying deep learning algorithms while it is
unexplored in AES for Arabic writing. Therefore,
we believe it is worth to apply deep learning
algorithms utilizing the features extracted in this
work.

References
Al-Shalabi, E. F. (2016). An automated system for

essay scoring of online exams in Arabic based on
stemming techniques and Levenshtein edit
operations. International Journal of Computer
Science Issues, 13(5), 45–50.

Alghamdi, M., Alkanhal, M., Al-Badrashiny, M.,
Al-Qabbany, A., Areshey, A., & Alharbi, A. (2014).
A hybrid automatic scoring system for Arabic
essays. AI Communications, 27(2), 103–111.
https://doi.org/10.3233/AIC-130586

Ali, K. (2018). Inna and Its Sisters. Retrieved from
https://arabicblog.info/inna-and-its-sisters

Ali, K. (2018). Kana and Its Sisters. Retrieved from
https://arabicblog.info/kana-and-its-sisters

Ali, K. (2019). Fi’l Mudhari. Retrieved from
https://arabicblog.info/fil-mudhari

Alikaniotis, D., Yannakoudakis, H., & Rei, M. (2016).
Automatic Text Scoring Using Neural Networks.
https://doi.org/10.18653/v1/P16-1068

Alqahtani, A., & Alsaif, A. (2019). Automatic
Evaluation for Arabic Essays: A Rule-Based
System. In 2019 IEEE International Symposium on
Signal Processing and Information Technology
(ISSPIT) (pp. 1–7). https://doi.org/
10.1109/ISSPIT47144.2019.9001802

Arabic WordNet—Global WordNet Association.
(2013). Retrieved from
http://globalwordnet.org/resources/arabic-wordnet/

Alsaif, A. (2012). Human and Automatic Annotation of
Discourse Relations for Arabic (Doctoral
dissertation, University of Leeds, Leeds, England).
Retrieved from http://etheses.whiterose.ac.uk/3129/

Al-Saif, A., Alyahya, T., Alotaibi, M., Almuzaini, H.,
& Algahtani, A. (2018). Annotating Attribution
Relations in Arabic. LREC.

Attia, M., Pecina, P., & ASamih, Y. (2012). Improved
Spelling Error Detection and Correction for Arabic,
4(December), 103–112.

Attia, M., Pecina, P., Toral, A., Tounsi, L., & Genabith,
J. Van. (2011). A Lexical Database for Modern
Standard Arabic Interoperable with a Finite State
Morphological Transducer, 98–118.

Awad, M., & Khanna, R. (2015). Support Vector
Regression. In Efficient Learning Machines:
Theories, Concepts, and Applications for Engineers
and System Designers (pp. 67–80). Berkeley, CA:
Apress. https://doi.org/10.1007/978-1-4302-5990-
9_4

Azmi, A. M., Al-Jouie, M. F., & Hussain, M. (2019).
AAEE - Automated evaluation of students’ essays
in Arabic language (July).
https://doi.org/10.1016/j.ipm.2019.05.008

Bakr, A., Mohammad, S., Eissa, K., & El-Beltagy, S.
R. (2017). AraVec : A set of Arabic Word
Embedding Models for use in Arabic NLP
ScienceDirect (November).
https://doi.org/10.1016/j.procs.2017.10.117

Benesty, J., Chen, J., Huang, Y., & Cohen, I. (2009).
Pearson Correlation Coefficient. In Noise Reduction
in Speech Processing (pp. 1–4). Springer: Berlin,
Heidelberg. https://doi.org/10.1007/978-3-642-
00296-0_5

Buckwalter, T. (2004). Buckwalter Arabic
morphological analyzer version 2.0. Linguistic Data

189

Consortium, University of Pennsylvania, 2002.
LDC catalog no.: LDC2004l02. Technical report,
ISBN 1-58563-324-0.

Burstein, J. (2003). The e-rater scoring engine:
Automated essay scoring with natural language
processing. Automated Essay Scoring: A Cross-
Disciplinary Perspective, 113–121.

Chung, G., & O’Neil, G. (1997). Methodological
Approaches to Online Scoring of Essays, CSE
Technical Report 461, University of Southern
California CRESST, December, Center for the
Study of Evaluation, CRESST, 1522(310).

Dikli, S. (2006). An Overview of Automated Scoring
of Essays. Journal Of Technology Learning And
Assessment, 5(1), 2006–12. Retrieved from
http://www.jtla.org

Dong, F., & Zhang, Y. (2016). Automatic Features for
Essay Scoring—An Empirical Study. Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, 1966, 1072–1077.
https://doi.org/10.18653/v1/D16-1115

Elliot, S. (2003). IntelliMetric: From here to validity.
in M. Shermis and J. Burstein (eds.) Automated
Essay Scoring: A Cross-Disciplinary Perspective,
Routledge, 71–86. DOI: https://doi.org/
10.4324/9781410606860

FARASA: Advanced Tools for Arabic. (2019).
Retrieved from
http://qatsdemo.cloudapp.net/farasa/

Gomaa, W. H., & Fahmy, A. A. (2014). Automatic
scoring for answers to Arabic test questions.
Computer Speech and Language, 28(4), 833–857.
https://doi.org/10.1016/j.csl.2013.10.005

Ibrahim, M. (2006). Looks at the technical article in
modern Arabic literature (نظرات في المقال الفني في الأدب
 .pp.21–22 .(العربي الحدیث

Janda, H. K., Pawar, A., Du, S., & Mago, V. (2019).
Syntactic, Semantic and Sentiment Analysis: The
Joint Effect on Automated Essay Evaluation. IEEE
Access, 7, 108486–108503.

Kukich, K. (2000). Beyond automated essay Scoring.
IEEE Intelligent Systems and Their Applications.
https://doi.org/10.1109/5254.889104

Lemaire, B., & Dessus, P. (2001). A System to Assess
the Semantic Content of Student Essays. Journal of
Educational Computing Research, 24(3), 305–320.
https://doi.org/10.2190/G649-0R9C-C021-P6X3

Nahar, I. K. M., & Alsmadi, I. M. (2009). The
Automatic Grading for Online exams in Arabic with
Essay Questions Using Statistical and
computational linguistics Techniques, 1(2), 215–
220.

Pasha, A., Al-Badrashiny, M., Diab, M., Kholy, A. El,
Eskander, R., Habash, N., … Roth, R. M. (2014).
MADAMIRA: A Fast, Comprehensive Tool for
Morphological Analysis and Disambiguation of
Arabic. Proceedings of the 9th Language Resources
and Evaluation Conference (LREC’14), 1094–
1101.

SAFAR: Software Architecture For ARabic. (2013).
Retrieved from http://arabic.emi.ac.ma/safar/
?q=examples#

Shehab, A., Faroun, M., & Rashad, M. (2018). An
Automatic Arabic Essay Grading System based on
Text Similarity Algorithms, (April).
https://doi.org/10.14569/IJACSA.2018.090337.

Surya, D., Madala, V., Krishna, S., Surya, D., Madala,
V., Gangal, A., … Sureka, A. (2018). An empirical
analysis of machine learning models for automated
essay grading.

Witten, I. H., E. Frank, L. E. Trigg, M. A. Hall, G.
Holmes and S. J. Cunningham. (1999). Weka:
Practical machine learning tools and techniques
with Java implementations. Proc ICONIP/
ANZIIS/ANNES99 Future Directions for
Intelligent Systems and Information Sciences, pp.
192–196.

Ying, X. (2019). An Overview of Overfitting and its
Solutions: IOP Conf. Series: Journal of Physics:
Conf. Series 1168. 2019.

190

Proceedings of the 17th International Conference on Natural Language Processing, pages 191–199
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Semantic Extractor-Paraphraser based Abstractive Summarization

Anubhav Jangra∗
IIT Patna, India

anubhav0603@gmail.com

Raghav Jain∗
DTU, India

raghavjain106@gmail.com

Vaibhav Mavi∗
IIT Delhi, India

vaibhavg152@gmail.com

Sriparna Saha
IIT Patna, India

sriparna.saha@gmail.com

Pushpak Bhattacharyya
IIT Bombay, India

pushpakbh@gmail.com

Abstract
The anthology of spoken languages today is
inundated with textual information, necessi-
tating the development of automatic summa-
rization models. In this manuscript, we pro-
pose an extractor-paraphraser based abstrac-
tive summarization system that exploits se-
mantic overlap as opposed to its predecessors
that focus more on syntactic information over-
lap. Our model outperforms the state-of-the-
art baselines in terms of ROUGE, METEOR
and word mover similarity (WMS), establish-
ing the superiority of the proposed system via
extensive ablation experiments. We have also
challenged the summarization capabilities of
the state of the art Pointer Generator Network
(PGN), and through thorough experimentation,
shown that PGN is more of a paraphraser, con-
trary to the prevailing notion of a summarizer;
illustrating it’s incapability to accumulate in-
formation across multiple sentences.

1 Introduction

Over the past few years, the Internet has become
the most convenient and preferred form of infor-
mation sharing worldwide. The evolution of tech-
nology has made it possible for anyone to convey
their knowledge, opinions and ideals to the world,
resulting in an increasing surge of information hin-
dering users from accessing desired content. This
increasing need to obtain key information makes
the task of summarization paramount. Text is the
most widely adopted form of communication, be
it for personal messaging1 or for broadcasting, ow-
ing to its ability to convey almost any concept, its
general flexibility to suit everyone’s needs, and its
less storage requirement (opposed to other modes
of communication like audio and video). Text sum-
marization is a problem at the very core of natural

∗* means equal contribution.
1https://news.gallup.com/poll/179288/new-era-

communication-americans.aspx

language processing, and has various applications
in the spoken languages, including summarization
of conversations, and public speeches.

Some works have been done in the field of re-
inforcement learning based text summarization
(Dong et al., 2018; Liu et al., 2018), the most
prominent architecture being extractor-abstractor
(EXT-ABS) model (Chen and Bansal, 2018). In-
spired from this architecture, in this manuscript,
we have proposed an extractor-paraphraser system
that uses semantic information overlap as the un-
derlying guidance strategy. The model is further
enhanced to surpass its limits using reinforcement
learning, for which we have proposed a novel se-
mantic overlap based reward function. Word Mover
Similarity (WMS) (Clark et al., 2019) is utilized
to evaluate semantic similarity across generated
sentences and the true ground truth summary sen-
tences.

We assume that paraphrasing is a relatively sim-
pler task than abstractive summarization, with the
underlying intuition that paraphrasing is a sub-
problem within abstractive summarization. To bol-
ster our hypothesis, experiments are conducted on
the extractor-abstractor (EXT-ABS) model (Chen
and Bansal, 2018) and the Pointer Generator Net-
work (PGN) (See et al., 2017), which is used as
the basic abstraction unit in the former architecture.
The results are rather staggering and reveal that the
PGN model also paraphrases input document sen-
tences, albeit implicitly. The major contributions
of the paper are as follows:
• A novel semantic overlap based reward func-

tion is proposed for reinforcement of extractor-
paraphraser model.

• To the best of our knowledge, we are the first
ever to discover the fact that PGN networks are
indeed doing an implicit extraction-paraphrasing
operation, revealing the true nature of existing
abstractive summarization models.

191

s
1

s
2

s
3

s
|D|

Text
Pre-processing

Vocabulary

Trained
Word

embeddings

CNN-based
sentence
encoder

bi-LSTM
document
encoder

uni-LSTM
decoder
(binary

classifier)

Bi-LSTM
Encoder

(With
attention layer)

uni-LSTM
decoder

(with
Ponter-generator

switch)

s
1

sum

s
2

sum

s
K

sum

Stopping
criteria

s
1
sum

s
2
sum

s
K

sum

Reward
Function
evaluator

met

not
met

Summary sentences
(gold standard)

Input document Embedded
Document

(word level)

|D| sentences |D| sentences N x K sentences

Extractor
(pre-trained)

N-to-1
Paraphraser
(pre-trained)

Extracted
sentences

Paraphrased
sentences

Pseudo
labels

K sentences

Final text
summary

Backpropogate as loss

Figure 1: Proposed model architecture.

The rest of this paper is structured as follows:
In Section 2 we have discussed related works of
automatic text summarization. In Section 3 we
have described the proposed model, and in Section
4 we have stated the experimental setup and the
datasets used. A thorough discussion and state the
results are provided in Section 5, followed by the
conclusion and future work in Section 6.

2 Related Work

Automatic text summarization has been extensively
researched over more than three decades, and has
shown a lot of progress and promise over the course
of time. Various approaches have been explored to
tackle both extractive and abstractive summariza-
tion. Initial research (Paice, 1990; Kupiec et al.,
1995) focused on extractive summarization due to
its easier setup. Various techniques ranging from
integer linear programming (Galanis et al., 2012),
graph based approaches (Mihalcea and Tarau, 2004;
Mihalcea, 2004), genetic algorithms (Saini et al.,
2019a,b), and neural networks (Nallapati et al.,
2017; Zhang et al., 2016) have been adopted to
solve the extractive summarization task. The ma-
jority of the research in abstractive summarization
revolves around deep learning (See et al., 2017;
Chopra et al., 2016; Nallapati et al., 2016). Liu
et al. (2018) proposed a generative adversarial net-
work based model to generate document abstracts.
A handful of works however also use ILP (Banerjee
et al., 2015) and graph-based (Ganesan et al., 2010)
techniques to attempt to solve the problem. A lot
of domain specific summarization techniques have
also been explored, like radiology findings sum-
marization (Zhang et al., 2018), across-time sum-

marization (Duan and Jatowt, 2019), movie review
summarization (Zhuang et al., 2006), book sum-
marization (Mihalcea and Ceylan, 2007), and cus-
tomer review based opinion summarization (Pecar,
2018). Lately, multi-modal summarization (Jangra
et al., 2020a,b; Zhu et al., 2020; Saini et al., 2020)
has also gained popularity .

Recently, people have also explored reinforce-
ment learning to tackle the problem of automatic
text summarization in both extractive (Dong et al.,
2018; Gao et al., 2019) and abstractive domains
(Xiao et al., 2020; Chen and Bansal, 2018). Chen
and Bansal (2018) have proposed an extractor-
abstractor architecture, separating the relevant data
searching part and the paraphrasing part to individ-
ual modules. In this work, we have proposed a sys-
tem inspired from Chen and Bansal (2018), stress-
ing on the significance of semantic information
over the traditional syntactic overlap. The litera-
ture on text summarization is rich, and has an abun-
dance of survey papers (Yao et al., 2017; Gambhir
and Gupta, 2017) to get an in depth overview of
the domain.

3 Proposed Method

Problem Definition: Given the training data {X,
Y} where X = {d1, d2, ..., dN} is the set of input
documents and Y = {y1, y2, ..., yN} is the set of
corresponding output summaries, the task of au-
tomatic summarization is defined as the problem
of discovering a function f : X 7→ Y , such that
f(di) = yi; ∀i ∈ {1, 2, ..., N}.

We have proposed an extractor-paraphraser
framework, which is inspired from the extractor-
abstractor (EXT-ABS) framework introduced by

192

Chen and Bansal (2018). The summarization
function f(.) is approximated as the composition,
f(di) = h(g(di)), where the functions g(.) and
h(.) are modeled as the extractor and the para-
phraser components of the model, respectively.
Given an input document di = {sdi1 , sdi2 , ..., sdi|di|},
the extractor g(.) extracts relevant sentences, act-
ing as the primary noise filter. These extracted
set of sentences are fed to the paraphraser h(.),
which accumulates the information into a concise
gist of the extracted sentences, simulating the nat-
ural language generation module in the proposed
system (Fig. 1). The paraphraser in our system
is capable of summarizing multiple extracted sen-
tences to generate one sentence, in contrast with
its predecessor ‘abstractor’ from EXT-ABS model
(Chen and Bansal, 2018) which rephrases one ex-
tracted sentence at a time. The proposed frame-
work consists of an ‘n-to-one paraphraser’, that
compiles n sentences into one sentence, generat-
ing a richer summary. Formally, given a document
di = {sdi1 , sdi2 , ..., sdi|di|}, the extractor is defined as:

g : X 7→ Z |yi|×n,

s.t. g(di) = {kj,l | 1 ≤ kj,l ≤ |di|}nl=1,
|yi|
j=1

(1)

where kp,q represents the index of the qth extracted
sentence corresponding to the pth sentence in the
final gold summary. For modelling the same, we
have used an encoder-decoder model, where the
encoder consists of a temporal convolutional model
(Kim, 2014) cascaded with a bidirectional LSTM
network (Schuster and Paliwal, 1997) and the de-
coder is a uni-directional LSTM model (Hochreiter
and Schmidhuber, 1997) (Fig. 1).
The paraphraser function h(.) is defined as follows:

h({kj,l}nl=1,
|yi|
j=1, di) = {p(⊕n

l=1s
di
kj,l

)}|yi|j=1 (2)

where ⊕ represents the concatenation of sentences,
kj,l represents the extractor output and p is written
as:

p(sextj) = syij (3)

where sextj = ⊕n
l=1s

di
kj,l

and syij is the jth gold
summary sentence. As shown in Fig. 1, a pointer-
generator framework (See et al., 2017) is used to
model the paraphraser.

3.1 Training the Submodules
In order to train the paraphraser beforehand, we
need to mimic the output of an extractor2. To fulfil
this requirement, exemplary-extracted sentences
are generated using gold summaries. Word-mover
distance (WMD) (Kusner et al., 2015) is adopted
to create these exemplary-extracted sentences, with
the motivation that it captures the semantic overlap
between sentences better than its predecessors. For
a training pair {d, y}, the labels are generated as:

∀l ∈ {1, 2, ..., n} :
∀sj ∈ y :

kj,l = argmini{WMD(sdi , s
y
j)};

∀sdi ∈ d− {sdkj′,0}
j−1
j′=1

(4)

where kj,l represents the lth exemplary- ex-
tracted sentence corresponding to the jth gold sum-
mary sentence, syj .

The n exemplary-extracted sentences corre-
sponding to each summary sentence are concate-
nated and fed into the paraphraser as the input and
the summary sentence is fed as the output. We
argue that this should allow the paraphraser to gen-
erate information rich summaries. To facilitate
the expected behaviour during the testing phase,
we require the extractor to feed the paraphraser
with input similar to the exemplary-extracted sen-
tences. Hence, we first pre-train the extractor on
these exemplary-extracted sentences as opposed to
random initialization. Cross-entropy loss is used
for training the paraphraser and pre-training the
extractor.

3.2 Extractor agent
Enhancement using reinforcement learning:
Here, the extractor is trained as part of an actor-
critic model (Mnih et al., 2016) which takes an
action based on the current state and current value
of parameters to maximize a given reward at each
time step, where the action is to extract n sentences,
{kt,l}nl=1, and the state refers to the set of docu-
ment sentences, di, and already extracted sentences,
{dk1,l , dk2,l , ..., dkt−1,l

}; l ∈ {1, 2, ..., n}. The pre-
dicted sentences are concatenated and passed to

2Note that the extractor’s output can also be used to train
the paraphraser at this step, however, since the extractor’s
weights get fine-tuned using reinforcement learning at a later
stage, training paraphraser on extractor’s non-ideal outputs
might lead to unsatisfactory performance of the paraphraser.

193

the paraphraser to get an output sentence. A novel
semantic-based reward function using word mover
distance (WMD) is used as the reward function.
Since the reward is to be maximised, WMD needs
to be converted to a similarity function, for which,
a generalised version of word mover similarity
(WMS), proposed in (Clark et al., 2019), is used.
Formally, at a time step t, given an action jt,l, and
a summary sentence, st, the short term reward, r is
calculated as3:

r =
a+ 1

a+ eb×WMD(syt ,p(s
ext
t))

(5)

where sextt = ⊕n
l=1s

d
kt,l

, and ⊕ represents the con-
catenation of sentences, {sd, sy} are the sentences
belonging to a training pair and a and b are the
hyper-parameters introduced4.

To avoid redundant phrases and words, tri-gram
avoidance through beam search (Paulus et al., 2017)
is applied at a sentence level. For a fair comparison,
details regarding the beam search reranking and
other nuances of implementation are kept the same
as (Chen and Bansal, 2018).

4 Experiments

4.1 Dataset

For all the following experiments we have used the
CNN / DailyMail dataset (Nallapati et al., 2016),
which contains online news articles, with the bullet
highlights treated as the gold standard summaries.
The experiments in this work are conducted on
the non-anonymized version of this dataset. The
dataset consists of 277,226 training, 13,368 valida-
tion and 11,490 test article-summary pairs. An arti-
cle contains ∼780 tokens per document, whereas
the summary consists of ∼ 56 tokens with the
average number of sentences per summary being
∼ 3.75. An article sentence, on average contains
∼30 tokens.

4.2 Comparative methods

To highlight the superiority of the proposed
semantic-overlap based methodology over exist-
ing syntactic measures, we set the value of n = 1
for initial experiments. To compare the complex-
ity of the summarization task with paraphrasing

3Note that we obtain the word mover similarity proposed
in (Clark et al., 2019) for the case a = 0, and b = 1.

4The hyperparameters are set to a = 1 and b = 0.5 af-
ter extensive experimentations, and are used throughout this
paper.

objectively, the experiments are further extended
for n = 2 as well 5. We evaluate our model with
sufficient baselines 6, including:
Pointer-Generator network [PGN]: An
encoder-decoder attention based framework for
abstractive summarization (See et al., 2017).
Pre-trained extractor - Extractor-Abstractor
framework [EXT−ABS (Extonly)]: The
pre-trained extractor of the extractor-abstractor
framework proposed by Chen and Bansal (2018) on
ROUGE-L based exemplary-extracted sentences.
Extractor-Abstractor framework without re-
inforcement [EXT−ABS (w/oRL)]: The
extractor-abstractor framework proposed by Chen
and Bansal (2018) at a stage before reinforcing the
extractor.
Extractor-Abstractor framework [EXT−
ABS+RLX]: The complete extractor-abstractor
framework proposed Chen and Bansal (2018) in-
cluding X as the reward function for reinforcement
learning (X is either ROUGE-L or the reward
function defined in Eq. 5) along with beam search.
Pre-trained extractor - One-to-one extractor-
paraphraser model [O2O (Extonly)]: The
pre-trained extractor of the proposed extractor-
paraphraser framework (with n = 1) on WMD
based (Eq. 4) exemplary-extracted sentences.
One-to-one extractor-paraphraser model with-
out reinforcement [O2O (w/oRL)]: A partic-
ular setting of the proposed methodology where
n = 1, without any reinforcement or beam search.
One-to-one extractor-paraphraser model
[O2O+ RLX]: A particular setting of the
proposed methodology where n = 1, including
extractor, paraphraser, and X as the reward
function for reinforcement learning (X is either
ROUGE-L or the reward function defined in Eq. 5)
and beam search.
Pre-trained extractor - Two-to-one extractor-
paraphraser model [M2On=2 (Extonly)]:
The pre-trained extractor7 of the proposed
extractor-paraphraser framework (with n = 2)
on WMS based (Eq. 4) exemplary-extracted
sentences.

5We have limited our work to n = 2 since the Two-to-
one baselines did not perform efficaciously. Experiments for
n > 2 would be done in future works.

6Statistical analysis on all the variations of the proposed
model has been done.

7For fair comparison of extraction capabilities across all
models, we limit the model to output 4 sentences during eval-
uation on test dataset.

194

Table 1: Evaluation scores for the generated text summary using ROUGE, METEOR and Word Mover Similarity
(WMS). ‘Id-ext’ refers to the ideal extractor experiments. The ’-’ denotes unavailability of a score.

Models ROUGE-1 ROUGE-2 ROUGE-L METEOR WMS
Extractive baselines

EXT −ABS (Ext only) 40.17 18.11 36.41 22.81 -
O2O (Ext only) 40.97 18.42 37.35 21.86 14.28
M2On=2 (Ext only) 40.19 17.98 36.60 21.62 14.24

Abstractive baselines
PGN 39.53 17.28 36.38 18.72 13.36
EXT −ABS (w/oRL) 38.38 16.12 36.04 19.39 -
O2O (w/oRL) 39.82 17.05 37.21 19.24 13.81
M2On=2 (w/oRL) 32.82 11.29 31.08 16.13 12.92

Reinforced models
EXT −ABS +RLROUGE 40.88 17.8 38.53 20.38 13.7
O2O +RLROUGE 41.32 18.16 38.89 20.52 14.56
EXT −ABS +RLWMS 40.82 17.82 38.45 21.47 14.42
O2O +RLWMS 41.2 18.12 38.81 21.34 14.6
M2On=2 +RLROUGE 39.71 16.7 37.32 18.25 13.52

Ablation experiments (Ideal Extractor)
Id− extEXT −ABS 49.73 26.53 47.2 24.36 19.34
Id− extO2O 50.04 26.31 47.34 24.61 20.14
Id− extM2On=2 47.00 23.37 44.23 22.22 17.99

Two-to-one extractor-paraphraser model with-
out reinforcement [M2On=2 (w/oRL)]: A
specific case of the proposed many-to-one para-
phrasing where n = 2. This specific model com-
prises of only the extractor and paraphraser mod-
ules.
Two-to-one extractor-paraphraser model
[M2On=2+ RLX]: A specific case of the
proposed many-to-one paraphrasing where n = 2;
including X as the reward function for reinforced
extractor (X is either ROUGE-L or the reward
function defined in Eq. 5) and beam search.
Ideal extractor-abstractor model [Id− ext
EXT−ABS]: To determine the performance of
the abstractor component, the EXT −ABS base-
line is evaluated with the assumption that the extrac-
tor is ideal, subsequently feeding the exemplary-
extracted sentences generated for the test data using
ROUGE-L score to the paraphraser directly.
Ideal extractor-paraphraser model [Id− ext
O2O]: Similar to the Id − extEXT − ABS
setup, the ’n-to-1’ paraphraser is evaluated with
n = 1, given that the extractor performs ideally
(generating exemplary-extracted sentences as pro-
posed in Eq. 4).
Ideal extractor-paraphraser model [Id− ext
M2On=2]: The ’n-to-1’ paraphraser with n = 2

and the exemplary-extracted sentences assumed
as the extractor (generating exemplary-extracted
sentences as proposed in Eq. 4).

5 Results

Results of different baselines and the proposed ap-
proach are discussed in this section. Table 1 illus-
trates that our proposed techniques perform better
than the rest of the systems. We have used ROUGE-
1, ROUGE-2, ROUGE-L (Lin, 2004), METEOR
(Banerjee and Lavie, 2005) and word mover sim-
ilarity (WMS) (Clark et al., 2019) as evaluation
metrics. We believe that ROUGE as an evaluation
metric is incapable of judging the quality of an
abstractive summary due to its emphasis on syn-
tactic overlap over semantic overlap (Liu et al.,
2016; Clark et al., 2019; Novikova et al., 2017).
To overcome this, we have also used WMS as an
evaluation metric.

5.1 Semantic information overlap

It is noticed that the proposed paraphraser in
model O2O (w/oRL) outperforms the abstrac-
tor from EXT − ABS (w/oRL) in terms of
ROUGE scores, while scoring marginally less in
terms of METEOR. The extractor counterparts
EXT − ABS (Ext only) and O2O (Ext only)

195

0 1 2 3 4 5 6
Rank of the sentence (closest first)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
W

or
d

M
ov

er
 D

ist
an

ce
 (W

M
D)

PGN
Gold Standard
EXT-ABS

Figure 2: Average sentence distance (word mover dis-
tance) scores for most similar sentences.

also portray a similar tendency, with a wider gap
in METEOR scores. We also observe that in the
reinforced extractor models, the O2O +RLX set-
ting surpasses the EXT −ABS+RLX setting in
almost all the metrics8. A similar trend is also ob-
served in the ideal extractor experiments, where the
Id− extO2O model beats the Id− extEXT −
ABS model in WMS while keeping other evalu-
ation scores comparable. The above mentioned
observations illustrate the true capabilities of us-
ing semantic overlap based exemplary-extracted
sentences.

Keeping the main model same as the EXT −
ABS framework, and changing the reward func-
tion from ROUGE-L to WMS (Eq. 5), it is ob-
served that the latter (EXT − ABS RLWMS)
attains significantly better METEOR and WMS
scores, while maintaining comparable ROUGE
scores. However, the true capabilities of the WMS
reward function (Eq. 5) come into play when we
attach it with our extractor-paraphraser framework;
O2ORLWMS bests every other models in terms
of WMS, while keeping ROUGE and METEOR
comparable with the best attained scores.

One critical observation is that the reward func-
tion introduces a bias in the evaluation process.
It can be clearly observed from the fact that the
model EXT − ABS + RLROUGE obtains bet-
ter ROUGE scores while it pales in comparison to
EXT −ABS+RLWMS in terms of WMS. Since
we stress that semantic information overlap is more
significant than the syntactic overlap, we believe
that WMS is better suited for the evaluation task
as well as a better choice for the reward function.

8Here X ∈ {ROUGE,WMS}, which remains same
when comparing the two models

It is established by the fact that the models using
WMS as the reward function attain comparable
ROUGE scores as well (while the reverse is not
true), indicating that incorporating semantic infor-
mation can assist in capturing syntactic informa-
tion as well. Examples of generated summaries for
the EXT − ABS RLROUGE and O2ORLWMS

models are illustrated in Fig. 3. An important ob-
servation in the generated summaries is that the
former model produces the name ”shao li” which
is not present in the input document or the gold
standard summary, whereas this mistake is avoided
by the O2ORLWMS model.

5.2 Summarization vs paraphrasing

Theoretically the M2On=2 setting should surpass
the O2O setting, since the former has extra input
information at the paraphraser stage that the lat-
ter lacks. However, it is observed that this does
not happen; in actuality, the M2On=2 model is
outperformed by the O2O model in all aspects
(Table 1). After manual scrutiny of exemplary-
extracted sentence pairs fed to the paraphraser and
the generated sentences, it is observed that the ex-
pected accumulation of information does not take
place. To quantify this observation, WMD based
overlap of information is computed between the
exemplary − extracted sentence and the gener-
ated sentence. It is discovered that on average, the
more similar sentence has a WMD of 1.775 while
the other one obtains a value of 2.894, illustrating
the inability of the paraphraser to combine infor-
mation across the two sentences into one.

Hence, we hypothesize that the PGN model in-
trinsically paraphrases one input sentence to gen-
erate the corresponding sentence in the generated
summary, innately mimicking the extractor para-
phraser behaviour. An experiment is formulated to
evince the truth of this proposed hypothesis. For
this experiment, three different collections of docu-
ments are used: 1) ground truth summary, 2) sum-
maries generated by PGN (See et al., 2017), and 3)
summaries generated by the EXT −ABS model
(Chen and Bansal, 2018), all corresponding to the
data in the test set. For every summary sentence,
its semantic overlap (using WMD) is computed
with every document sentence and distances of the
closest α document sentences are reported in an
increasing order. The results of this experiment can
be seen in Fig. 2, and it is noticed that the aver-
age gap between similarities with respect to first

196

and second most similar sentences is the highest in
the case of the PGN model (approx. 1.57), while
the value is around 0.41 for the gold standard sum-
maries. The curve for gold standard has a steady
slope, where as the slope for PGN rises quickly
from the first point to the second point, and then
follows a constant growth afterwards, illustrating a
very high similarity with the most similar sentence,
thus endorsing the hypothesis that the PGN intrin-
sically paraphrases one input sentence to generate
one sentence in final summary.

Gold Standard:

tong shao, 20, was an international student from china
attending iowa state university.
her body was found in the trunk of her car in iowa city on
september 26.
police believe it had been for three weeks.
she died of blunt force trauma and asphyxiation.
her boyfriend, xiangnan li, 23, was the last to see her, but flew
to china on september 8, before shao was officially missing.
according to tong 's father, an arrest warrant has now been
issued.
however li has disappeared.

EXT-ABS + RL
ROUGE

:

police are issuing a warrant for the girl's boyfriend.
police found her body stuffed in the trunk of her toyota camry.
shao li, 23, was listed as a person of interest in the case.
tong shao was a chemical engineering student at iowa state
university.
xiangnan li, 23, found murdered in september after going
missing.
the girl 's body was discovered in iowa last year.
tong shao, 20, was found dead in her car for three weeks.

O2O + RL
WMS

:

tong shao went missing in september 2014.
police found her body stuffed in the trunk of her toyota camry.
shao's boyfriend, xiangnan li, 23, was listed as a person of
interest.
police are issuing a warrant for the girl's boyfriend.
a 20-year-old daughter was found murdered in iowa last year.

Figure 3: Example of generated summaries forEXT−
ABS+RLROUGE model, O2O+RLWMS . The text
in red denotes the novel information that is not present
in the gold summary, the text in green denotes the in-
formation overlap that is present exclusively in the gen-
erated summary and the text in blue denotes the infor-
mation covered in all three scenarios.

5.3 Error Analysis

As the results illustrate in Table 1, overall the one-
to-one setting of the proposed n-to-one paraphraser
performs better than the two-to-one setting, reveal-
ing a major blockade of the existing sequential
frameworks - the incapability of combining mul-
tiple sentences into one, deviating from the ideal
notion of ‘abstraction’. We also observe that the ex-
tractors outperform their corresponding (w/oRL)
counterparts, and are competing with the complete
models as well to some extent, portraying the dif-

ficulty of abstractive summarization over sentence
extraction, along with the inability of current evalu-
ation metrics like ROUGE and METEOR to focus
on semantic information over syntactic subtleties.
As elucidated by the ideal extractor experiments,
the paraphraser has great potential for even achiev-
ing state-of-the-art results in the summarization
task, provided the extractor works ideally. Our fu-
ture work would focus on mollifying the loss intro-
duced at the extraction step, and obtaining a better
harmony in the extractor-paraphraser network as a
whole.

6 Conclusion

In this paper, we propose the extractor-paraphraser
model, that comprises of the n-to-one paraphraser
and a novel word mover similarity based reward
function. We show that the semantic overlap based
techniques surpass the strong baselines that rely
on syntactic information overlap. We also develop
experiments to unveil that the state-of-the-art
pointer-generator network (PGN) indeed para-
phrases input sentences intrinsically, and is unable
to merge two sentences into one agglomerate
sentence when explicitly conditioned to do so,
changing our perception of sequence-to-sequence
abstractive summarization models. We show
that the existing works are still nowhere close to
mimicking a true human summary, portraying the
difficulty of true abstraction over its simplified
formulation of extracting and then paraphrasing.

Acknowledgement: Dr. Sriparna Saha would
like to acknowledge the support of Early Career
Research Award of Science and Engineering Re-
search Board (SERB) of Department of Science
and Technology, India to carry out this research.

References

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evalu-
ation measures for machine translation and/or sum-
marization, pages 65–72.

Siddhartha Banerjee, Prasenjit Mitra, and Kazunari
Sugiyama. 2015. Multi-document abstractive sum-
marization using ilp based multi-sentence compres-
sion. In Twenty-Fourth International Joint Confer-
ence on Artificial Intelligence.

197

Yen-Chun Chen and Mohit Bansal. 2018. Fast abstrac-
tive summarization with reinforce-selected sentence
rewriting. arXiv preprint arXiv:1805.11080.

Sumit Chopra, Michael Auli, and Alexander M Rush.
2016. Abstractive sentence summarization with at-
tentive recurrent neural networks. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 93–98.

Elizabeth Clark, Asli Celikyilmaz, and Noah A Smith.
2019. Sentence mover’s similarity: Automatic eval-
uation for multi-sentence texts. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 2748–2760.

Yue Dong, Yikang Shen, Eric Crawford, Herke van
Hoof, and Jackie Chi Kit Cheung. 2018. Bandit-
sum: Extractive summarization as a contextual ban-
dit. arXiv preprint arXiv:1809.09672.

Yijun Duan and Adam Jatowt. 2019. Across-time com-
parative summarization of news articles. In Proceed-
ings of the Twelfth ACM International Conference
on Web Search and Data Mining, pages 735–743.
ACM.

Dimitrios Galanis, Gerasimos Lampouras, and Ion An-
droutsopoulos. 2012. Extractive multi-document
summarization with integer linear programming and
support vector regression. In Proceedings of COL-
ING 2012, pages 911–926.

Mahak Gambhir and Vishal Gupta. 2017. Recent auto-
matic text summarization techniques: a survey. Arti-
ficial Intelligence Review, 47(1):1–66.

Kavita Ganesan, ChengXiang Zhai, and Jiawei Han.
2010. Opinosis: A graph based approach to abstrac-
tive summarization of highly redundant opinions. In
Proceedings of the 23rd International Conference
on Computational Linguistics (Coling 2010), pages
340–348, Beijing, China. Coling 2010 Organizing
Committee.

Yang Gao, Christian M Meyer, Mohsen Mesgar, and
Iryna Gurevych. 2019. Reward learning for efficient
reinforcement learning in extractive document sum-
marisation. arXiv preprint arXiv:1907.12894.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Anubhav Jangra, Adam Jatowt, Mohammad Hasanuz-
zaman, and Sriparna Saha. 2020a. Text-image-video
summary generation using joint integer linear pro-
gramming. In European Conference on Information
Retrieval, pages 190–198. Springer.

Anubhav Jangra, Sriparna Saha, Adam Jatowt, and Mo-
hammad Hasanuzzaman. 2020b. Multi-modal sum-
mary generation using multi-objective optimization.
In Proceedings of the 43rd International ACM SI-
GIR Conference on Research and Development in
Information Retrieval, page 1745–1748.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Julian Kupiec, Jan Pedersen, and Francine Chen. 1995.
A trainable document summarizer. In Proceedings
of the 18th annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, pages 68–73. ACM.

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian
Weinberger. 2015. From word embeddings to doc-
ument distances. In International conference on ma-
chine learning, pages 957–966.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Chia-Wei Liu, Ryan Lowe, Iulian V Serban, Michael
Noseworthy, Laurent Charlin, and Joelle Pineau.
2016. How not to evaluate your dialogue system:
An empirical study of unsupervised evaluation met-
rics for dialogue response generation. arXiv preprint
arXiv:1603.08023.

Linqing Liu, Yao Lu, Min Yang, Qiang Qu, Jia Zhu,
and Hongyan Li. 2018. Generative adversarial net-
work for abstractive text summarization. In Thirty-
second AAAI conference on artificial intelligence.

Rada Mihalcea. 2004. Graph-based ranking algorithms
for sentence extraction, applied to text summariza-
tion. In Proceedings of the ACL Interactive Poster
and Demonstration Sessions, pages 170–173.

Rada Mihalcea and Hakan Ceylan. 2007. Explorations
in automatic book summarization. In Proceedings
of the 2007 joint conference on empirical methods
in natural language processing and computational
natural language learning (EMNLP-CoNLL), pages
380–389.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into text. In Proceedings of the 2004 con-
ference on empirical methods in natural language
processing, pages 404–411.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi
Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous methods for deep reinforcement learning.
In International conference on machine learning,
pages 1928–1937.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017.
Summarunner: A recurrent neural network based se-
quence model for extractive summarization of docu-
ments. In Thirty-First AAAI Conference on Artificial
Intelligence.

Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre,
Bing Xiang, et al. 2016. Abstractive text summariza-
tion using sequence-to-sequence rnns and beyond.
arXiv preprint arXiv:1602.06023.

198

Jekaterina Novikova, Ondřej Dušek, Amanda Cercas
Curry, and Verena Rieser. 2017. Why we need
new evaluation metrics for nlg. arXiv preprint
arXiv:1707.06875.

Chris D Paice. 1990. Constructing literature abstracts
by computer: techniques and prospects. Information
Processing & Management, 26(1):171–186.

Romain Paulus, Caiming Xiong, and Richard Socher.
2017. A deep reinforced model for abstractive sum-
marization. arXiv preprint arXiv:1705.04304.

Samuel Pecar. 2018. Towards opinion summarization
of customer reviews. In Proceedings of ACL 2018,
Student Research Workshop, pages 1–8.

Naveen Saini, Sriparna Saha, Pushpak Bhattacharyya,
and Himanshu Tuteja. 2020. Textual entailment–
based figure summarization for biomedical articles.
ACM Transactions on Multimedia Computing, Com-
munications, and Applications (TOMM), 16(1s):1–
24.

Naveen Saini, Sriparna Saha, Dhiraj Chakraborty, and
Pushpak Bhattacharyya. 2019a. Extractive single
document summarization using binary differential
evolution: Optimization of different sentence qual-
ity measures. PloS one, 14(11):e0223477.

Naveen Saini, Sriparna Saha, Anubhav Jangra, and
Pushpak Bhattacharyya. 2019b. Extractive single
document summarization using multi-objective opti-
mization: Exploring self-organized differential evo-
lution, grey wolf optimizer and water cycle algo-
rithm. Knowledge-Based Systems, 164:45–67.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE transactions
on Signal Processing, 45(11):2673–2681.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. CoRR, abs/1704.04368.

Liqiang Xiao, Lu Wang, Hao He, and Yaohui Jin. 2020.
Copy or rewrite: Hybrid summarization with hierar-
chical reinforcement learning. In AAAI, pages 9306–
9313.

Jin-ge Yao, Xiaojun Wan, and Jianguo Xiao. 2017. Re-
cent advances in document summarization. Knowl-
edge and Information Systems, 53(2):297–336.

Yong Zhang, Meng Joo Er, Rui Zhao, and Mahardhika
Pratama. 2016. Multiview convolutional neural net-
works for multidocument extractive summarization.
IEEE transactions on cybernetics, 47(10):3230–
3242.

Yuhao Zhang, Daisy Yi Ding, Tianpei Qian, Christo-
pher D Manning, and Curtis P Langlotz. 2018.
Learning to summarize radiology findings. arXiv
preprint arXiv:1809.04698.

Junnan Zhu, Yu Zhou, Jiajun Zhang, Haoran Li,
Chengqing Zong, and Changliang Li. 2020. Multi-
modal summarization with guidance of multimodal
reference. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 9749–
9756.

Li Zhuang, Feng Jing, and Xiao-Yan Zhu. 2006. Movie
review mining and summarization. In Proceedings
of the 15th ACM international conference on Infor-
mation and knowledge management, pages 43–50.

199

Proceedings of the 17th International Conference on Natural Language Processing, pages 200–207
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

ThamizhiUDp: A Dependency Parser for Tamil

Kengatharaiyer Sarveswaran
University of Moratuwa / Sri Lanka

sarvesk@uom.lk

Gihan Dias
University of Moratuwa / Sri Lanka

gihan@uom.lk

Abstract
This paper describes how we developed
a neural-based dependency parser, namely
ThamizhiUDp, which provides a complete
pipeline for the dependency parsing of the
Tamil language text using Universal Depen-
dency formalism. We have considered the
phases of the dependency parsing pipeline and
identified tools and resources in each of these
phases to improve the accuracy and to tackle
data scarcity. ThamizhiUDp uses Stanza for to-
kenisation and lemmatisation, ThamizhiPOSt
and ThamizhiMorph for generating Part of
Speech (POS) and Morphological annotations,
and uuparser with multilingual training for de-
pendency parsing. ThamizhiPOSt is our POS
tagger, which is based on the Stanza, trained
with Amrita POS-tagged corpus. It is the cur-
rent state-of-the-art in Tamil POS tagging with
an F1 score of 93.27. Our morphological ana-
lyzer, ThamizhiMorph is a rule-based system
with a very good coverage of Tamil. Our de-
pendency parser ThamizhiUDp was trained us-
ing multilingual data. It shows a Labelled As-
signed Score (LAS) of 62.39, 4 points higher
than the current best achieved for Tamil depen-
dency parsing. Therefore, we show that break-
ing up the dependency parsing pipeline to ac-
commodate existing tools and resources is a vi-
able approach for low-resource languages.

1 Introduction

Applying neural-based approaches to Tamil, like
other Indic languages, is challenging due to a lack
of quality data (Bhattacharyya et al., 2019), and the
language’s structure (Sarveswaran and Butt, 2019;
Butt, Miriam, Rajamathangi, S. and Sarveswaran,
K., 2020). Although there is a large volume of elec-
tronic unstructured/partially-structured text avail-
able on the Internet, not many language processing
tools are publicly available for even fundamental
tasks like part of speech (POS) tagging or pars-
ing. Nowadays, neural-based approaches are the

state of the art for most natural language process-
ing tasks. These approaches require a significant
amount of quality data for training and evaluation.
On the other hand techniques like transfer learning,
and multilingual learning may be used to overcome
data scarcity. This paper discusses how we devel-
oped a neural-based dependency parser for Tamil
with the aid of data orchestration and multilingual
training.

2 Background and Motivation

Tamil is a Southern Dravidian language spoken
by more than 80 million people around the world.
However, it still lacks enough tools and quality
annotated data to build good Natural Language
Processing (NLP) applications.

2.1 Universal Dependency Treebank

Treebanks are a collection of texts with various lev-
els of annotations, including Part of Speech (POS)
and morpho-syntactic annotations. There are differ-
ent formalisms used to mark syntactic annotations
(Marcus et al., 1993; Böhmová et al., 2003; Nivre
et al., 2016; Kaplan and Bresnan, 1982). Among
the available formalisms, the dependency grammar
formalism is useful for languages like Tamil which
are morphologically rich, and whose word order
is relatively variable and less bound (Bharati et al.,
2009).

The Universal Dependency formalism (Nivre
et al., 2016) is nowadays used widely to create
Universal Dependency Treebanks (UD) with an-
notations. The current release of UDv2.7 has 183
annotated treebanks of various sizes from 104 lan-
guages (Zeman et al., 2020). UD captures informa-
tion such as Parts of Speech (POS), morphological
features, and syntactic relations in the form of de-
pendencies. All these annotations are defined with
multilingual language processing in mind, and the

200

present format used to specify the annotation is
called CoNLL-U format.1

There are only three Indic languages, namely,
Hindi, Urdu, and Sanskrit that have relatively large
datasets 375K, 138K, and 28K tokens, respectively
in UDv2.7. All the other six Indic languages, in-
cluding Tamil and Telugu, have less than 12K to-
kens in UDv2.7.

2.2 Tamil Universal Dependency Treebanks
Tamil has been included in UD treebank releases
since 2015. Initially it was populated from the
Prague Style Tamil treebank by (Ramasamy and
Žabokrtský, 2012), and since then the dataset has
been part of the UD without much alterations or
corrections. Tamil TTB in UDv2.6 has some inac-
curacies, and inconsistencies. For instance, num-
bers are marked as NUM and ADJ, while only the
former tag is correct. The first author of this pa-
per has corrected some of these issues and made
it available in UDv2.7. However, there are still
more issues that need to be solved. Tamil TTB
in UDv2.7 has altogether 600 sentences for train-
ing, development and testing. In (Zeman et al.,
2020), there is another Tamil treebank with 536
sentences, namely MWTT, which has been newly
added. MWTT is based on the Enhanced Universal
Dependency2 annotation, where complex concepts
like elision, relative clauses, propagation of con-
juncts, raising and control constructions, and ex-
tended case marking are captured. Therefore, there
are slight variations in TTB and MWTT. Further,
MWTT has very short sentences, while TTB has
relatively very longer ones. In this paper, we have
mainly used and discussed Tamil TTB.

2.3 Dependency parsers
A Dependency parser is a type of syntactic parser
which is useful to elicit lexical, morphological, and
syntactic features, and the inter-connections of to-
kens in a given sentence. Linguistically, this would
be useful for syntactic analyses, and comparative
studies. Computationally, this is a key resource for
natural language understanding (Dozat and Man-
ning, 2018). Different approaches are employed
when developing dependency parsers. However,
neural-based parsers are the latest state of the art.

There are several off-the-shelf neural-based
parsers available that are built around Universal

1https://universaldependencies.org/
format.html

2https://universaldependencies.org/u/
overview/enhanced-syntax.html

Figure 1: Phases of the Parsing Pipeline
Image source: https://stanfordnlp.github.io/stanza

Dependency Treebanks (UD), including Stanza (Qi
et al., 2020), and uuparser (de Lhoneux et al., 2017)
and its derivatives. Both of these are open source
tools. Stanza is a Python NLP library which in-
cludes a multilingual neural NLP pipeline for de-
pendency parsing using Universal Dependency for-
malism. uuparser is a tool developed specifically
for UD parsing. These neural-based tools need
large amount of quality data on which to be trained.

On the other hand, several approaches are being
used to overcome the issue with data scarcity, in-
cluding multilingual training. There is an attempt
to create a multilingual parsing for several low-
resource languages, and it is reported that multi-
lingual training significantly improves the parsing
accuracy of low-resource languages (Smith et al.,
2018).

3 ThamizhiUDp

By considering all available resources and ap-
proaches as outlined in section 2, we decided to
develop a Universal Dependency parser (UDp) for
Tamil called ThamizhiUDp using existing open
source tools, namely Stanza, ThamizhiMorph, and
uuparser. However, since we do not have enough
data to train a neural-based parser end-to-end, we
have broken up the pipeline to different phases. We
have then orchestrated data from different sources
for each of these phases, and used different tools in
different phases, as shown in Table 1. The follow-
ing sub-sections discuss each of the stages of the
pipeline, and how we went about developing them.

Our dependency parsing pipeline has several
stages as shown in Figure 1. As mentioned, we
used different datasets and tools, as shown in Table
1, in the different stages of the pipeline. Currently,

201

Step Tool Dataset
Tokenisation Stanza Tamil UDT
Multi-word
tokeniser

Stanza Tamil UDT

Lemmatisation Stanza Tamil UDT
POS tagging ThamizhiPOSt Amrita Data
Morphological
tagging

ThamizhiMorph Rule-based

Dependency pars-
ing

uuparser UDT of various
languages

Table 1: ThamizhiUDp process pipeline

Stanza does not have support for multilingual train-
ing. Therefore, for dependency parsing, we used
uuparser with the multilingual training. Each of
the phases within the pipeline is explained in the
following respective sub-sections.

3.1 Tokenisation

First, the given texts have been Unicode nor-
malised, and then tokenised, and broken up in to
sentences. We developed a script3 to do Unicode
normalisation. Because of different input meth-
ods or other reasons, at times the same surface
form of a character has been stored using different
Unicode sequences. Therefore, this needed to be
normalised, otherwise, a computer would consider
them as different characters. Once this normalisa-
tion was done, we moved on to tokenisation. To do
this, we trained Stanza with the texts available in
TTB. During this phase, punctuations were sepa-
rated from words, and the given texts were broken
in to sentences.

3.2 Multi-word tokenisation using Stanza

After the initial tokenisation, syntactically com-
pound words or multi-word tokens were bro-
ken into syntactic units as proposed by the UD
guidelines,4 so that syntactic dependencies can be
marked precisely. Syntactically compound con-
structions are common in Tamil. For instance,
words with -um clitic will be tokenised, like
naanum =〉 naan+um ‘I+and’, so that coordinat-
ing conjunctive dependency can be shown easily.
In the current TTB UDv2.7, there are 520 instances
of multi-words found among 400 sentences in the
training set. We used this TTB training set to train
our multi-word tokeniser using Stanza. However,
multi-word tokenisations are not properly divided

3https://github.com/sarves/
thamizhi-validator

4https://universaldependencies.org/u/
overview/tokenization.html

in TTB. We are in the process of improving this
multi-word tokeniser with the use of more data.

3.3 Lemmatisation using Stanza

UD Treebanks also have lemmas marked in their
CoNLL-U format annotation This is useful for
language processing applications, such as a Ma-
chine Translator. We trained Stanza using the TTB
UDv2.6 to do lemmatisation. However, the cur-
rent TTB has several inaccuracies in identifying
lemmas, specifically due to improper multi-word
tokenisation. Since a lemma is identified for multi-
word tokenised words, multi-word tokenisation has
an effect on lemmatisation. Since we are still in
the process of improving our multi-word tokeniser,
lemmatisation will also be improved in the future.

3.4 POS tagging using ThamizhiPOSt

Part of Speech (POS) tagging is an important
phase in the parsing process where each word
in a sentence is assigned with its POS tag (or
lexical category) information. Several attempts
have been made to define POS tagsets for Tamil,
based on different theories, and level of granular-
ity; (Sarveswaran and Mahesan, 2014) gives an
account of different tagsets. Among these, Am-
rita (Anand Kumar et al., 2010) and BIS5 are two
popular tagsets. In addition to tagsets, Amrita and
BIS POS tagged data are also available. The cor-
pus6 which is tagged using BIS tagset is taken from
a historical novel, while the corpus tagged using
Amrita is taken from news websites. Further more
we found that Amrita’s data is cleaner and there is
more consistency when it comes to POS tagging.
We also harmonised the tags found in the BIS, Am-
rita, and UPOS7 tagsets.

Though there have been several attempts to
develop a POS tagger for Tamil, there are not
available, or have not given convincing results.
Moreover, only a few neural-based approaches for
Tamil POS tagging have been developed. There-
fore, we decided to develop a POS tagger, namely
ThamizhiPOSt, using Stanza, and to publish it as an
open source tool. We used the corpus tagged using
Amrita’s POS tagged corpus to train this tagger.
The development process is outlined briefly below.

5http://www.tdil-dc.in/tdildcMain/
articles/134692DraftPOSTagstandard.pdf

6http://www.au-kbc.org/nlp/
corpusrelease.html

7https://universaldependencies.org/u/
pos/all.html

202

Neural-based POS taggers F1 Score
PVS and Karthik (2007) 87.0*

Mokanarangan et al. (2016) 87.4
Qi et al. (2020) 82.6**

ThamizhiPOSt 93.27

Table 2: Scores of neural-based POS taggers for Tamil
POS tagging
*github.com/avineshpvs/indic_tagger
**stanfordnlp.github.io/stanza/
performance.html

First we mapped Amrita’s 32 POS tags to Uni-
versal POS (UPOS); see Table 4 in Appendix A for
the mapping of Amrita-UPOS mapping. In doing
so, we converted the annotations from Amrita POS
tags to UPOS tags. We then divided Amrita POS
tagged corpus of 17K sentences in to 11K, 5K and
1K sentences for training, development, and test-
ing, respectively. Thereafter, we converted these
datasets in CoNLL-U format so that it could then be
fed to Stanza. Following that we trained and eval-
uated ThamizhiPOSt, which is a Stanza instance
that has been trained on Amrita’s data. During the
training, we also used fastText model (Bojanowski
et al., 2016) to capture the context in POS tagging,
as specified in Stanza.

We also evaluated ThamizhiPOSt using Tamil
UDv2.6 test data. The F1 score of the evaluation
was 93.27, which is higher than the results reported
for existing neural-based POS taggers, as shown
Table 2.

3.5 Morphological tagging

We used an open source morphological analyser
called (Sarveswaran et al., 2019, 2018),8 which we
developed as part of our project on computational
grammar for Tamil, to generate morphological fea-
tures according to the UD specification.9 Since we
have developed this rule-based analyser for gram-
mar development purposes, this gives us a very
detailed analysis for each given word. We used
ThamizhiMorph in the process. At this stage, we
fed the tokenised, lemmatised and POS tagged data
in the CoNLL-U format to ThamizhiMorph to do
the morphological analyses.

As a morphological analyser, ThamizhiMorph
gives us all the possible morphological analyses for
a given word. In addition to the morphological anal-

8https://github.com/sarves/
thamizhi-morph

9https://universaldependencies.org/u/
feat/all.html

ysis, it also gives us the POS tag information, and
lemma information. When the lemma of a given
surface form in not found in the ThamizhiMorph
lexicon, it uses a rule-based guesser to predict the
lemma; sometimes this fails too, especially when
there is a foreign word.

However, for our parsing purpose, we wanted
to get the single correct morphological analysis
based on the context. This was challenging. To
tackle this challenge, we used a disambiguation
process to generate a single analysis. However,
we still failed at times, since we especially get
multiple analyses because of the way some people
write. When this was the case, we manually picked
the correct analysis, even after our disambiguation
process. We are now in the process of training a
Stanza based morphological analyser using the data
generated by ThamizhiMorph. We hope this will
improve the robustness, especially when there are
out of vocabulary tokens.

3.6 Dependency parsing

When we looked for a Dependency parser, we
found that none existed that were specifically
trained for Tamil. For TTB test data, in their de-
fault configurations the off-the-shelf Stanza and
uuparser give the Labelled Assigned Score (LAS)
of 57.64 and 55.76, respectively.

We wanted to improve the accuracy, however,
we could not find any datasets with dependency
annotations, other than TTB UDv2.6 at the time
of development. To overcome this data scarcity,
we tried multilingual training for Tamil along with
Hindi HDTB,10 Turkish,11 Arabic,12 and Telugu,13

which we found would be relevant, available in
UDv2.6. We did this multilingual training using uu-
parser. The experiment gave us some good results,
when we compared this with what was reported by
Stanza or uuparser as shown in Table 3.

As in Table 3, we got a LAS of 62.39 when
training with Hindi HDTB UDv2.6, but, surpris-
ingly, not when training with Telugu, which is also
a Dravidian language like Tamil. We trained the
tagger with the whole Telugu, and Hindi treebanks
along with Tamil. However, the score was lesser
than what we got when we trained it with Hindi

10https://github.com/UniversalDependencies/
UD_Hindi-HDTB/tree/master

11https://github.com/UniversalDependencies/
UD_Turkish-IMST/tree/master

12https://github.com/UniversalDependencies/
UD_Arabic-PADT/tree/master

13https://github.com/UniversalDependencies/
UD_Telugu-MTG/tree/master

203

Languages (# of sent.) Accuracy(LAS)
with Telugu (100) 58.91
with Telugu (1050) 59.22
with Hindi (1600) 62.39
with Telugu (100)
and Arabic (100) 58.04
with Telugu (100)
and Turkish (100) 58.43
with Telugu (100)
and Hindi (100) 59.07

Table 3: LAS of Multilingual parsing

data. For all these experiments, we used the Tamil
testing set available in TTB UDv2.6.

4 Discussion

Tamil TTB has not undergone any major revisions
or corrections since its initial release. It has several
issues, in POS tagging, multi-word tokenisation,
and dependency tagging. Altogether we only have
600 sentences for training, development, and test-
ing; some of these sentences are very long. All
these made the training of a UD parser a difficult
task. We tried to overcome some of these issues us-
ing other data, and tools available online. However,
we still depend on this dataset for some part of the
training, such as for dependency parsing.

Only one treebank, Telugu MTG UDv2.6, which
is the closest to Tamil in terms of linguistic struc-
tures, is available as of today. We observed that Tel-
ugu UDv2.6 is small in size. That only has around
1050 sentences compared to Hindi HDTB UDv2.6.
Moreover, Telugu has very short sentences with-
out any morphological feature information. On the
other hand, some sentences in TTB in UDv2.6 has
up to 40 tokens. Because of all these varied fac-
tors we could not achieve much improvement when
use Telugu MTG UDv2.6 in multilingual training.
However, Hindi, which belongs to a different lan-
guage family, showed better performance when
used for Multilingual training. We have addition-
ally noticed that the accuracy of the dependency
parsing also improved when we increased the Hindi
data size during the training.

Another challenge we have faced was finding
quality test data or benchmark datasets for evalu-
ation. In the current practice, everyone tests their
tools using their own dataset to evaluate. There-
fore, it is always a challenging task to reproduce
or compare results. In our case, for dependency

parsing, we used the UD test data. However, it is
not a clean and error free dataset for evaluation.
For this reason, we have now started working on
a Tamil dependency treebank which can soon be
used as an evaluation dataset.

We used our personal computers without any
Graphical Processing Units (GPU) to carry out all
these experiments. However, high performance
computing resources will save time, and we might
need to go for such resources when we increase the
size of datasets.

5 Conclusion

e have implemented a Universal Dependency parser
for Tamil, ThamizhiUDp, which annotates a Tamil
sentence with POS, Lemma, Morphology, and De-
pendency information in CoNLL-U format. We
have developed a parsing pipeline using several
open source tools and datasets to overcome data
scarcity. We have also used multilingual training
to overcome the scarecity of dependency annotated
data. ThamizhiPOSt, a POS tagger for Tamil, has
been implemented using Stanza and the Amrita
POS tagged dataset. ThamizhiPOSt outperforms
existing neural-based POS taggers, and gives an
F1 score of 93.27. Further, we obtained the best
accuracy of LAS 62.39 for dependency parsing in
a multilingual training setting with Hindi HDTB,
using uuparser. More importantly, we have made
our tools ThamizhiPOSt,14,15 ThamizhiMorph,16,17

and ThamizhiUDp18,19 along with relevant mod-
els, datasets, and scripts available open source for
others to use and extend upon.

Acknowledgements

We would like express our appreciation to Maris
Camilleri from the University of Essex for her sup-
port in language editing, and three anonymous re-
viewers for their valuable comments and inputs to
improve this menu script.

This research was supported by the Accelerat-
ing Higher Education Expansion and Development
(AHEAD) Operation of the Ministry of Higher Ed-
ucation, Sri Lanka funded by the World Bank.

14http://nlp-tools.uom.lk/thamizhi-pos
15https://github.com/sarves/
thamizhi-pos/

16http://nlp-tools.uom.lk/thamizhi-morph
17https://github.com/sarves/
thamizhi-morph/

18http://nlp-tools.uom.lk/thamizhi-udp
19https://github.com/sarves/
thamizhi-udp/

204

References
M Anand Kumar, V Dhanalakshmi, KP Soman, and

S Rajendran. 2010. A sequence labeling approach
to morphological analyzer for Tamil language. In-
ternational Journal on Computer Science and Engi-
neering (IJCSE), 2(06):1944–195.

Akshar Bharati, Mridul Gupta, Vineet Yadav, Karthik
Gali, and Dipti Misra Sharma. 2009. Simple parser
for Indian languages in a dependency framework.
In Proceedings of the Third Linguistic Annotation
Workshop (LAW III), pages 162–165.

Pushpak Bhattacharyya, Hema Murthy, Surangika
Ranathunga, and Ranjiva Munasinghe. 2019. Indic
language computing. Communications of the ACM,
62(11):70–75.

Alena Böhmová, Jan Hajič, Eva Hajičová, and Barbora
Hladká. 2003. The Prague Dependency Treebank.
In Treebanks, pages 103–127. Springer.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Butt, Miriam, Rajamathangi, S. and Sarveswaran, K.
2020. Mixed Categories in Tamil via Complex Cat-
egories. In Proceedings of the LFG20 Conference,
Stanford. CSLI Publications.

Timothy Dozat and Christopher D. Manning. 2018.
Simpler but more accurate semantic dependency
parsing. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 2: Short Papers), pages 484–490, Mel-
bourne, Australia. Association for Computational
Linguistics.

Ron Kaplan and Joan Bresnan. 1982. Lexical func-
tional grammar: a formal system for grammatical
representation. The Mental Representation of Gram-
matical Relations. J. Bresnan. Cambridge, MA: MIT
Press, pages 173–281.

Miryam de Lhoneux, Yan Shao, Ali Basirat, Eliyahu
Kiperwasser, Sara Stymne, Yoav Goldberg, and
Joakim Nivre. 2017. From raw text to universal
dependencies-look, no tags! In Proceedings of
the CoNLL 2017 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies, pages
207–217.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional linguistics, 19(2):313–330.

T Mokanarangan, T Pranavan, U Megala, N Nilusija,
Gihan Dias, Sanath Jayasena, and Surangika
Ranathunga. 2016. Tamil morphological analyzer
using support vector machines. In International
Conference on Applications of Natural Language to
Information Systems, pages 15–23. Springer.

Joakim Nivre, Marie-Catherine De Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, et al. 2016. Universal dependencies
v1: A multilingual treebank collection. In Proceed-
ings of the Tenth International Conference on Lan-
guage Resources and Evaluation (LREC’16), pages
1659–1666.

Avinesh PVS and G Karthik. 2007. Part-of-speech tag-
ging and chunking using conditional random fields
and transformation based learning. Shallow Parsing
for South Asian Languages, 21:21–24.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D Manning. 2020. Stanza:
A python natural language processing toolkit
for many human languages. arXiv preprint
arXiv:2003.07082.

Loganathan Ramasamy and Zdeněk Žabokrtský. 2012.
Prague dependency style treebank for Tamil. In
Proceedings of Eighth International Conference on
Language Resources and Evaluation (LREC 2012),
pages 1888–1894, İstanbul, Turkey.

K Sarveswaran, Gihan Dias, and Miriam Butt. 2018.
ThamizhiFST: A Morphological Analyser and Gen-
erator for Tamil Verbs. In 2018 3rd International
Conference on Information Technology Research
(ICITR), pages 1–6. IEEE.

K Sarveswaran, Gihan Dias, and Miriam Butt. 2019.
Using meta-morph rules to develop morphological
analysers: A case study concerning Tamil. In Pro-
ceedings of the 14th International Conference on
Finite-State Methods and Natural Language Pro-
cessing, pages 76–86, Dresden, Germany. Associa-
tion for Computational Linguistics.

K Sarveswaran and S Mahesan. 2014. Hierarchical
Tag-set for Rule-based Processing of Tamil Lan-
guage. International Journal of Multidisciplinary
Studies (IJMS), 1(2):67–74.

Kengatharaiyer Sarveswaran and Miriam Butt. 2019.
Computational Challenges with Tamil Complex
Predicates. In Proceedings of the LFG19 Confer-
ence, Australian National University, pages 272–
292, Stanford. CSLI Publications.

Aaron Smith, Bernd Bohnet, Miryam de Lhoneux,
Joakim Nivre, Yan Shao, and Sara Stymne. 2018. 82
treebanks, 34 models: Universal Dependency pars-
ing with multi-treebank models. In Proceedings of
the CoNLL 2018 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies, pages
113–123, Brussels, Belgium. Association for Com-
putational Linguistics.

Daniel Zeman, Joakim Nivre, Mitchell Abrams,
Elia Ackermann, Noëmi Aepli, Hamid Aghaei,
Željko Agić, Amir Ahmadi, Lars Ahrenberg,
Chika Kennedy Ajede, Gabrielė Aleksandravičiūtė,

205

Ika Alfina, Lene Antonsen, Katya Aplonova, An-
gelina Aquino, Carolina Aragon, Maria Jesus Aran-
zabe, �Hórunn Arnardóttir, Gashaw Arutie, Jes-
sica Naraiswari Arwidarasti, Masayuki Asahara,
Luma Ateyah, Furkan Atmaca, Mohammed Attia,
Aitziber Atutxa, Liesbeth Augustinus, Elena Bad-
maeva, Keerthana Balasubramani, Miguel Balles-
teros, Esha Banerjee, Sebastian Bank, Verginica
Barbu Mititelu, Victoria Basmov, Colin Batche-
lor, John Bauer, Seyyit Talha Bedir, Kepa Ben-
goetxea, Gözde Berk, Yevgeni Berzak, Irshad Ah-
mad Bhat, Riyaz Ahmad Bhat, Erica Biagetti, Eck-
hard Bick, Agnė Bielinskienė, Kristı́n Bjarnadóttir,
Rogier Blokland, Victoria Bobicev, Loı̈c Boizou,
Emanuel Borges Völker, Carl Börstell, Cristina
Bosco, Gosse Bouma, Sam Bowman, Adriane Boyd,
Kristina Brokaitė, Aljoscha Burchardt, Marie Can-
dito, Bernard Caron, Gauthier Caron, Tatiana Cav-
alcanti, Gülşen Cebiroğlu Eryiğit, Flavio Massim-
iliano Cecchini, Giuseppe G. A. Celano, Slavomı́r
Čéplö, Savas Cetin, Özlem Çetinoğlu, Fabri-
cio Chalub, Ethan Chi, Yongseok Cho, Jinho
Choi, Jayeol Chun, Alessandra T. Cignarella, Sil-
vie Cinková, Aurélie Collomb, Çağrı Çöltekin,
Miriam Connor, Marine Courtin, Elizabeth David-
son, Marie-Catherine de Marneffe, Valeria de Paiva,
Mehmet Oguz Derin, Elvis de Souza, Arantza
Diaz de Ilarraza, Carly Dickerson, Arawinda Di-
nakaramani, Bamba Dione, Peter Dirix, Kaja Do-
brovoljc, Timothy Dozat, Kira Droganova, Puneet
Dwivedi, Hanne Eckhoff, Marhaba Eli, Ali Elkahky,
Binyam Ephrem, Olga Erina, Tomaž Erjavec,
Aline Etienne, Wograine Evelyn, Sidney Facun-
des, Richárd Farkas, Marı́lia Fernanda, Hector Fer-
nandez Alcalde, Jennifer Foster, Cláudia Freitas,
Kazunori Fujita, Katarı́na Gajdošová, Daniel Gal-
braith, Marcos Garcia, Moa Gärdenfors, Sebastian
Garza, Fabrı́cio Ferraz Gerardi, Kim Gerdes, Filip
Ginter, Iakes Goenaga, Koldo Gojenola, Memduh
Gökırmak, Yoav Goldberg, Xavier Gómez Guino-
vart, Berta González Saavedra, Bernadeta Griciūtė,
Matias Grioni, Loı̈c Grobol, Normunds Grūzı̄tis,
Bruno Guillaume, Céline Guillot-Barbance, Tunga
Güngör, Nizar Habash, Hinrik Hafsteinsson, Jan
Hajič, Jan Hajič jr., Mika Hämäläinen, Linh Hà Mỹ,
Na-Rae Han, Muhammad Yudistira Hanifmuti, Sam
Hardwick, Kim Harris, Dag Haug, Johannes Hei-
necke, Oliver Hellwig, Felix Hennig, Barbora
Hladká, Jaroslava Hlaváčová, Florinel Hociung,
Petter Hohle, Eva Huber, Jena Hwang, Takumi
Ikeda, Anton Karl Ingason, Radu Ion, Elena Irimia,
O. lájı́dé Ishola, Tomáš Jelı́nek, Anders Johannsen,
Hildur Jónsdóttir, Fredrik Jørgensen, Markus Juu-
tinen, Sarveswaran K, Hüner Kaşıkara, Andre
Kaasen, Nadezhda Kabaeva, Sylvain Kahane, Hi-
roshi Kanayama, Jenna Kanerva, Boris Katz, Tolga
Kayadelen, Jessica Kenney, Václava Kettnerová,
Jesse Kirchner, Elena Klementieva, Arne Köhn, Ab-
dullatif Köksal, Kamil Kopacewicz, Timo Korki-
akangas, Natalia Kotsyba, Jolanta Kovalevskaitė, Si-
mon Krek, Parameswari Krishnamurthy, Sookyoung
Kwak, Veronika Laippala, Lucia Lam, Lorenzo
Lambertino, Tatiana Lando, Septina Dian Larasati,

Alexei Lavrentiev, John Lee, Phng Lê H`ông,
Alessandro Lenci, Saran Lertpradit, Herman Leung,
Maria Levina, Cheuk Ying Li, Josie Li, Keying Li,
Yuan Li, KyungTae Lim, Krister Lindén, Nikola
Ljubešić, Olga Loginova, Andry Luthfi, Mikko
Luukko, Olga Lyashevskaya, Teresa Lynn, Vivien
Macketanz, Aibek Makazhanov, Michael Mandl,
Christopher Manning, Ruli Manurung, Cătălina
Mărănduc, David Mareček, Katrin Marheinecke,
Héctor Martı́nez Alonso, André Martins, Jan Mašek,
Hiroshi Matsuda, Yuji Matsumoto, Ryan Mc-
Donald, Sarah McGuinness, Gustavo Mendonça,
Niko Miekka, Karina Mischenkova, Margarita
Misirpashayeva, Anna Missilä, Cătălin Mititelu,
Maria Mitrofan, Yusuke Miyao, AmirHossein Mo-
jiri Foroushani, Amirsaeid Moloodi, Simonetta
Montemagni, Amir More, Laura Moreno Romero,
Keiko Sophie Mori, Shinsuke Mori, Tomohiko
Morioka, Shigeki Moro, Bjartur Mortensen, Bohdan
Moskalevskyi, Kadri Muischnek, Robert Munro,
Yugo Murawaki, Kaili Müürisep, Pinkey Nainwani,
Mariam Nakhlé, Juan Ignacio Navarro Horñiacek,
Anna Nedoluzhko, Gunta Nešpore-Bērzkalne, Lng
Nguy˜ên Thi., Huy`ên Nguy˜ên Thi. Minh, Yoshihiro
Nikaido, Vitaly Nikolaev, Rattima Nitisaroj, Alireza
Nourian, Hanna Nurmi, Stina Ojala, Atul Kr. Ojha,
Adédayo. Olúòkun, Mai Omura, Emeka Onwueg-
buzia, Petya Osenova, Robert Östling, Lilja Øvre-
lid, Şaziye Betül Özateş, Arzucan Özgür, Balkız
Öztürk Başaran, Niko Partanen, Elena Pascual,
Marco Passarotti, Agnieszka Patejuk, Guilherme
Paulino-Passos, Angelika Peljak-Łapińska, Siyao
Peng, Cenel-Augusto Perez, Natalia Perkova, Guy
Perrier, Slav Petrov, Daria Petrova, Jason Phelan,
Jussi Piitulainen, Tommi A Pirinen, Emily Pitler,
Barbara Plank, Thierry Poibeau, Larisa Ponomareva,
Martin Popel, Lauma Pretkalniņa, Sophie Prévost,
Prokopis Prokopidis, Adam Przepiórkowski, Tiina
Puolakainen, Sampo Pyysalo, Peng Qi, Andriela
Rääbis, Alexandre Rademaker, Taraka Rama, Lo-
ganathan Ramasamy, Carlos Ramisch, Fam Rashel,
Mohammad Sadegh Rasooli, Vinit Ravishankar,
Livy Real, Petru Rebeja, Siva Reddy, Georg Rehm,
Ivan Riabov, Michael Rießler, Erika Rimkutė,
Larissa Rinaldi, Laura Rituma, Luisa Rocha, Eirı́kur
Rögnvaldsson, Mykhailo Romanenko, Rudolf Rosa,
Valentin Ros, ca, Davide Rovati, Olga Rudina, Jack
Rueter, Kristján Rúnarsson, Shoval Sadde, Pegah
Safari, Benoı̂t Sagot, Aleksi Sahala, Shadi Saleh,
Alessio Salomoni, Tanja Samardžić, Stephanie Sam-
son, Manuela Sanguinetti, Dage Särg, Baiba Saulı̄te,
Yanin Sawanakunanon, Kevin Scannell, Salvatore
Scarlata, Nathan Schneider, Sebastian Schuster,
Djamé Seddah, Wolfgang Seeker, Mojgan Seraji,
Mo Shen, Atsuko Shimada, Hiroyuki Shirasu, Muh
Shohibussirri, Dmitry Sichinava, Einar Freyr Sig-
ursson, Aline Silveira, Natalia Silveira, Maria Simi,
Radu Simionescu, Katalin Simkó, Mária Šimková,
Kiril Simov, Maria Skachedubova, Aaron Smith, Is-
abela Soares-Bastos, Carolyn Spadine, Stein�hór Ste-
ingrı́msson, Antonio Stella, Milan Straka, Emmett
Strickland, Jana Strnadová, Alane Suhr, Yogi Les-
mana Sulestio, Umut Sulubacak, Shingo Suzuki,

206

Zsolt Szántó, Dima Taji, Yuta Takahashi, Fabio Tam-
burini, Mary Ann C. Tan, Takaaki Tanaka, Sam-
son Tella, Isabelle Tellier, Guillaume Thomas, Li-
isi Torga, Marsida Toska, Trond Trosterud, Anna
Trukhina, Reut Tsarfaty, Utku Türk, Francis Ty-
ers, Sumire Uematsu, Roman Untilov, Zdeňka
Urešová, Larraitz Uria, Hans Uszkoreit, Andrius
Utka, Sowmya Vajjala, Daniel van Niekerk, Gert-
jan van Noord, Viktor Varga, Eric Villemonte
de la Clergerie, Veronika Vincze, Aya Wakasa,
Joel C. Wallenberg, Lars Wallin, Abigail Walsh,
Jing Xian Wang, Jonathan North Washington, Max-
imilan Wendt, Paul Widmer, Seyi Williams, Mats
Wirén, Christian Wittern, Tsegay Woldemariam,
Tak-sum Wong, Alina Wróblewska, Mary Yako,
Kayo Yamashita, Naoki Yamazaki, Chunxiao Yan,
Koichi Yasuoka, Marat M. Yavrumyan, Zhuoran Yu,
Zdeněk Žabokrtský, Shorouq Zahra, Amir Zeldes,
Hanzhi Zhu, and Zhuravleva. 2020. Universal De-
pendencies 2.7. LINDAT/CLARIAH-CZ digital li-
brary at the Institute of Formal and Applied Linguis-
tics (ÚFAL), Faculty of Mathematics and Physics,
Charles University.

Appendix A: Harmonisation of Amrita
and UPOS tagsets

Amrita UPOS Amrita UPOS
NN NOUN CVB CCONJ
NNC NOUN PPO ADP
NNP PROPN CNJ CCONJ
NNPC PROPN DET DET
ORD NUM COM CCONJ
CRD NUM EMP PART
PRP PRON ECH PART
PRIN PRON RDW ADP
ADJ ADJ QW VERB
ADV ADV QM PUNCT
VNAJ VERB INT ADJ
VNAV VERB NNQ NUM
VINT VERB QTF NUM
VBG NOUN COMM PUNCT
VF VERB DOT PUNCT
VAX VAUX

Table 4: Harmonisation of Amrita and UPOS tagsets

207

Proceedings of the 17th International Conference on Natural Language Processing, pages 208–212
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

1

Abstract

The performance of deep learning models
depends on the quality and quantity of data.
Data construction, however, is time-
consuming and costly. In addition, when
expert domain data are constructed, the
availability of experts is limited. In such
cases, active learning can efficiently
increase the performance of the learning
models with minimal data construction.
Although various datasets have been
constructed using active learning
techniques, vigorous studies on the
construction of Korean data on expert
domains are yet to be conducted. In this
study, a corpus for named entity
recognition was constructed for the
financial domain using the active learning
technique. The contributions of the study
are as follows. (1) It was verified that the
active learning technique could effectively
construct the named entity recognition
corpus for the financial domain, and (2) a
named entity recognizer for the financial
domain was developed. Data of 8,043
sentences were constructed using the
proposed method, and the performance of
the named entity recognizer reached
80.84%. Moreover, the proposed method
reduced data construction costs by 12–25%.

1 Introduction

Rapid advancements in the field of artificial
intelligence have contributed to their increased
use in various fields. In the field of natural
language processing, deep learning models have
demonstrated a higher performance than humans

in benchmark tests such as GLUE (Wang et al.,
2018) and SQuAD (Rajpurkar et al., 2018). Such
deep learning models require expert knowledge
and time, in addition to the cost involved in
computing power for model training and data
construction. Therefore, it is difficult to apply
deep learning models in industries readily. In
particular, it is not easy to reduce the costs of
learning data construction when compared to that
of hardware because it requires human effort. In
addition, specific fields, such as the financial
domain, requires workers with expert domain
knowledge and, therefore, requires more time and
is more expensive. Various studies have been
conducted in areas such as unsupervised learning
(Taghipour and Tou Ng., 2015) and
crowdsourcing (OOmen and Aroyo., 2011) to
reduce the data construction costs of expert
domains. The number of data constructed through
such methods is larger than the number of
annotations created by experts, but the quality of
the constructed data is relatively low.

Active learning is a technique used by experts
to construct data, with the goal of achieving
optimum performance with fewer data. The active
learning technique determines which data are to
be learned first by interacting with users when
learning data are limited. The goal of the
interaction is to identify data that can be used to
improve the performance of the learning model
efficiently. During the early learning stages, the
model is trained with a small number of learning
data, and it submits queries requesting additional
data that can efficiently improve its performance,
thereby reducing development costs. The active
learning technique is known to be effective in

Constructing a Korean Named Entity Recognition Dataset

for the Financial Domain using Active Learning

Dong-Ho Jeonga,O, Min-Kang Heoa, Hyung-Chul Kimb, Sang-Won Parka

DeepNatural Inca, Kookmin Bankb
dongho@deepnatural.ai, minkang@deepnatural.ai, yhdosu@kbfg.com, anson@deepnatural.ai

208

2

various natural language processing fields such as
information extraction, Named Entity
Recognition(NER), and text classification
(Settles., 2009). Various studies have been
conducted on active learning for general and
expert domains in other countries, but vigorous
studies for constructing expert domain data are
yet to be conducted in South Korea.

This study investigates active learning-based
data construction for a NER system in the
financial domain. The contributions of this study
are as follows.

(1) It was experimentally verified that the
active learning technique could effectively
construct a NER corpus for the financial domain.
Particularly, a cost reduction of 12.5–25% was
achieved when the data of 3,000–3,500 sentences
were constructed. 

(2) A named entity recognizer for the financial
domain with a performance of 80.84% was
consequently developed. 
The remainder of this paper is organized as follows.
Section 2 presents a review of existing studies on
active learning from Korea and other countries and
an examination of the research directions in active
learning. Section 3 describes the system diagram
for constructing the NER corpus for the financial
domain. The corpus and results are evaluated in
Section 4, and the conclusions are presented in
Section 5.

2 Related Research

2.1 Active Learning Technique

Passive learning represents general machine
learning that learns data in sequence without a
process of selecting learning data through queries.
In contrast, active learning arbitrarily selects and
learns data. Compared to passive learning, more
learning data selection schemes exist in active
learning (Settles., 2009). Uncertainty sampling is
the simplest way to select the initial learning data.
It is an intuitive way of assuming that if the model
prediction for specific data is uncertain,
information on the corresponding data is
insufficient for selecting the data as the priority
target data to be learned. Uncertainty sampling
schemes include least confidence (LC), margin
sampling, and entropy sampling according to
uncertainty-measuring criteria. The most intuitive
LC sampling scheme, which uses data with the
lowest measured probability (e.g., softmax) first, is

used in this study to develop the trained model. In
other words, it first selects data that are not easily
resolved by the current model as the learning data.

2.2 Research Trends in Korea and Other
Countries

Studies on active learning are being conducted in
various natural language processing fields,
including NER (Shen et al., 2017), and in various
domains (Li et al., 2012), including the financial
domain (Smailović et al., 2014), in other countries
(Settles., 2009). In South Korea, the active learning
technique has been applied to areas such as
sentence classification (Kim et al., 2012) and NER
(Yoon and Oh., 2015) using person, location, and
organization (PLO) representation of the named
entities. However, it has not been vigorously
applied to domains that require expert knowledge,
such as the financial domain. In this study, active
learning was applied to the construction of a NER
corpus for the financial domain to recognize 40
named entities (financial institutions, broadcasting
stations, economy-related institutions, and
financial products such as funds and derivatives) in
the finance-related domain.

3 Construction of a Named Entity
Corpus for the Financial Domain using
Active Learning

In this study, the NER corpus was constructed by
applying active learning to the financial
domain. NER identifies and classifies PLO
entities in a given sentence. In the financial
domain, this is an annotation task that
distinguishes financial and general institutions
and requires expert knowledge for tagging named
entities of financial products (e.g., funds) and
financial theories and phenomena. However,
there are practical limitations such as the
requirement for experts who perform the
annotation tasks and the costs of data
construction. Therefore, in this study, we
investigate whether the performance of a model
can be improved by minimizing the annotation
tasks using active learning to handle such
problems. Figure 1 presents the overall diagram
of the named entity corpus construction task for
the financial domain using active learning.

The task sequence is as follows. (1) First, 500
arbitrary data, which are to be annotated, are
selected from the financial domain raw corpus. (2)

209

3

A named entity annotation task is performed on the
corresponding data by an annotation platform. (3)
The created data are then used to train the model.
(4) The model is used to predict the raw corpus and
select the annotation target data belonging to a
specific condition. The LC scheme discussed in
Section 2.1 was applied to select the annotation
target data in this study. Steps (1) - (4) are repeated
until the performance of the model converges. The
model selects data that are expected to contribute
the most to model performance by learning the
sentences that are not initially predicted by the
model. In other words, as data of a specific size or
larger tend to contribute less to performance
improvement, the model performance can be
optimized with minimum data. As a result, a better
performance can be obtained using our method
than using random sampling, even with the
construction of fewer data at a reduced cost.

Figure 1: Schematic diagram for constructing the
named entity corpus for the financial domain using
active learning.

4 Experiment and Results

4.1 Data

Financial domain text was collected from the web
to verify the effectiveness of the active learning
model. 1 The text was collected by crawling
sentences, including finance-related keywords. Of
the 9,043 sentences collected, named entities in
1,043 sentences were tagged first and used as
evaluation data, and the remaining 8,000 sentences
were treated as the raw financial domain corpus.
The tagging task was performed with 40 named
entity tag sets using the annotation platform 2
shown in Figure 2.

1 The dataset was collected in cooperation with KB.

4.2 Experiment Method

The initial annotation target data were randomly
selected from the raw financial domain corpus.
The selected data were tagged by the annotation
platform shown in Figure 2. A morpheme
analyzer provided by KB was used to separate the
annotated sentences into morpheme units for use
as learning data. In this study, a named entity
recognizer was implemented by fine-tuning the
multilingual-BERT model using the original
method in (Devlin et al., 2015).

The experimental method is as follows: The
model was trained using the active learning
technique that samples the target data using LC and
random sampling methods. Thereafter, the model
was trained and evaluated by increasing the
number of learning sentences by 500 to examine
the performance improvement trend in the model
following each iteration. The final model was
generated in eight iterations, with the data
increasing from 500 to 4,000 sentences. In addition,
each iteration was repeated 10 times to verify the
objectivity of the experiment. The
hyperparameters used in the experiment are listed
in Table 1.

Figure 2: Processing tools of the annotation platform.

Hyperparameter Value
Maximum sentence length 256
Batch size 6
Learning rate 3e-5
Optimizer Adam
Epoch 10

Table 1: Font Hyperparameter information.

2 http://app.deepnatural.ai

210

4

4.3 Experiment Results

The F1 evaluation results of the active learning
model trained using LC and random sampling are
presented in Figure 3. When the number of
learning sentences is small (500–1,500 sentences),
there are no significant differences in the model
performance. It appears that at least 1,500
sentences are required to obtain meaningful
information to affect the model performance.
When the number of learning sentences exceeds
2,000, the model trained using the LC method
performs better than that trained using random
sampling. With 4,000 or more sentences, the LC
and random sampling models tend to exhibit
similar performances. Specifically, the F1 of
random sampling is 79%, which is similar to that
when the LC model is trained with 3,000–3,500
sentences. This shows that the cost can be reduced
by 12.5-25% by using the active learning technique.

Figure 3: Model performance evaluation trend using
different sampling techniques

Information on the tag set ratios of 500 sentences
selected in each of the eight iterations for
generating the annotation target data is presented in
Table 2. Only the first four iterations are listed in
Table 2 for brevity.

Step Top 5 tag ratios (%) in
LC sampling

Low 5 tag ratios (%) in
random sampling

#1

AMOUNT (25) AMOUNT (20)
PRICE (20) DATETIME (17)

DATETIME (15) PRICE (15)
FINANCIAL_INSTITUTI

ON (10)
FINANCIAL_INSTITUTI

ON (15)
PERSON (4) PERSON (5)

#2

FINANCIAL_INSTITUTI
ON (15)

AMOUNT (24)

COMPANY_AND_BRAN
D (8)

PRICE (17)

GOVERNMENT (7) DATETIME (17)
FINANCIAL_PRODUCT

(7)
FINANCIAL_INSTITUTI

ON (10)
VALUE (6) VALUE (6)

#3

FINANCIAL_INSTITUTI
ON (15)

AMOUNT (23)

DATETIME (12) PRICE (16)
AMOUNT (11) DATETIME (14)

AREA (6) FINANCIAL_INSTITUTI
ON (13)

GOVERNMENT (5) PERSON (5)

#4

PRICE (21) AMOUNT (28)
FINANCIAL_INSTITUTI

ON (14)
PRICE (19)

DATETIME (11) DATETIME (13)
AMOUNT (8) FINANCIAL_INSTITUTI

ON (9)
FINANCIAL_PRODUCT

(6)
VALUE (5)

Table 2: Top 5 tag set ratios (%) in the first four step.

The tag sets ‘AMOUNT,’ ‘PRICE,’ ‘DATETIME,’
and ‘FINANCIAL_INSTITUTION’ were mainly
selected by random sampling, indicating that these
tag sets frequently appear in the collected raw
corpus. The tag set distribution for the entire
annotated sentences also reveals that the tags
‘DATETIME’, ‘AMOUNT,’
‘FINANCIAL_INSTITUTION’ and ‘PRICE’
appear frequently. However, in LC sampling,
various tag sets appear as the upper tag set
regardless of the tag set ratios in the entire dataset.

5 Conclusions

In this study, a NER corpus for the financial
domain was constructed through active learning.
The active learning technique could rapidly and
efficiently improve the performance of the model.
Tag sets that could not be easily analyzed by the
model were constructed first, and it was found that
more meaningful quality datasets were constructed
through machine learning. From the 8,043
sentences constructed, a named entity recognizer
with a F1 performance of 80.84% was developed
for the financial domain. Further, it was
experimentally verified that the active learning
technique could provide a cost reduction of 12.5–
25%.

211

5

Acknowledgments
This study was carried out as part of the 2019
Startup Growth Technology Development Project
(TIPS Program, No. S2816383) supported by the
Ministry of SMEs and Startups in cooperation
with KB Kookmin Bank.

References

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. Glue:
A multi-task benchmark and analysis platform for
natural language understanding. arXiv preprint
arXiv:1804.07461.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don't know: Unanswerable
questions for SQuAD. arXiv preprint
arXiv:1806.03822.

Kaveh Taghipour, and Hwee Tou Ng. 2015. Semi-
supervised word sense disambiguation using word
embeddings in general and specific domains. In:
Proceedings of the 2015 conference of the North
American chapter of the association for
computational linguistics: human language
technologies. p. 314-323.

Johan Oomen, and Lora Aroyo. 2011. Crowdsourcing
in the cultural heritage domain: opportunities and
challenges. In: Proceedings of the 5th International
Conference on Communities and Technologies. p.
138-149.

Burr Settles. 2009. Active learning literature survey:
Computer sciences technical report 1648.
University of Wisconsin-Madison.

Yanyao Shen, Hyokun Yun, Zachary Lipton, Yakov
Kronrod, and Animashree Anandkumar. 2017. Deep
active learning for named entity recognition. arXiv
preprint arXiv:1707.05928.

Lianghao Li, Xiaoming Jin, Sinno Jialin Pan, and
JianTao Sun. 2012. Multi-domain active learning
for text classification. In: Proceedings of the 18th
ACM SIGKDD international conference on
Knowledge discovery and data mining. p. 1086-
1094.

Jasmina Smailović, Miha Grčar, Nada Lavrač, and
Martin Žnidaršič. 2014. Stream-based active
learning for sentiment analysis in the financial
domain. Information sciences, 285, 181-203.

Je-wook Kim, Han-joon Kim, and Sang-goo Lee. 2012.
Construction method of active learning-based
learning document sets for a Bayesian document

classification system. Journal of KIISE: Software
and Application, 29(11· 12), 966-978.

Bo-hyeon Yoon and Hyo-jeong Oh. 2015.
Development of a tool for semi-automatically
constructing named entities in advance using active
learning. Journal of KACE, 18(6), 81-88.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805.

212

Proceedings of the 17th International Conference on Natural Language Processing, pages 213–227
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Self-Supervised Claim Identification for Automated Fact Checking

Archita Pathak
University at Buffalo (SUNY)

Buffalo, NY
architap@buffalo.edu

Mohammad Abuzar Shaikh
University at Buffalo (SUNY)

Buffalo, NY
mshaikh2@buffalo.edu

Rohini K. Srihari
University at Buffalo (SUNY)

Buffalo, NY
rohini@buffalo.edu

Abstract

We propose a novel, attention-based self-
supervised approach to identify “claim-
worthy” sentences in a fake news article,
an important first step in automated fact-
checking. We leverage aboutness of headline
and content using attention mechanism for
this task. The identified claims can be used
for downstream task of claim verification for
which we are releasing a benchmark dataset
of manually selected compelling articles
with veracity labels and associated evidence.
This work goes beyond stylistic analysis to
identifying content that influences reader
belief. Experiments with three datasets show
the strength of our model1.

1 Introduction

The explosion of fake news on social media has
resulted in global unrest and has been a major con-
cern for governments and societies worldwide2.
According to a recent Pew Research Study, Amer-
icans rate it as a larger problem than racism, cli-
mate change, or illegal immigration3. Since, it’s
inexpensive to create a website and easily dissem-
inate content on the social media platforms, there
is a rising need for automated fake news detec-
tion. Furthermore, AI solutions are also required
to follow good practices, specifically avoiding cen-
sorship, violation of fundamental rights such as
freedom of expression, and ensuring data privacy
(de Cock Buning, 2018). However, to date, AI
models proposed for fake news detection do not

1Data and code available at:
https://github.com/architapathak/Self-Supervised-
ClaimIdentification

2https://www.reuters.com/article/us-singapore-politics-
fakenews-factbox/factbox-fake-news-laws-around-the-
world-idUSKCN1RE0XN

3https://www.journalism.org/2019/06/05/many-
americans-say-made-up-news-is-a-critical-problem-that-
needs-to-be-fixed/

scale for detecting real-time fake news4.
Much of the research on automated text-based

fake news detection can be classified into three
broad categories: (1) linguistic approach, which
focuses on lexical, stylometric and pattern learning
mechanisms (Potthast et al., 2017; Rashkin et al.,
2017; Wang, 2017; Singhania et al., 2017; Pérez-
Rosas et al., 2018); (2) network-based approach,
which leverages features such as the speed and vol-
ume of propagation of fake news articles on social
media platforms (Castillo et al., 2011; Yang et al.,
2012; Kwon et al., 2013; Ma et al., 2015; Jin et al.,
2016; Ruchansky et al., 2017; Wu and Liu, 2018);
and (3) automated fact-checking approach, which
is an effort to assist manual fact-checkers by au-
tomating some of their tasks such as detection and
verification of claims (Graves, 2018).

While most work in automated fact-checking
has been focused on claim verification task, very
few methods have been proposed for detection of
claims (Hassan et al., 2017; Jaradat et al., 2018;
Konstantinovskiy et al., 2018). The approaches
in these efforts are majorly related to political dis-
course. However, our focus is on fake news, which
are broader than political discourse since (i) they
are deliberately written with a divisive agenda to
cause social unrest, (ii) they are not constrained to
only politics, and (iii) the headline plays an equally
important role in compelling people to read the
article.

In this paper, we focus on articles where there is
a deliberate intent to influence readers through fab-
ricated or manipulated claims in the headline and
the content. Such articles have a compelling writ-
ing style similar to the mainstream media. Hence,
we build datasets containing these type of com-
pelling articles along with veracity labels and as-
sociated evidence supporting the label of each arti-

4https://www.technologyreview.com/s/612236/even-the-
best-ai-for-spotting-fake-news-is-still-terrible/

213

cle. We, then, use these datasets to identify “claim-
worthy” sentences. In our work, we define “claim”
as “statements which are important to the point
of the article but one would require to have them
verified.”

Our working hypothesis is that in fake news
which are created to cause harm, these are the sen-
tences most relevant to the headline. Exploiting
the hypothesis that the essence of a news article is
encapsulated in its headline (Jaime Sis and MER-
CEDES, 2009; Kuiken et al., 2017; Wahl-Jorgensen
and Hanitzsch, 2009), we propose a self-supervised
method to explore the aboutness of the content with
the headline of the article to extract the most rele-
vant sentences. Bruza and Huibers (1996) defines
aboutness as: an information carrier i will be said
to be about information carrier j if the informa-
tion borne by j holds in i. The idea is taken from
Information Retrieval domain where it is used to
signify implications between query and document,
specifically to explore the underlying meaning or
concept within the document and the query (Az-
zopardi et al., 2009). In our work, headline is mod-
elled as a query while each of the sentences of the
article acts as a document, and we use the concept
of aboutness to find the relevant sentences. We
show that attention-based mechanisms are able to
successfully capture this concept in the news arti-
cle.

Contribution: In this work: (i) we introduce
a self-supervised representation learning model
that eliminates the prerequisite that requires human
to annotate data, which is a time consuming and
costly task; (ii) the proposed headline-to-sentence
attention-based approach for claim identification is
novel; previous unsupervised approach for this task
use weak supervisory signal which does not capture
the context of the article efficiently; and (iii) we
propose a benchmark dataset for evidence-based
fake news detection. Our dataset contains evidence
for each of the fake news articles that contributes
to the overall degree of veracity of the article.

2 Related Work

Claim Identification/Detection: The task of
claim identification/detection was first introduced
by Levy et al. (2014) who, with the help of human
annotators, provided a dataset and a fundamental
approach in identifying context dependent claims.
In their dataset, which was originally developed
by Aharoni et al. (2014), each statement indicates

whether it should be considered as a context de-
pendent claim (CDC) or not. Levy et al. (2014)
reported encouraging results obtained through a
supervised learning algorithm using a cascade of
classifiers. A rule-based model was introduced
by Eckle-Kohler et al. (2015) to bifurcate claim
and premise statements in an argumentative dis-
course environment. However, these methods were
generic to only a small set of corpora. Furthermore,
Levy et al. (2017) also introduced an unsupervised
approach to detect claims, which involves a weak
supervisory signal “that” for training. However,
this approach does not capture the aboutness of the
article to understand the context of “claim-worthy”
sentences.

In 2017, Hassan et al. (2017) introduced Claim-
Buster, a platform developed by training a super-
vised learning model on a large annotated cor-
pus of televised debates in the USA. Their model
used SVM classifier to detect claim-worthy factual
claims and produced a score of how important a
claim is to factcheck. The 20,000 sentences in the
corpus were annotated by human coders to distin-
guish between claim-worthy factual claims from
opinions and boring statements. However, anno-
tating a sentence as an important or unimportant
claim is a non-trivial task as this decision changes
depending on who’s asking, political context and
annotator’s background (Graves, 2018).

The model proposed by Hassan et al. (2017)
only learns the labelled instances and does not
explore the contextual information of the written
text. A context-aware approach in the political dis-
course environment was introduced by Gencheva
et al. (2017) who created a rich representation of
the sentences from 2016 US presidential debates.
Their dataset was compiled by taking the outputs
of factchecking of the debates from 9 factchecking
organizations. Their models were created to pre-
dict if the claim would be highlighted by at least
one or by a specific organization. However, the
authors don’t have any formal definition of claim
in their paper, and their model is specific to certain
organizations which led to several false positives.

Another context-aware approach for claim de-
tection was proposed by Konstantinovskiy et al.
(2018) who used sentence embeddings, pre-trained
on a large dataset of NLI. This work also created a
crowd-sourced annotated dataset of sentences from
UK political TV shows, annotated across 7 classes.
However, their classifiers for the fine-grained clas-

214

sification to detect 7 classes of sentences did not
yield good results due to lack of enough annotated
data, thus requiring more annotations which is a
costly and time consuming task.

We build a model that can be trained in a self-
supervised setting to overcome the challenges as-
sociated with annotated dataset of claims. We also
use attention-based approach to capture aboutness
and rich contextual information between headline
and all the sentences of the article. The perfor-
mance on manually created test sets demonstrate
promising results in identifying “claim-worthy”
sentences even when no sentence-level annotation
was used for training.

Fake News Dataset: A variety of fake news
datasets have been released in the recent years,
most notably Buzzfeed5 and Stanford (Allcott and
Gentzkow, 2017) datasets containing list of popu-
lar fake news articles from 2016 US presidential
elections. However, these datasets only contain
webpage URLs of the original article and major-
ity of them don’t exist anymore. Following this,
several other datasets were published such as Fake
news challenge dataset6 which was used for the
task of stance detection; Getting Real about Fake
News Kaggle dataset7 which was created by using
BS detector tool; and FakeNewsCorpus8 which is
an open-source large scale collection of fake news
articles. However, these articles are labelled as fake
based on the domain of the websites they come
from. Since, the content of these articles are not
verified for degree of veracity, using them directly
for training may lead to several false positives.

This problem was overcome by recently released
large dataset, NELA-GT-2018 (Norregaard et al.,
2019), which contains articles with ground truth
ratings retrieved from 8 different assessment sites.
However, the label definitions are not generic and
dependent on the external organizations. Pathak
and Srihari (2019) also introduced intuitive ground
truth labels based on the degree of veracity of
the fake news articles, however, the dataset is not
publicly available. Additionally, they also do not
specify the relationship of their labels with the la-
bels used by established fact-checking organiza-
tions. Furthermore, due to lack of evidence in these
datasets, they cannot be used for downstream task

5https://www.buzzfeednews.com/article/craigsilverman/these-
are-50-of-the-biggest-fake-news-hits-on-facebook-in

6http://www.fakenewschallenge.org/
7https://www.kaggle.com/mrisdal/fake-news
8https://github.com/several27/FakeNewsCorpus

of evidence-based verification, which is one of the
motivations of this paper. We overcome all these
limitations in our datasets described in the follow-
ing section.

3 Datasets

We introduce two datasets of compelling fake news
articles which have writing style similar to main-
stream media. The first dataset, DNF-700, where
DNF stands for DisiNFormation, contains articles
on politics published within 4 months of 2016 US
Presidential Elections from questionable sources
(non-mainstream). To compile this dataset, we
first extracted fake news articles from working
web page URLs of Stanford dataset (Allcott and
Gentzkow, 2017). However, majority of webpage
URLs in this dataset are expired and we could ex-
tract only 26 fake news articles. Therefore, we
then used “Getting real about fake news” Kaggle8

dataset to sample more articles on politics. Since,
most of the articles in this dataset contain anoma-
lies (eg: incomplete article, social media comments
labelled as fake etc.), we manually verified the writ-
ing style and discarded obvious fakes - articles with
poor grammar and excessive usage of punctuations.
However, the degree of veracity of each article in
this dataset is not checked and some articles may
contain personal opinions.

The second dataset, DNF-300, is more so-
phisticated subset of DNF-700, containing 290
compelling articles on Politics and 10 on
Health/Medical news. Unlike other fake news
datasets in which veracity and evidence for articles
are not provided, DNF-300 contains articles associ-
ated with veracity labels as well as corresponding
evidence. The process of annotating this dataset
involves identifying sentences from each article
based on their persuasive tone and relevance with
the headline. These sentences were then queried
on the web and top 10 results were considered to
gather evidence from credible sources9. Based on
the evidence found, we label the entire article into
four categories: {(0) false; (1) partial truth; (2)
opinions stated as fact; (3) true}. These labels
are inspired by (Pathak and Srihari, 2019); Table-
1 shows the description and distribution of these
labels while the comparison with two popular fact-
checking websites is displayed in Figure-1. An

9Credible sources were extracted from
https://mediabiasfactcheck.com/ The sources range be-
tween left, center and right biased news sources

215

Label False Partial True Opinion
Stated As
Fact

True

Desc. (i) No evi-
dence could
be found, or
(ii) found
evidence
to refute
the entire
article

Article
about true
event, how-
ever, found
evidence re-
futing some
of the claims

Article contain
false/manipulated
claims, how-
ever, it’s an
opinion article
which cannot
be labelled as
fake

Found
evidence
support-
ing the
entire
article

Total 126 75 79 20

Table 1: DNF-300 label description and distribution.
Claims here are the sentences manually selected based
on their persuasive tone and relevance with the head-
line. Interestingly, some of the articles, which were
labelled as fake in other datasets due to the domain of
publishing website, turned out to be true news.

example from the dataset is shown in Table-2

Partial Truth False Opinion Stated as
Fact

Mostly False Mixture Unproven False

Half True Mostly False False Pants on Fire

Snopes

DNF-300

PolitiFact

Figure 1: Label Comparison with Snopes and Politi-
Fact ratings.

This dataset is also a key contribution of this
paper as the articles are manually read and veri-
fied. Additionally, the dataset contains two novel
features which are essential for the fake news ver-
ification task: (i) generic veracity-based label set,
independent of any external organization, and (ii)
ground truth evidence corresponding to each label.

In addition to these two datasets, we also train
our model for claim identification on the dataset
introduced for context dependent claim detection
(CDCD) by Levy et al. (2014). Although this
dataset (CDC) does not contain fake news articles,
it has manually annotated sentences based on their
relevance to a certain topic. These annotations were
utilized for the evaluation of our self-supervised
learning model described in the following section.
More details on the datasets and examples can be
found in Appendix.

4 Architecture

Problem Definition: Given an article with a set
of sentences S = {S1, S2, ...Si, ...Sn} and a head-
line H , the task of our multihead attention claim

identification network (MA-CIN) is to extract the
sentence most relevant to the headline. Our self-
supervised model exploits the rich contextual infor-
mation to extract the relevant sentences which are
considered as “claim-worthy”.
Approach: For this task, we implement two types
of attention: (i) self-attention on all sentence vec-
tors so that each sentence Si is aware of all other
sentences in S; (ii) cross-attention of headline vec-
tor on each sentence vector, so that all self-attended
sentences are also aware of the headline’s context.
We then generate headline based on the context-
aware sentences, and compare it with the original
headline in three different settings as listed below:

1. Headline Vector (MA-CIN (HV)): In this
setting, the original headline vector acts as the
supervisory signal for self-supervised learn-
ing. We minimize the mean squared error
(MSE) between the generated and the original
headline vectors for training.

2. Headline One-Hot Word Vector (MA-CIN
(OHWV)): In this setting, the words in the
original headline act as the supervisory sig-
nal. We use LSTM (Hochreiter and Schmid-
huber, 1997) to predict at most 50 words, from
a vocabulary of 20,000 words, to generate
a one-hot-vector for each word of the new
headline. We then minimize the categorical
cross-entropy error (CCE) at each time step
corresponding to each word in original and
new headlines for training.

3. Combined HV & OHWV (MA-CIN (Com-
bined)): In this setting, both original headline
vector and the words act as supervisory signal.
Therefore, we combine the two loss functions
mentioned above to train the model.

For this, we build several layers in our architecture
(see Figure-2), which are delineated as follows:

4.1 Sentence Embeddings

Each sentence Si in S, and headline H are con-
verted to a fixed length 300-dimensional vector, si
and h, such that si, h ∈ R1×D, where D = 300.
For uniformity, we calculate the maximum num-
ber of sentences L that an article can contain in
the respective corpus. Next, we zero pad the dif-
ference in the quantity of sentence vectors in each
article such that every article can be represented as
a vector A ∈ RL×D.

216

Headline: Allergens in Vaccines Are Causing Life-Threatening Food Allergies
It would probably surprise few people to hear that food allergies are increasingly common in U.S.
children and around the world . According to one public health website , food allergies in children
aged 0-17 in the U.S. increased by 50% from 1997 to 2011. Although food allergies are now so
widespread as to have become almost normalized, it is important to realize that millions of American
children and adults suffer from severe rapid-onset allergic reactions that can be life-threatening.
Foods represent the most common cause of anaphylaxis among children and adolescents. The
United Kingdom has witnessed a 700% increase in hospital admissions for anaphylaxis and a
500% increase in admissions for food allergy since 1990. The question that few are asking is why
life-threatening food allergies have become so alarmingly pervasive. A 2015 open access case
report by Vinu Arumugham in the Journal of Developing Drugs , entitled “ Evidence that Food
Proteins in Vaccines Cause the Development of Food Allergies and Its Implications for Vaccine
Policy ,” persuasively argues that allergens in vaccinesand specifically food proteinsmay be the
elephant in the room. As Arumugham points out, scientists have known for over 100 years that
injecting proteins into humans or animals causes immune system sensitization to those proteins.
And, since the 1940s, researchers have confirmed that food proteins in vaccines can induce allergy
in vaccine recipients. Arumugham is not the first to bring the vaccine-allergy link to the publics
attention. Heather Fraser makes a powerful case for the role of vaccines in precipitating peanut
allergies in her 2011 book, The Peanut Allergy Epidemic: Whats Causing It and How to Stop It.
Type: 1 (Partial Truth)
Authors:Admin - Orissa
URLs: galacticconnection.com
Evidence: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3890451/
Reason: The key claim is written in such a way so that it misleads people in thinking all the food
related allergies in US are caused by vaccines. Found evidence which says these type of allergies
are rare.

Table 2: An example on Partial Truth type from DNF-300 dataset.

4.2 1D Convolution

To effectively capture local relevance, we leverage
1D-CNN (LeCun et al., 1998) to extract the features
from the article vector A. For our experiments the
kernel size for each convolution layer is K ×D ×
C, where K is kernel-width and C is the number
of filters. This means the network will process
K sentences at a time. The size of K and C is a
hyper-parameter and as per our experiments, we
set K = 4 with an assumption that not more than
4 consecutive sentences will be relevant to each
other.

4.3 Self Attention

Inspired by the attention implementation in (Zhang
et al., 2018; Vaswani et al., 2017), to capture global
relevance, the article features from the previous
1D-CNN layer are transformed into feature spaces
q, k to calculate attention, where q(x) =Wqx and

k(x) =Wkx.

βj,i =
exp(zij)∑N
i=1 exp(zij)

,where zij = q(xi)
Tk(xj)

(1)
β ∈ RN×N is the attention coefficient, which is the
normalized relevance score between the sentence
xi and xj . β is then matrix multiplied by v, where
v(x) = Wvx, to obtain the context rich output
oj ∈ RC×1.

oj =
N∑

i=i

βj,iv(xi),where oj ∈ {o1, o2, . . . , oN}

(2)
Finally, the output of the self-attention layer is o ∈
RC×N , which is computed as

oj = g(oj),where, g(x) =Wgx (3)

In the above equations, x ∈ RC×N is obtained
after applying 1D convolution on sentence vectors,
Wq ∈ RC×C , Wk ∈ RC×C , Wv ∈ RC×C , Wg ∈

217

1D
 C

N
N

s

Headline
Vector

D
en

se

CA1

CAM

CA2
Concat

SA1

SAM

SA2
Concat

Dimension
Reduction Decoder

Generated Headline
Vector

Sentence
Vectors

Multihead
Self Attention

Multihead
Cross Attention

Generated Headline
0ne-Hot Word Vector

Figure 2: Architecture of Multihead Attention - Claim Identification Network (MA-CIN). The model is trained
by using self-supervised learning approach using three variants of supervisory-signal - headline vector, headline
words and the combination of both vector and words.

RC×C and output o ∈ RC×N . Following the work
by (Zhang et al., 2018) we preferred the value of
C = C

8 for computation effectiveness. We also
multiply a λ and γ, learnable scale parameters,
to the output of our attention module and input
vector respectively to allow the network to choose
between local and global sentences effectively.

o = γx+ λo (4)

γ is initialized to 1 and λ is initialized to 0, so as
to allow the local context to be captured effectively
during the early iterations and as the value of λ
increases it allows the network to add more context
to the representation.

4.4 Multihead Concatenation

In the architecture, we could apply self attention
to the input x M times resulting into M attention
heads. The output of one attention head is denoted
by o. We concatenate the outputs oM to get a richer
representation allowing the network to capture var-
ious relationships.

msa o =
∥∥M
i=1
oi = o1‖ . . . ‖oM (5)

where,msa o ∈ RMC×N is the long range context
aware output of multihead self attention. Here,

∥∥
denotes concatenation across axis C.

4.5 Cross Attention

The headline vector is transformed into a feature
space h = Whh, where h ∈ RC×1 and then, it’s
relevance is calculated with msa o, obtained from
the previous layer, by using equations defined in

4.3. Finally, after applying multihead concatena-
tion using 5, we obtain headline-context aware rep-
resentation, mca o ∈ RMC×N . We fix M = 4 for
all our experiments.

4.6 Loss Function
To generate the headline vector dh as close to the
input headline vector h, we apply Mean Squared
Error between dh and h and calculate the headline
vector generation loss Lv

Lv =
1

n
(

n∑

i=1

(dhi
− hi)2) (6)

For estimating the probability of a word from
the vocab in the predicted headline we calculate
the cross-entropy between the predicted headline
words dhw and input headline one-hot vector HW .

Lw = −
∑

i

dhwi
log(HWi) (7)

The total loss Ltotal = Lv + Lw is then evaluated
for all samples b ∈ B, where B is one batch.

5 Experiments and Evaluation

5.1 Training Setup
We train our Multihead Attention model for Claim
Identification, MA-CIN, on datasets mentioned in
Section 3. The CDC dataset contains total of 522
articles. Amongst these, there are 47 articles with
8 or more annotated claim sentences which are
considered as evaluation set (CDC Eval) for this
dataset. Next, for DNF-300 and DNF-700, we
asked two annotators to manually tag at least 5
sentences as “claim-worthy” in each of the 50 ar-
ticles. Sentences which were consented by both

218

Dataset Configuration
CDC Eval DNF Eval

Prec. Rec. F1 Prec. Rec. F1

Spacy Baseline 0.09 0.14 0.11 0.33 0.42 0.37

CDC Baseline (Levy et al., 2014) 0.23 - - - - -
MA-CIN(HV) 0.18 0.08 0.11 0.39 0.53 0.45

MA-CIN(OHWV) 0.25 0.10 0.15 0.40 0.54 0.46
MA-CIN(Combined) 0.26 0.11 0.16 0.42 0.57 0.48

DNF − 700 MA-CIN(HV) 0.20 0.09 0.12 0.37 0.54 0.44
MA-CIN(OHWV) 0.19 0.08 0.11 0.40 0.5 0.44

MA-CIN(Combined) 0.28 0.12 0.16 0.41 0.55 0.47

DNF − 300 MA-CIN(HV) 0.19 0.08 0.11 0.39 0.53 0.48
MA-CIN(OHWV) 0.25 0.11 0.15 0.38 0.53 0.45

MA-CIN(Combined) 0.24 0.10 0.14 0.42 0.57 0.48

Table 3: Comparison of MA-CIN model configurations over three datasets and two evaluation sets for identifica-
tion of “claim-worthy” sentences.

Headline: Clinton Received Debate Questions Week Before Debate
0 The first presidential debate was held and Hillary Clinton was proclaimed the winner by the media. - - 0.41
1 Indeed Clinton was able to turn in a strong debate performance, but did she do so fairly? - - 0

2 Multiple reports and leaked information from inside the Clinton camp claim that the Clinton campaign was given the entire set of debate questions an entire
week before the actual debate.

GT PD 1

3 Earlier last week an NBC intern was seen hand delivering a package to Clinton’s campaign headquarters, according to sources. - PD 0.73

4 The package was not given to secretarial staff, as would normally happen, but the intern was instead ushered into the personal office of Clinton campaign
manager Robert Mook

- PD 0.68

5 Members of the Clinton press corps from several media organizations were in attendance at the time, and a reporter from Fox News recognized the intern,
but said he was initially confused because the NBC intern was dressed like a Fed Ex employee.

- - 0.46

6 The reporter from Fox questioned campaign staff about the intern, but campaign staff at first claimed ignorance and then claimed that it was just a Fed Ex
employee who had already left.

- - 0.67

7 No reporters present who had seen the intern dressed as a Fed Ex employee go into Mook’s office saw him leave by the same front entrance. - - 0.49

8 The Fox reporter who recognized the intern also immediately looked outside of the campaign headquarters and noted that there were no Fed Ex vehicles
parked outside.

- - 0.51

9 Clinton seemed to have scripted responses ready for every question she was asked at the first debate. GT - 0.37
10 She had facts and numbers memorized for specific questions that it is very doubtful she would have had without being furnished the questions beforehand. GT - 0.63
11 The entire mainstream media has specifically been trying to portray Trump as a racist and a poor candidate. - - 0.24
12 By furnishing Clinton with the debate questions NBC certainly hoped to make Clinton appear much more knowledgeable and competent than Trump. GT PD 0.79
13 And though it is unlikely that anyone will be able to conclusively prove that Clinton was given the debate questions, it seems both logical and likely. GT PD 0.7

Figure 3: Interpretation of relevance of sentences with the headline of an example article from DNF-300. GT and
PD indicate ground truth and top-5 predicted “claim-worthy” sentences, respectively. MA-CIN model was able to
predict 3 most relevant sentences correctly. Last column shows the attention weights between headline and each
of the sentences of the article. Sentence 2 has been correctly predicted as the most relevant while sentence 1 is the
least relevant.

the annotators as “claim-worthy” were finalized as
ground truth claims for these 50 articles, and used
as testing set for evaluating the model performance
on DNF datasets. The remaining 475 articles from
CDC, 250 articles from DNF-300, and 650 arti-
cles from DNF-700 were split into 5 folds to train
the model using a 5-Fold cross validation (Kohavi,
1995), where we use 4 folds for training and 1 fold
for validation. Each of the three settings, described
in Section- 4: MA-CIN(HV), MA-CIN(OHWV)
and MA-CIN(Combined), was trained with each
of the three datasets, and evaluated on DNF Eval
and CDC Eval. Total number of parameters for
these three settings are 15,012,916 (10,240 non-
trainable), 40,975,656 (10,240 non-trainable) and
41,812,564 (12,288 non-trainable) respectively. All
other network parameters are displayed in supple-

mental material.
In each setting, we use batch normalization,

ReLU non-linearity as an activation function, and
a dropout of 0.5 for every convolution operation.
We trained all the models for 2000 epochs, where,
for every training we used Adam optimizer with
a learning rate lr = 0.0001, β1 = 0.99 and
β2 = 0.0. There was no weight decay set as the
model was trained in a self-supervised setting with
finite epochs and an already small learning rate.
Glove 300D word embedding was used for all our
experiments and the number of input sentences was
set to 500. The models were trained on three 11GiB
Nvidia 1080Ti GPUs in parallel.

5.2 Evaluation Metrics
We evaluate MA-CIN models on two evalua-
tion sets, DNF Eval and CDC Eval. With self-

219

supervised setting we first rank the sentences based
on relevance with the headline and then extract
the top five sentences along with their sentence
ids as “claim-worthy” sentences. For evaluation
on DNF Eval, we calculate the true positives(TP),
false positives(FP) and false negatives(FN) from
ground truth claim ids. To evaluate on CDC Eval,
since we do not have ground truth claim ids, we
calculate cosine similarity between the extracted
sentences and the ground truth claims. We experi-
ment with various similarity threshold to calculate
TP, FP and FN, and set the final threshold to 0.95
to report best performing results. Finally, these
metrics are used to report Precision@1, Recall@1
and F-1 scores.

5.3 Results

Table-3 shows the performance of baseline (CDC)
(Levy et al., 2014) and three variants of MA-CIN
models. We report two baselines - (1) spacy, and
(2) Levy et al. (2014) using supervised learning
method on CDC dataset which contains annotated
claims. Since, Levy et al. (2014) do not report
Recall and F1 scores, we have reported their Preci-
sion@1 score in this paper. We also train MA-CIN
models on this dataset by removing all the anno-
tations for self-supervised training. We observe
that:

1. The combined variant of our self-supervised
approach performs slightly better than the
baseline on the CDC dataset. This shows
that, MA-CIN models are able to learn simi-
lar properties as the baseline but without any
sentence-level annotations. Thus, this elimi-
nates the need to have an annotated dataset for
claim identification.

2. MA-CIN models give comparable results on
all three datasets. This shows the scalability
of the models to identify “claim-worthy” sen-
tences from any given article.

3. The combined variant of MA-CIN, which gen-
erates both the headline vector and the word
in headline, performs better on all the datasets,
except one: MA-CIN (OHWV) model trained
on DNF-300 and evaluated on CDC Eval per-
forms slightly better than the combined model,
however, the difference in the performance is
very small.

Figure 4: Interpretation of sentence-to-sentence rele-
vance through attention weights.

6 Discussion

6.1 Analyzing Attention Weights

Attention weights help make the model inter-
pretable to the end users by depicting relationship
between all sentences as well as with the headline.
From Figure-3, we can see that out of the top-5
predicted claims, 3 of them are present in the hu-
man evaluated test set. The last column, which
contains attention coefficients between the head-
line and each sentence, depicts some interesting
results -

(i) based on the human evaluation, the sentence
having the least relevance with the headline is sen-
tence 1. While this sentence contains words also
present in the headline, the underlying meaning is
not the same. This has been successfully captured
by MA-CIN model by predicting sentence 1 as the
least relevant claim;

(ii) further, highly ranked sentences 2, 12, and 13
have been correctly predicted as relevant claims by
the model. This shows the model’s ability in learn-
ing the semantic relationship between the headline
and the content of the article, and subsequently
putting importance on sentences that are relevant
to the headline’s underlying meaning. This prop-
erty, which is also called “aboutness”, is efficiently
exhibited by the model.

(iii) sentence 3, which is predicted by MA-CIN
model as relevant with a score of 0.73, is not
present in the ground truth. This indicates that the
two annotators did not agree to have this sentence
verified, even if it is relevant to the point of the

220

article. To analyze this further, we plan to conduct
user studies as one of the future avenues.

(iv) sentence 4 is also predicted as a relevant
claim but it’s missing from the ground truth since
the annotators did not agree to have this verified.
The reason for this prediction could be because self-
attention is able to identify the premise of highly
relevant sentences. Hence, sentence 4, which is the
continuation of highly relevant sentence 3, is also
given importance by the headline. This relevance
between sentences 3 and 4 is depicted in Figure-4,
where the attention weight between these two is the
highest.

From Figure-4, we also observe that:
(i) sentence 4 is highly relevant to sentences 3 to

8, which is intuitive, since the story of the intern
forms the premise of the claims in the article;

(ii) sentences 2 and 4 have been shown to have
the least relevance with each other which is also
true as shown in Figure-3. The two sentences, if
considered in isolation, make two different claims
which are not related to each other;

(iii) the model has made sure that a sentence
does not assign high relevance to itself as it would
be counter-intuitive.

6.2 Limitations

Since, the evaluation methodologies for CDC
dataset has not been explained clearly, in our pa-
per, we have considered vector cosine similarity
between the ground truth claim in the CDC Eval
and the extracted claim from the model which may
leave a margin of error in the evaluation scores.
Additionally, ground truth in DNF Eval is manu-
ally generated and may contain subjective biases.
Although these biases have been overcome by MA-
CIN models, as explained in 6.1, but we also plan to
enhance the ground truth judgement using crowd-
sourced annotation. We intend to use these annota-
tions to fine-tune the models.

7 Conclusion and Future Work

In this work, we build a novel, self-supervised ap-
proach to identify “claim-worthy” sentences - an
important task for automated fact checking. The fo-
cus of this work is on fake news articles where there
is a deliberate intent to influence people or cause
social unrest. We have introduced novel datasets of
such articles with features essential for the down-
stream task of fake news verification. Using pow-
erful attention models, we explore the notion of

aboutness of the headline and the content of the
article to identify “claim-worthy” sentences. Ex-
periments with three datasets show the strength
of our model architecture in overcoming human-
induced biases, which is quite common when using
sentence-level claim-annotated datasets. Based on
the comparison with the baseline, which was imple-
mented using annotated dataset, we show that our
models do not require annotated claims for training
to identify claim-worthy sentences efficiently. We
have also showed that our model is scalable to any
dataset with topic and content.

Future work involves increasing the robustness
of the models presented in this paper. We plan
to use crowdsourced annotation on the dataset re-
leased with this paper to measure the influence of
the article on general readers and then use these in-
dicators to fine-tune our models. Experimentation
with more robust sentence encoders is another av-
enue of future work. Additionally, going forward,
we plan to identify a maximum of 3 claims per
article which will be used for evidence-based fake
news detection. We also plan to expand the dataset,
presented in this work, to include fake news articles
on topics other than Politics and Health.

References
Ehud Aharoni, Anatoly Polnarov, Tamar Lavee, Daniel

Hershcovich, Ran Levy, Ruty Rinott, Dan Gut-
freund, and Noam Slonim. 2014. A Benchmark
Dataset for Automatic Detection of Claims and Ev-
idence in the Context of Controversial Topics. In
Proceedings of the First Workshop on Argumenta-
tion Mining, pages 64–68, Baltimore, Maryland. As-
sociation for Computational Linguistics.

Hunt Allcott and Matthew Gentzkow. 2017. Social me-
dia and fake news in the 2016 election. Journal of
economic perspectives, 31(2):211–36.

Leif Azzopardi, Gabriella Kazai, Stephen Robertson,
Stefan Rüger, Milad Shokouhi, Dawei Song, and
Emine Yilmaz. 2009. Advances in Information Re-
trieval Theory: Second International Conference on
the Theory of Information Retrieval, ICTIR 2009
Cambridge, UK, September 10-12, 2009 Proceed-
ings, volume 5766. Springer.

PD Bruza and Theo WC Huibers. 1996. A study of
aboutness in information retrieval. Artificial Intelli-
gence Review, 10(5-6):381–407.

Carlos Castillo, Marcelo Mendoza, and Barbara
Poblete. 2011. Information credibility on twitter. In
Proceedings of the 20th international conference on
World wide web, pages 675–684. ACM.

221

M de Cock Buning. 2018. A multi-dimensional ap-
proach to disinformation: Report of the independent
high level group on fake news and online disinforma-
tion. Publications Office of the European Union.

Judith Eckle-Kohler, Roland Kluge, and Iryna
Gurevych. 2015. On the Role of Discourse Mark-
ers for Discriminating Claims and Premises in Ar-
gumentative Discourse. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2236–2242, Lisbon, Portu-
gal. Association for Computational Linguistics.

Pepa Gencheva, Preslav Nakov, Lluı́s Màrquez, Al-
berto Barrón-Cedeño, and Ivan Koychev. 2017.
A context-aware approach for detecting worth-
checking claims in political debates. In Proceedings
of the International Conference Recent Advances in
Natural Language Processing, RANLP 2017, pages
267–276, Varna, Bulgaria. INCOMA Ltd.

D Graves. 2018. Understanding the promise and limits
of automated fact-checking.

Naeemul Hassan, Fatma Arslan, Chengkai Li, and
Mark Tremayne. 2017. Toward automated fact-
checking: Detecting check-worthy factual claims
by claimbuster. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1803–1812.
ACM.

Sepp Hochreiter and Jrgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Mercedes Jaime Sis and MERCEDES. 2009. Titles
or headlines? anticipating conclusions in biomedi-
cal research article titles as a persuasive journalistic
strategy to attract busy readers. Miscelnea: A Jour-
nal of English and American Studies, 39:29–51.

Israa Jaradat, Pepa Gencheva, Alberto Barrón-Cedeño,
Lluı́s Màrquez, and Preslav Nakov. 2018. Claim-
Rank: Detecting check-worthy claims in Arabic
and English. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics: Demonstrations,
pages 26–30, New Orleans, Louisiana. Association
for Computational Linguistics.

Zhiwei Jin, Juan Cao, Yongdong Zhang, and Jiebo Luo.
2016. News verification by exploiting conflicting
social viewpoints in microblogs. In Thirtieth AAAI
Conference on Artificial Intelligence.

Ron Kohavi. 1995. A study of cross-validation and
bootstrap for accuracy estimation and model selec-
tion. In Proceedings of the 14th International Joint
Conference on Artificial Intelligence - Volume 2,
IJCAI’95, pages 1137–1143, San Francisco, CA,
USA. Morgan Kaufmann Publishers Inc.

Lev Konstantinovskiy, Oliver Price, Mevan Babakar,
and Arkaitz Zubiaga. 2018. Towards automated
factchecking: Developing an annotation schema and

benchmark for consistent automated claim detection.
arXiv preprint arXiv:1809.08193.

Jeffrey Kuiken, Anne Schuth, Martijn Spitters, and
Maarten Marx. 2017. Effective headlines of news-
paper articles in a digital environment.

Sejeong Kwon, Meeyoung Cha, Kyomin Jung, Wei
Chen, and Yajun Wang. 2013. Prominent features of
rumor propagation in online social media. In 2013
IEEE 13th International Conference on Data Min-
ing, pages 1103–1108. IEEE.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. 1998. Gradient-based learning applied to
document recognition. Proceedings of the IEEE,
86(11):2278–2323.

Ran Levy, Yonatan Bilu, Daniel Hershcovich, Ehud
Aharoni, and Noam Slonim. 2014. Context Depen-
dent Claim Detection. In Proceedings of COLING
2014, the 25th International Conference on Compu-
tational Linguistics: Technical Papers, pages 1489–
1500, Dublin, Ireland. Dublin City University and
Association for Computational Linguistics.

Ran Levy, Shai Gretz, Benjamin Sznajder, Shay Hum-
mel, Ranit Aharonov, and Noam Slonim. 2017. Un-
supervised corpus-wide claim detection. In ArgMin-
ing@EMNLP.

Jing Ma, Wei Gao, Zhongyu Wei, Yueming Lu, and
Kam-Fai Wong. 2015. Detect rumors using time se-
ries of social context information on microblogging
websites. In Proceedings of the 24th ACM Inter-
national on Conference on Information and Knowl-
edge Management, CIKM ’15, pages 1751–1754,
New York, NY, USA. ACM.

Jeppe Norregaard, Benjamin D. Horne, and Sibel Adali.
2019. NELA-GT-2018: A large multi-labelled news
dataset for the study of misinformation in news arti-
cles. CoRR, abs/1904.01546.

Archita Pathak and Rohini Srihari. 2019. BREAK-
ING! presenting fake news corpus for automated
fact checking. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics: Student Research Workshop, pages 357–
362, Florence, Italy. Association for Computational
Linguistics.

Verónica Pérez-Rosas, Bennett Kleinberg, Alexandra
Lefevre, and Rada Mihalcea. 2018. Automatic de-
tection of fake news. In Proceedings of the 27th
International Conference on Computational Linguis-
tics, pages 3391–3401, Santa Fe, New Mexico, USA.
Association for Computational Linguistics.

Martin Potthast, Johannes Kiesel, Kevin Reinartz,
Janek Bevendorff, and Benno Stein. 2017. A sty-
lometric inquiry into hyperpartisan and fake news.
arXiv preprint arXiv:1702.05638.

222

Hannah Rashkin, Eunsol Choi, Jin Yea Jang, Svitlana
Volkova, and Yejin Choi. 2017. Truth of varying
shades: Analyzing language in fake news and polit-
ical fact-checking. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2931–2937.

Natali Ruchansky, Sungyong Seo, and Yan Liu. 2017.
Csi: A hybrid deep model for fake news detection.
In Proceedings of the 2017 ACM on Conference
on Information and Knowledge Management, CIKM
’17, pages 797–806, New York, NY, USA. ACM.

Sneha Singhania, Nigel Fernandez, and Shrisha Rao.
2017. 3han: A deep neural network for fake news
detection. In International Conference on Neural In-
formation Processing, pages 572–581. Springer.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is
All You Need. arXiv:1706.03762 [cs]. ArXiv:
1706.03762.

Karin Wahl-Jorgensen and Thomas Hanitzsch. 2009.
The Handbook Of Journalism Studies. Technical re-
port.

William Yang Wang. 2017. ” liar, liar pants on fire”:
A new benchmark dataset for fake news detection.
arXiv preprint arXiv:1705.00648.

Liang Wu and Huan Liu. 2018. Tracing fake-news
footprints: Characterizing social media messages by
how they propagate. In Proceedings of the Eleventh
ACM International Conference on Web Search and
Data Mining, WSDM ’18, pages 637–645, New
York, NY, USA. ACM.

Fan Yang, Yang Liu, Xiaohui Yu, and Min Yang. 2012.
Automatic detection of rumor on sina weibo. In Pro-
ceedings of the ACM SIGKDD Workshop on Mining
Data Semantics, page 13. ACM.

Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Au-
gustus Odena. 2018. Self-attention generative adver-
sarial networks.

A Appendices

A.1 Definitions

Fake News: Articles where there is a deliberate
intent to influence readers through fabricated or
manipulated claims in the headline and the content.
Such articles have a compelling writing style simi-
lar to the mainstream media.
“Claim-worthy”: Statements which are important
to the point of the article but one would require to
have them verified.
Compelling Fake News Articles: Articles which
make persuasive claims in headline and content,

that may influence readers to believe a fabri-
cated/manipulated story.
Credible Sources: Mainstream media, established
fact-checking websites and Government docu-
ments.
Questionable Sources: Non-mainstream media
like infowars, naturalnews, breitbart etc.

A.2 Experiment Architectures

A.2.1 Vector Generation
Architecture setting for generating Headline Vector
(HV) displayed in Figure-5

input Model Output size [Kernel size, Filters,
Strides], Repeats

sentence vectors 500x300
conv1d_1 500 x 256 [4, 256, 1] x 1
conv1d_2 500 x 512 [4, 256, 1] x 1

SelfAttention 500 x 512 [1, 64, 1] x 4
Concat 500 x 2048

conv1d_3 500 x 512 [4, 256, 1] x 1
headline vector 1 x 300

conv1d_4 1 x 512 [1, 512, 1] x 1
CrossAttention 500 x 512 [1, 64, 1] x 4

Concat 500 x 2048
conv1d_5 250 x 512 [4, 512, 2] x 1
conv1d_6 125 x 512 [4, 512, 2] x 1
conv1d_7 63 x 512 [4, 512, 2] x 1
conv1d_8 32 x 512 [4, 512, 2] x 1

Global Pooling 512
FC_1 1024

output_vector 300

Figure 5: Architecture setting for generating Headline
Vector(HV).

A.2.2 Word Generation
Architecture setting for generating Headline Vector
Word Probabilities (OHWV) displayed in Figure-6

A.3 DNF-700 Dataset Details

Each article is identified by an id. The content of
the article is stored in a separate text files having
file name “article id”, for example, article 122. A
JSON file is also provided with the following fields:

id: Unique identifier of the article starting
from 0.
authors: Authors of the article.
headline: Headline of the article.
type: “fake” (articles from Stanford and Buzzfeed
datasets which are already proven fake); and
“questionable” (articles from Getting Real About
Fake News Kaggle dataset which require manual

223

input Model Output size [Kernel size, Filters,
Strides], Repeats

sentence vectors 500x300
conv1d_1 500 x 256 [4, 256, 1] x 1
conv1d_2 500 x 512 [4, 256, 1] x 1

SelfAttention 500 x 512 [1, 64, 1] x 4
Concat 500 x 2048

conv1d_3 500 x 512 [4, 256, 1] x 1
headline vector 1 x 300

conv1d_4 1 x 512 [1, 512, 1] x 1
CrossAttention 500 x 512 [1, 64, 1] x 4

Concat 500 x 2048
conv1d_5 250 x 512 [4, 512, 2] x 1
conv1d_6 125 x 512 [4, 512, 2] x 1
conv1d_7 63 x 512 [4, 512, 2] x 1
conv1d_8 32 x 512 [4, 512, 2] x 1

Global Pooling 512
Repeat 50 x 512

Bi-LSTM 50 x 1024
TimeDistributed
Dense, softmax 50 x 20000

Figure 6: Architecture setting for generating Headline
Vector Word Probabilities (OHWV).

verification of the degree of veracity)
urls: Source/domain URL of the article.

A.4 DNF-300 Dataset Details

DNF-300 is more sophisticated subset of DNF-700
with additional fields based on manual verification
of the article. The JSON file of this dataset
contains following fields:

id: Unique identifier of the article starting
from 0.
authors: Authors of the article.
headline: Headline of the article.
type: {(0) False; (1) Partial Truth; (2) Opinions
Stated As Fact; (3) True}
urls: Source/domain URL of the article.
evidence: URL of credible sources supporting or
refuting the article. This field is empty when no
evidence were found which talked about the claims
made in this article. This means, the claims are
innovated lies. In such cases, the type field is set as
0.
reason: Reason about the verdict. It can be one of
the following:

1. Based on Snopes rating ’False’ which means
’the primary elements of a claim are demon-
strably false.’

2. Based on Snopes rating ’Unproven’ which
means ’insufficient evidence exists to estab-
lish the given claim as true, but the claim can-
not be definitively proved false.’

3. Based on Snopes rating ’Mixture’ which

means ’a claim has significant elements of
both truth and falsity to it such that it could
not fairly be described by any other rating.’

4. Based on Snopes rating ’Mostly False’ which
means ’the primary elements of a claim are
demonstrably false, but some of the ancillary
details surrounding the claim may be accu-
rate.’

5. The key claim is false (based on Snopes rat-
ing), however, the article also contains opin-
ions stated as fact.

6. Snopes mentiones that a true story was manip-
ulated to mislead people.

7. The key claims are true but exaggerated by
adding personal opinions stated as fact.

8. No reports from trusted sources for the key
claims.

9. True story manipulated to mislead read-
ers by making unverifiable claims such as

‘some claim’.
10. Article is fraught with opinions stated as fact

about a true event.
11. Found evidence to refute key claims.
12. Article contains opinions stated as fact.
13. Evidence found to support key claims.

Figure 7: : Example for CDCs and for statements that
should not be considered as CDCs. The V and X indi-
cate if the candidate is a CDC for the given Topic, or
not, respectively.

A.5 Examples
We present examples for all 4 label types {False;
Partial Truth; Opinion stated as fact; True} present
in our dataset: DNF-300. Please refer Table-4,5,6,7.
An annotated example from CDC dataset is dis-
played in Figure-7

224

Headline: Clinton Received Debate Questions Week Before Debate
The first presidential debate was held and Hillary Clinton was proclaimed the winner by the media.
Indeed Clinton was able to turn in a strong debate performance, but did she do so fairly? Multiple
reports and leaked information from inside the Clinton camp claim that the Clinton campaign was
given the entire set of debate questions an entire week before the actual debate. Earlier last week an
NBC intern was seen hand delivering a package to Clintons campaign headquarters, according to
sources. The package was not given to secretarial staff, as would normally happen, but the intern
was instead ushered into the personal office of Clinton campaign manager Robert Mook. Members
of the Clinton press corps from several media organizations were in attendance at the time, and a
reporter from Fox News recognized the intern, but said he was initially confused because the NBC
intern was dressed like a Fed Ex employee. The reporter from Fox questioned campaign staff about
the intern, but campaign staff at first claimed ignorance and then claimed that it was just a Fed Ex
employee who had already left. No reporters present who had seen the intern dressed as a Fed Ex
employee go into Mooks office saw him leave by the same front entrance. The Fox reporter who
recognized the intern also immediately looked outside of the campaign headquarters and noted that
there were no Fed Ex vehicles parked outside. Clinton seemed to have scripted responses ready
for every question she was asked at the first debate. She had facts and numbers memorized for
specific questions that it is very doubtful she would have had without being furnished the questions
beforehand. The entire mainstream media has specifically been trying to portray Trump as a racist
and a poor candidate. By furnishing Clinton with the debate questions NBC certainly hoped to
make Clinton appear much more knowledgeable and competent than Trump. And though it is
unlikely that anyone will be able to conclusively prove that Clinton was given the debate questions,
it seems both logical and likely.
Type: 0 (False)
Authors:Baltimore Gazette
URLs: http://www.freemarketcentral.com/index.php/post/2503/report-clinton-received-debate-
questions-a-week-before-debate
Evidence: [https://www.snopes.com/fact-check/clinton-received-debate-questions-week-before-
debate/, https://www.truthorfiction.com/hillary-clinton-received-debate-questions-advance/]
Reason: Based on Snopes rating ’False’ which means ’the primary elements of a claim are
demonstrably false.’

Table 4: An example on False type from DNF-300 dataset.

225

Headline: Allergens in Vaccines Are Causing Life-Threatening Food Allergies
It would probably surprise few people to hear that food allergies are increasingly common in U.S.
children and around the world . According to one public health website , food allergies in children
aged 0-17 in the U.S. increased by 50% from 1997 to 2011. Although food allergies are now so
widespread as to have become almost normalized, it is important to realize that millions of American
children and adults suffer from severe rapid-onset allergic reactions that can be life-threatening.
Foods represent the most common cause of anaphylaxis among children and adolescents. The
United Kingdom has witnessed a 700% increase in hospital admissions for anaphylaxis and a
500% increase in admissions for food allergy since 1990. The question that few are asking is why
life-threatening food allergies have become so alarmingly pervasive. A 2015 open access case
report by Vinu Arumugham in the Journal of Developing Drugs , entitled “ Evidence that Food
Proteins in Vaccines Cause the Development of Food Allergies and Its Implications for Vaccine
Policy ,” persuasively argues that allergens in vaccinesand specifically food proteinsmay be the
elephant in the room. As Arumugham points out, scientists have known for over 100 years that
injecting proteins into humans or animals causes immune system sensitization to those proteins.
And, since the 1940s, researchers have confirmed that food proteins in vaccines can induce allergy
in vaccine recipients. Arumugham is not the first to bring the vaccine-allergy link to the publics
attention. Heather Fraser makes a powerful case for the role of vaccines in precipitating peanut
allergies in her 2011 book, The Peanut Allergy Epidemic: Whats Causing It and How to Stop It.
Type: 1 (Partial Truth)
Authors:Admin - Orissa
URLs: galacticconnection.com
Evidence: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3890451/
Reason: The key claim is written in such a way so that it misleads people in thinking all the food
related allergies in US are caused by vaccines. Found evidence which says these type of allergies
are rare.

Table 5: An example on Partial Truth type from DNF-300 dataset.

226

Headline: George Soros: Trump Will Win Popular Vote by a Landslide but Clinton Victory a
’Done Deal’
In recent weeks, Democrats have attempted to paint Republican presidential nominee Donald J.
Trump as a lunatic for claiming that the election is going to be rigged in favor of his Democratic
rival, Hillary Clinton. Even Republican politicians and former politicians are telling Trump to
knock off such talk. But, as usual, Trump’s shrewdness and defiance of standard political decorum
in which the “opposition” party merely rolls over and surrenders in the face of Democratic pressure
is winning the day. None other than billionaire investor and longtime Democratic supporter George
Soros has said that the fix is literally in for the election, in favor of Clinton no matter how much
of the popular vote, and from which battleground states, Trump captures. As reported by Top
Right News and other outlets, during a recent interview with Bloomberg News, Soros a Democrat
mega-donor openly admitted that Trump will win the popular vote in a “landslide.” However, he
said that none of that would matter, because a President Hillary Clinton is already a “done deal.” In
the interview, which is now going viral, Soros says with certainty that Trump will take the popular
vote, despite what the polls say now (which are completely rigged to oversample Democrats), but
not the Electoral College, which will go to Clinton. When the reporter asks if that is already a
“done deal” that Clinton will be our next president no matter what Soros says “yes,” and nods his
head. Is Soros just making a prediction out of overconfidence? Or does he truly know something
most of us don’t know?
Type: 2 (Opinion Stated As Fact)
Authors:J. D. Heyes
URLs: https://www.naturalnews.com/055789 George Soros Hillary Clinton electoral college.html
Evidence: 1. https://www.snopes.com/fact-check/george-soros-trump-will-win-popular-vote-by-
a-landslide-but-clinton-victory-a-done-deal/,
2. https://www.bloomberg.com/news/videos/2016-01-22/soros-clinton-to-win-popular-vote-in-
landslide
Reason: The key claim is false (based on Snopes rating), however, the article also contains opinions
stated as fact.

Table 6: An example on Opinion stated as fact type from DNF-300 dataset.

Headline: Donald Trump: Minnesota Has Suffered Enough Accepting Refugees
In a pitch to suspend the nations Syrian refugee program , Donald Trump said Minnesotans have
“suffered enough” from accepting Somali immigrants into their state. “Here in Minnesota you have
seen first hand the problems caused with faulty refugee vetting, with large numbers of Somali
refugees coming into your state, without your knowledge, without your support or approval,” Trump
said at a Minneapolis rally Sunday afternoon. He said his administration would suspend the Syrian
refugee program and not resettle refugees anywhere in the United States without support from the
communities, while Hillary Clintons “plan will import generations of terrorism, extremism and
radicalism into your schools and throughout your communities.”
Type: 3 (True)
Authors:Henry Wolff
URLs: amren.com
Evidence: 1. https://time.com/4560078/donald-trump-minnesota-somali-refugees/,
2. https://www.buzzfeednews.com/article/claudiakoerner/trump-vs-somali-refugees
Reason: Evidence found to support key claims.

Table 7: An example on True type from DNF-300 dataset.

227

Proceedings of the 17th International Conference on Natural Language Processing, pages 228–233
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

SUKHAN: Corpus of Hindi Shayaris annotated with Sentiment Polarity
Information

Salil Aggarwal

Language Technologies Research Centre
KCIS, IIIT Hyderabad

Telangana, India
salil.aggarwal@research.iiit.ac.in
abhigyan.ghosh@research.iiit.ac.in

radhika.mamidi@iiit.ac.in

Abhigyan Ghosh Radhika Mamidi

Abstract

Shayari is a form of poetry mainly popular in
the Indian subcontinent, in which the poet ex-
presses his emotions and feelings in a very po-
etic manner. It is one of the best ways to ex-
press our thoughts and opinions. Therefore, it
is of prime importance to have an annotated
corpus of Hindi shayaris for the task of sen-
timent analysis. In this paper, we introduce
SUKHAN, a dataset consisting of Hindi sha-
yaris along with sentiment polarity labels. To
the best of our knowledge, this is the first cor-
pus of Hindi shayaris annotated with sentiment
polarity information. This corpus contains a
total of 733 Hindi shayaris of various genres.
Also, this dataset is of utmost value as all the
annotation is done manually by five annotators
and this makes it a very rich dataset for train-
ing purposes. This annotated corpus is also
used to build baseline sentiment classification
models using machine learning techniques.

1 Introduction

Sentiment analysis is simply ‘the task of extraction
and analysis of subjective information present
in some natural language data with the use of
natural language processing’ 1. But, the task
of sentiment analysis becomes challenging for
languages having annotated corpus only in some
limited domains. One such language is Hindi
and shayari is one of its domains which has no
annotated dataset for the task of sentiment analysis.
Shayari is a very rich tradition in South Asia. It
has generally 2 to 4 lines which have some kind
of deep meaning in them. It is mainly written in
languages like Hindi, Urdu, Bangla, Nepali and
Punjabi. Whether you are sad, alone, happy or in
love, you can use shayari to express your feelings
and thoughts. That’s why, it is very important to
have an annotated corpus of shayaris for the task

1Source: Wikipedia

of sentiment analysis. No such annotated corpus
of Hindi shayaris currently exists in literature.
SUKHAN is the first corpus of Hindi shayaris
with annotated sentiment polarity information
existing in literature as per our knowledge. It is
written in Devanagari script and hence avoids the
pre-processing cost of text normalization. We
have also conducted various baseline experiments
in order to compare the performance of various
classifiers on the annotated corpus.

This paper is divided into 5 sections. Sec-
tion 2 discusses related work in this area. Section
3 elaborates on the source and the creation of the
corpus. Section 4 elaborates on the annotation
process and the annotation scheme used for
getting sentiment labels. Inter-annotator agreement
has also been calculated and the details for
interpretation of values for the Fleiss Kappa index
have also been mentioned. Section 5 describes
the experimental setup for training a model using
various classifiers which helps in establishing the
baseline for sentiment classification of these Hindi
shayaris. All the results and conclusions using the
annotated corpora have been briefly discussed in
Section 6.

2 Related Work

So far, no work has been done to run sentiment
analysis on Shayaris, neither in Hindi nor in any
other Indian language, where similar constructs
occur. However, work on sentiment analysis of
Hindi poems has been done previously (Pal and
Patel, 2020) but never on shayaris. Sentiment
Analysis has also been done on Odia poems by
Gaurav Mohanty and Mamidi (2018). Music
classification has been carried out using lyrics
(Hu et al., 2009), audio (Lu et al., 2005) and even
multi-modal features (Laurier et al., 2009) for

228

English. Similar work has been carried out for
mood classification of Telugu (Abburi et al., 2016)
and Hindi songs (Patra et al., 2016)

Nowadays, research mainly focuses on so-
cial media and very little attention is given to
the traditional literature of which shayari is an
important part. Automatic analysis of poetry is
done for poems written in various languages like
English, Chinese, Arabic, Malay, and Spanish.
Barros et al. (2013) tried to categorize poems
based on their emotional content. In the case of
traditional literary works such as poetry, a lexicon
creation methodology has been discussed for
analyzing classical Chinese poetry (Hou and Frank,
2015). Hamidi et al. (2009) has also proposed
a meter classification system for Persian poems
based on features extracted from uttered poem.
Alsharif et al. (2013) tried to classify Arabic poetry
according to emotion associated with it.

3 Dataset

Due to the unavailability of annotated Hindi Sha-
yari corpus with sentiment polarity information,
the dataset was constructed manually. The advent
of UTF-8 encoding has led to text in Indian scripts
increasing day by day on the web. We collected
shayaris from numerous online sources such as:

https://poetrytadka.com,

https://shayarifm.com/

https://shayarilovers.in/

https://bestnow.in/

These websites consist of many Hindi shayaris
from various categories. We have used Hindi sha-
yaris written using Devanagari script only. A total
of 845 shayaris were mined. We have not used the
title of shayari because the title of shayari usually
does not have a strong association with the theme
of the shayari. That’s why, title was not used for
extracting emotions from shayaris in order to avoid
wrong results. The name of the shayar2 also do
not carry any sentiment information and therefore
does not serve the task at hand and therefore is not
used in baseline experiments. Table 1 provides
details on the initial statistics of the dataset before
annotation.

2Person who writes shayaris

4 Annotation

4.1 Principles of Annotation
Three levels of granularity are described for exist-
ing methods of sentiment analysis. So, the task of
sentiment analysis can be carried out at three dif-
ferent levels (Liu, 2012). On the basis of the level
defined, the task is to identify if positive or negative
sentiment is expressed at that level. It can be done
at an aspect level (Hu and Liu, 2004), sentence
level or at the level of the whole document (Turney,
2002). In the case of shayaris, it is possible that
the different parts of the shayaris elicit different
emotions. Since the task is to identify sentiment
of the shayari as a whole, annotation is carried out
only at an overall document level. The annotators
were asked to go through the whole shayari before
tagging them. This results in the tag corresponding
to the polarity of the general mood evoked by it.

4.2 Annotation Process
We hired 5 annotators from different parts of India
for the process of annotating the shayaris. These
annotators were chosen from different regions
in order to eliminate the chances of any kind of
regional bias. These annotators were university
students in the age group of 20–24 and were
native Hindi speakers with sound background
in linguistics and they speak and write in Hindi
language on a daily basis. Each Hindi shayari was
annotated by these 5 annotators. Each annotator
was provided with the corpus and they had to
annotate each and every shayari independently.
They were not allowed to have any kind of
communication with other annotators during
the whole annotation process. Also, they were
not given any kind of information regarding the
shayar because there are some shayars who only
write some particular type of shayaris which
mostly evoke some particular kind of emotion like
love, anger, hatred etc in the reader’s mind. So
revealing the name of shayar might result in some
preconditioned bias which could have resulted in
wrong annotation.

Shayaris are a very sophisticated form of
language. At the same time, they can generate
different kinds of thoughts and emotions in the
mind of reader. So, a proper method is required for
annotating the shayaris based on these emotions.
Here, Russel’s Circumplex Model (Russell and
Pratt, 1980) serves as an appropriate reference

229

Sr. No. Description Initial Value
1 Initial shayari Count 845
2 Total number of words (tokens) 18978
3 Average number of words (tokens) per shayari ∼ 23
4 Total number of unique words 2851

Table 1: Initial Dataset Statistics

for emotion identification. In this model, human
emotions are plotted on a 2D plane of sentiment
polarity and arousal as shown in Figure 1. For a
given poem, the identified emotions were collected
and based on these emotions, the sentiment polarity
of the shayaris was decided. Initially, shayaris
were classified into 5 categories:

Figure 1: Russell’s Circumplex Model of Affect

1. Strongly Positive: For the whole shayari, if
the shayar is using only positive language such
as expression of support, motivation, admira-
tion, positive attitude, cheerfulness, forgiving
nature, positive emotional state, etc, then the
emotional states identified are tending to the
positive side of Russell’s model. These type of
shayaris were classified as strongly positive.

2. Strongly Negative: For the whole shayari, if
the shayar is using only negative language
such as expression of hate, judgement, fear,
anger, failure, criticism, negative attitude, etc.
These types of shayaris were classified as
strongly negative.

3. Positive: For the most of the shayari, if the
shayar is using positive languages but also us-
ing negative language at some instants, then

those types shayaris were classified as posi-
tive.

4. Negative: For the most of the shayari, if the
shayar is using negative languages but also us-
ing positive language at some instances, then
those shayaris were classified as negative.

5. Neutral: If the shayar is using both positive
and negative language at equal intervals, then
it is hard to tell what type of sentiment is
present in the shayari. Those types of shayaris
were classified as neutral.

Since the scope of this paper is to only determine
a shayari as positive or negative, shayaris present
in category 5 were discarded. Those present in
Category 1 and 3 were annotated as positive and
those present in Category 2 and 4 were annotated
as negative. A total of 381 shayaris were annotated
as positive whereas 352 shayaris were annotated as
negative.

4.3 Inter-annotator Agreement

Inter-annotator agreement is a measure of how well
the annotators can make the same annotation deci-
sion for the same category. Given the task in hand,
it is fair to assume that annotation of the shayaris
based on the emotions evoked by reading the lyrics
is a very subjective opinion. Thus, inter-annotator
agreement becomes an important factor in validat-
ing the annotators’ work. The Fleiss’ kappa ob-
tained for the annotations for our dataset is 0.83.
This corresponds to ‘almost perfect agreement’ ac-
cording to the interpretation of Fleiss’ kappa shown
in Table 2.

5 Baseline for Sentiment Classification

In order to establish baseline results for the anno-
tated corpus, a few experiments were conducted.
The task was to classify Hindi shayaris as car-
rying positive or negative sentiment by training

230

Sr. No. Range Interpretation
1 ≤0 Poor agreement
2 0.01-0.20 Slight agreement
3 0.21-0.40 Fair agreement
4 0.41-0.60 Moderate agreement
5 0.61-0.80 Substantial agreement
6 0.81-1 Almost perfect agreement

Table 2: Fleiss Kappa values for inter-annotator agree-
ment.

appropriate classification models. Initially three
different classifiers were employed for this task
and the results of each were compared. Term
frequency-inverse document frequency (TF-IDF)
(Jones, 1972) features were used to create a vec-
tor representation for an entire shayari. We also
explored usage of character level n-grams as TF-
IDF features to evaluate the performance of these
classifiers.

5.1 Experimental Setup

The dataset was split into a ratio of 4:1 for the
purpose of training and testing. For the baseline
experiments, TF-IDF features for word n-grams
and character n-grams were used for the task
of sentiment classification. All the experiments
were conducted using ’scikit-learn’ (Pedregosa
et al., 2011), an open source Python library3.
Precision, Recall and F1-score are the three
evaluation metrics which were calculated using
5-fold cross-validation.

For baseline experiments Naive Bayes, Lo-
gistic Regression and Support Vector Machine
(Cortes and Vapnik, 1995) were the classifiers
used for baseline experiments. The 733 shayaris
of the SUKHAN corpus were also passed through
various pre-processing phases. Then using TF-IDF
weights, vector representations were obtained for
each shayari. TF-IDF is basically a technique
to quantify a word in documents. We generally
compute a weight to each word which signifies
the importance of the word in the corpus. The
importance increases proportionally to the number
of times a word appears in the document but is
offset by the frequency of the word in the corpus.

3http://www.scikit-learn.org

6 Observations

TF-IDF was calculated for unigrams, uni-bigrams
and uni-bi-trigrams. Table 3 illustrates the results
of the same for the three aforementioned classifiers.
Even though 733 shayaris is a sizable corpus for the
task in hand, it does not show a significant increase
in accuracy especially with added bi-gram and tri-
gram features. This is because most bi-grams and
tri-grams occur sparsely in the entire corpus. Here,
on an average, Linear-SVM performed better than
all of the other classifiers. In order to tackle the
problem of sparsity, we conducted experiments us-
ing n-grams at character level. For the baseline, 2-6
and 3-6 character n-grams were used to calculate
character level TF-IDF features. The results of the
same are illustrated in Table 4. On the basis of
F1-score, Linear-SVM performed better than the
other classifiers.

7 Conclusion

Shayaris and emotions share a very strong bonding.
Each shayari is penned by a shayar with a lot of
emotions, feelings and values. Different poetry
elements such as diction, rhyme, rhythm, and
imagery make shayari different from a normal
piece of text. That’s why In this research area,
we have created a Hindi shayari corpus which
would help to create an automatic system for
categorization of shayaris based on polarity
identification questionnaire and emotional states
present in it. SUKHAN is the first corpus of Hindi
shayaris of diverse themes, with shayaris, manually
annotated as either having positive or negative
sentiment values. The corpus was manually
annotated with 733 Hindi shayaris scripted in
the Devanagari script and based on the emotions
they evoke. We also trained four different types
of classifiers on our data. Classification models
have been built using TF-IDF word-level features.
Linear-SVM performed better as compared to
other classifiers and the results of the experiments
should serve as a good baseline.

Identifying the sentiment with the shayari is
the first step towards identifying the emotions and
thoughts which the shayari could evoke in the
mind of the reader and this can further be used to
build recommendation systems which are used by
every major company in the e-commerce area.

231

Model Features Class Precision Recall F1-Score

Linear-SVM

uni
Positive 0.852 0.904 0.876
Negative 0.907 0.857 0.880

uni-bi
Positive 0.882 0.859 0.870
Negative 0.872 0.896 0.884

uni-bi-tri
Positive 0.888 0.837 0.861
Negative 0.856 0.904 0.878

Naive-Bayes

uni
Positive 0.881 0.850 0.864
Negative 0.866 0.896 0.880

uni-bi
Positive 0.869 0.871 0.870
Negative 0.882 0.880 0.881

uni-bi-tri
Positive 0.874 0.872 0.872
Negative 0.883 0.885 0.884

Logistic regression

uni
Positive 0.891 0.819 0.853
Negative 0.845 0.909 0.875

uni-bi
Positive 0.895 0.810 0.850
Negative 0.839 0.914 0.875

uni-bi-tri
Positive 0.898 0.803 0.847
Negative 0.834 0.917 0.872

Table 3: Sentiment Analysis with Word-Level TF-IDF Features

Model Features Class Precision Recall F1-Score

Linear-SVM
(2-6) gram

Positive 0.873 0.864 0.868
Negative 0.876 0.886 0.880

(3-6) gram
Positive 0.876 0.862 0.868
Negative 0.873 0.888 0.880

Naive-Bayes
(2-6) gram

Positive 0.892 0.808 0.845
Negative 0.836 0.901 0.869

(3-6) gram
Positive 0.877 0.819 0.844
Negative 0.841 0.893 0.865

Logistic Regression
(2-6) gram

Positive 0.882 0.831 0.855
Negative 0.851 0.898 0.873

(3-6) gram
Positive 0.880 0.832 0.853
Negative 0.852 0.896 0.872

Table 4: Sentiment analysis with Character-Level TF-IDF Features

232

References
Harika Abburi, Eswar Sai Akhil Akkireddy,

Suryakanth Gangashetti, and Radhika Mamidi.
2016. Multimodal sentiment analysis of telugu
songs. In SAAIP@ IJCAI, pages 48–52.

Ouais Alsharif, Deema Alshamaa, and Nada Ghneim.
2013. Emotion classification in arabic poetry us-
ing machine learning. International Journal of Com-
puter Applications, 65(16).

Linda Barros, Pilar Rodriguez, and Alvaro Ortigosa.
2013. Automatic classification of literature pieces
by emotion detection: A study on quevedo’s poetry.
In 2013 Humaine Association Conference on Affec-
tive Computing and Intelligent Interaction, pages
141–146. IEEE.

Corinna Cortes and Vladimir Vapnik. 1995. Support-
vector networks. Machine learning, 20(3):273–297.

Pruthwik Mishra Gaurav Mohanty and Radhika
Mamidi. 2018. Kabithaa: An annotated corpus of
odia poems with sentiment polarity information. In
Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC
2018), Paris, France. European Language Resources
Association (ELRA).

Saeid Hamidi, Farbod Razzazi, and Masoumeh P
Ghaemmaghami. 2009. Automatic meter classifi-
cation in persian poetries using support vector ma-
chines. In 2009 IEEE International Symposium on
Signal Processing and Information Technology (IS-
SPIT), pages 563–567. IEEE.

Yufang Hou and Anette Frank. 2015. Analyzing sen-
timent in classical chinese poetry. In Proceedings
of the 9th SIGHUM Workshop on Language Tech-
nology for Cultural Heritage, Social Sciences, and
Humanities (LaTeCH), pages 15–24.

Minqing Hu and Bing Liu. 2004. Mining opinion fea-
tures in customer reviews. In AAAI, volume 4, pages
755–760.

Yajie Hu, Xiaoou Chen, and Deshun Yang. 2009.
Lyric-based song emotion detection with affective
lexicon and fuzzy clustering method. In ISMIR,
pages 123–128.

Karen Sparck Jones. 1972. A statistical interpretation
of term specificity and its application in retrieval.
Journal of documentation.

Cyril Laurier, Mohamed Sordo, Joan Serra, and Per-
fecto Herrera. 2009. Music mood representations
from social tags. In ISMIR, pages 381–386.

Bing Liu. 2012. Sentiment analysis and opinion min-
ing. Synthesis lectures on human language technolo-
gies, 5(1):1–167.

Lie Lu, Dan Liu, and Hong-Jiang Zhang. 2005. Auto-
matic mood detection and tracking of music audio
signals. IEEE Transactions on audio, speech, and
language processing, 14(1):5–18.

Kaushika Pal and Biraj V Patel. 2020. Model for classi-
fication of poems in hindi language based on ras. In
Smart Systems and IoT: Innovations in Computing,
pages 655–661. Springer.

Braja Gopal Patra, Dipankar Das, and Sivaji Bandy-
opadhyay. 2016. Multimodal mood classification
framework for hindi songs. Computación y Sis-
temas, 20(3):515–526.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. the Journal of machine
Learning research, 12:2825–2830.

James A Russell and Geraldine Pratt. 1980. A descrip-
tion of the affective quality attributed to environ-
ments. Journal of personality and social psychology,
38(2):311.

Peter D Turney. 2002. Thumbs up or thumbs down?
semantic orientation applied to unsupervised classi-
fication of reviews. arXiv preprint cs/0212032.

233

Proceedings of the 17th International Conference on Natural Language Processing, pages 234–238
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Improving Neural Machine Translation for Sanskrit-English

Ravneet Punia, Aditya Sharma, Sarthak Pruthi, Minni Jain
Delhi Technological University

Delhi, India
{ravneetpunia bt2k16,adityasharma bt2k17,sarthakpruthi bt2k18it110,minnijain}@dtu.ac.in

Abstract

Sanskrit is one of the oldest languages of the
Asian Subcontinent that fell out of common
usage around 600 B.C. In this paper, we at-
tempt to translate Sanskrit to English using
Neural Machine Translation approaches based
on Reinforcement Learning and Transfer learn-
ing that were never tried and tested on Sanskrit.
Along with the paper, we also release mono-
lingual Sanskrit and parallel aligned Sanskrit-
English corpora for the research community.
Our methodologies outperform the previous
approaches applied to Sanskrit by various re-
searchers and will further help the linguistic
community to accelerate the costly and time-
consuming manual translation process.

1 Introduction

Sanskrit is one of the oldest, extensively studied,
and researched languages in the world.1 It is the
oldest Indo-Aryan Language prominently used in
Indo-European studies and now used for interlin-
gual translation to English and many other Indian
languages, however, the fact that it is dead in to-
day’s time cannot be denied. English has emerged
as the most popular language on the world level,
and the advent of globalization has led to the need
for cross-language translations. The developing re-
gions still used the regional languages, and thus the
translation of the English language into local lan-
guages can make information accessible. Machine
Translation is one of the most onerous tasks in nat-
ural language processing. Sanskrit is unique as it
does not work using a noun-phrase model.2 It’s
strict grammar rules, and syllables match being a
direct parent of Modern Hindi language. The chal-
lenges faced during machine translation of Sanskrit
to other languages are translation divergence or the

1https://en.wikipedia.org/wiki/Sanskr
it

2https://www.genpact.com/

ambiguity phrase due to multiple-meaning, the lack
of parallel language data. Lots of historical and
cultural data such as Bhagavad Gita, Ramayana,
Mahabharata, and Hindu Literature Vedas were
originally written in the Sanskrit language, and
most of them are untranslated to other languages.
Despite its important part in Indian culture and his-
tory, not much work has been done for translation
to or from the Sanskrit language.

Although the past few years, many efforts
have been made to translate Sanskrit to other
languages using various machine translation ap-
proaches. Mishra and Mishra (2008) and Gupta
et al. (2013) implemented example-based and rule-
based approaches for Sanskrit-English machine
translation. Later Mishra and Mishra (2010) im-
proved the Rule-Based Machine Translation ap-
proach by integrating with the Artificial Neural
Network (ANN) model. Recently Koul and Manvi
(2019) proposed an encoder-decoder based Neu-
ral Machine Transition approach for Sanskrit to
English.

In recent years Neural Machine Translation
techniques like Sequence to Sequence Learn-
ing, Encoder-Decoder attention-based architectures
(Bahdanau et al., 2014), and Transformers have
achieved State Of The Art (SOTA) results for super-
vised machine translation tasks. However, for low
resource methods like Back translation (Edunov
et al., 2018), Cross-Language Modeling, Phrase-
Based Machine Translation (Lample et al., 2018),
and Dual Learning Mechanism based upon rein-
forcement learning(He et al., 2016) takes the ben-
efit of monolingual data to improve the quality of
translations over supervised approaches. Unfortu-
nately, none of the above methods has been used
for Sanskrit’s machine translation task due to the
lack of linguistic resources.

Through this paper

234

• We test multiple machine translation ap-
proach based supervised methodology, Trans-
fer Learning, and reinforcement learning ap-
proach that leverages monolingual data for
Neural Machine Translation (NMT).

• We also release the collected parallel English
- Sanskrit data as well as monolingual data for
Sanskrit.

2 Related Work

Work by Mishra and Mishra (2009) mainly fo-
cuses on building tokenization, POS Tagger, and a
Named Entity Recognition (NER) system for the
Sanskrit language using statistical machine trans-
lation approach. Mane et al. (2010) introduced a
dictionary-based approach for implementing ma-
chine translation on Sanskrit by parsing and replac-
ing source word with the target using a bilingual
dictionary.

Bahadur et al. (2012) developed Machine trans-
lation which primarily focused formulation of Syn-
chronous Context-Free Grammar (SCFG) and a
subset of Context-Free Grammar (CFG). The de-
veloped model firstly tokenize input data and then
match the exact word or phrase from the dictio-
nary. The developed model also gathers informa-
tion about parts of speech (POS) of input sentences.
The work by Rathod (2014) implemented a Rule-
Based and Example-based approach for Machine
translation using a bilingual dictionary and speech
synthesizer that also converts speech to text. The
designed model was capable of grammar and spell
check too. An open-source web portal 3 collects
data from domains like primary and secondary
school Sanskrit literature books, also established
by Govt. of India in 2015. It also implements sta-
tistical Machine Translation algorithms and even
tries to solve Word Sense Disambiguation (WSD)
problem.

Apart from Koul and Manvi (2019) encoder-
decoder model, no such work has been done on
Sanskrit’s Neural Machine Translation in the best
of author’s knowledge.

3 Dataset

For this paper, we extracted parallelly allied
English-Sanskrit data as well as monolingual data
for each language. The parallel English-Sanskrit

3http://sanskrit.jnu.ac.in/shmt/index.
jsp

data, we obtained 2,100 sentences from OPUS4,
Sanskrit translation of Bible, Shlokas from Ra-
mayana and more sentences from Gita. As data
is extracted from multiple sources, sentences with
the same source but multiple translations and sen-
tences with the same translation, various sources
are removed. Finally, a parallel dataset with 9000
parallel lines is extracted, further divided into the
standard train, test, and validation set with a ratio
of 80:10:10, respectively.

For the monolingual data, we collected the data
from the Romanized version of Mahabharata, con-
sisting of 130,000 lines (approx) and for English,
we extracted Europarl dataset (Koehn, 2005)

4 Proposed Methodology

Previous Neural Machine Translation approaches
for Sanskrit mainly focus on Rule-Based Approach
and Encoder-Decoder Mechanism using LSTM
units. The classical Rule-Based approach is time-
consuming, requires much manual work by the lin-
guist, and does not have good learning capabilities.
In contrast, LSTMs based models tend to overfit
faster, suffer from issues related to polysemy, and
multiple word senses (Calvo et al., 2019; Huang
et al., 2011).

To handle all these issues, we first established
a baseline translation model using a multi-head
self-attention mechanism using encoder-decoder
architecture, as suggested by Vaswani et al. (2017).
Further, we improved the baseline translator using
a reinforcement learning approach by establishing
language models and agents that leverage mono-
lingual data. We further experimented with the
Transfer Learning approach for Machine Transla-
tion to get the benefit of lexically similar Hindi
language that is rich resource language.

4.1 Transformer Translator

Initially, the raw sentences were tokenized using
SentancePiece tokenizer (Kudo and Richardson,
2018), which is an unsupervised and language-
independent tokenization method. Further, the par-
allel and monolingual tokenized data was used
to train word-vectors of length 128, using the
word2vec (Mikolov et al., 2013) technique. As
the transformer architecture doesn’t maintain any
word order, so along with the trained word-vectors,
a positional encoding signal is mixed and given to
the encoder as input. Introducing the positional

4http://opus.nlpl.eu/

235

encoding helps maintain the embedding informa-
tion and gives the vital position information to the
encoder. In the architecture, both encoder and de-
coder are formed by stacking four identical layers
in the same manner as described by Vaswani et al.
(2017). The encoder takes the representation of
Sanskrit token through word embedding and posi-
tional encoding, which is then fed to a multi-head
attention unit where feed-forward units with resid-
ual connections are employed between every other
sublayer. This signal normalizes and is given to the
decoder as input along with the output embeddings,
positional encoding, and masked multi-head atten-
tion. The decoder works similar to the encoder and
generates output word by word and finally makes a
sequence.

4.2 Reinforcement Translator

This methodology is inspired by He et al. (2016),
where we used our Transformer model as the trans-
lation model, and building the language model
from the Recurrent Neural Network (RNN) using
the monolingual data only. We define dual NMT as
a combination of Sanskrit to English considered to
be the primary task and English to Sanskrit being
dual. For both primary and dual tasks, we set indi-
vidual agents to perform two agent communication
games where they correct each other through a re-
inforcement learning process. The reward system
is a combination of Language model (r1) reward
and communication reward (r2), which can be ex-
pressed using the equation:

r = α(r1) + (1− α)r2. (1)

Where α is a hyper-parameter which is set to 0.1.
Further Transformer models are improved using
a policy gradient method (Sutton et al., 2000) for
maximum reward, which is a common methodol-
ogy in reinforcement learning. The process iterated
for 600 rounds and stoped when the translation
model converges. Other parameters such as beam
search size, learning rate, the individual reward for
each agent r1 and r2 were taken same as defined
by He et al. (2016)

4.3 Transfer Learning

The main idea of transfer learning is to transfer
the knowledge learned by a model trained on a
high resource language set, i.e., parent model, to
train another model with a similar application, i.e.,
child model. For our experimentation, we firstly

prepared a Hindi-English NMT model using Trans-
formers, as the parent model on 1.56 Million paral-
lel data provided by Kunchukuttan et al. (2017) and
training Sanskrit - English NMT model as a child
model. The Hindi data was firstly tokenized us-
ing Indic Tokenizer (Kunchukuttan, 2020), English
using Moses tokenizer (Koehn et al., 2007), and
Sanskrit using sentencepiece (Kudo and Richard-
son, 2018). Further Hindi-English NMT model
was trained using the same training procedure as
of Transformer model discussed in section 4.1

5 Result & Discussion

The baseline model in section 4.1 was implemented
using the OpenNMT Framework (Klein et al.,
2017). For the transfer learning implementation,
we used the NEMATUS toolkit (Sennrich et al.,
2017). The baseline and child model in the transfer
learning approach were trained, tuned, and tested
on the same data split set discussed in section 3.
For the quantitative evaluation, we used the BLEU
score (Papineni et al., 2002) for English translation
generated by the model against the test set. The
results obtained are shown in Table 1.

Architecture BLEU Rating

1. Transformer Translator 4.6 2.4

2. Reinforcement Translator 5.8 2.9

3. Transfer Learning 18.4 3.9

Table 1: Evaluation of different models with English
translation using BLEU scores

For the qualitative analysis, five Sanskrit lan-
guage experts were randomly given 50 sentences
each from all three models for the rating based on
the following rating schema:

• Good[5]: Sentence is interpretable by the lan-
guage expert, having no incorrectly translated
words.

• Helpful[3]: Sentence is interpretable by the
language expert with some context knowledge,
has some errors and wrong word order.

• Partially Helpful[1]: contains incorrectly
translated content words, few UNK Tokens,
but still interpretable by language experts.

• Wrong[0]: Sentence having many UNK To-
kens or untranslated words and considered as
not translated by a language expert.

236

All average ratings are shown in the last column
of Table 1. Hyperparameters searched and best
selected for the baseline model during the training
are mentioned in the Table 2.

Hyperparameters Experimented Best

Epochs 200 200

Batch-Size 512,1024 1024

Number of Layer 4 4

Learning Rate Dynamic

Dropout 0.1 0.1

Dimensional Vectors 128,256 128

Table 2: Hyperparameter searching for the best results

Few Observations from results:

• Transfer Learning approach performs best
among all three models. The lexical simi-
larity between Hindi and Sanskrit helped in
achieving a better result.

• Transformer translator performed worst, most
likely due to small and sparse dataset from
various domains and a large number of param-
eters of the model. However, Reinforcement
learning made a slight improvement of 1.2
BLEU points.

• The dataset used Koul and Manvi (2019) is
different and not available to the public do-
main for testing, so it won’t be appropriate
to compare results of Koul and Manvi (2019)
with our experiments.

6 Conclusion

In this paper, we explored approaches that have
never before been used for the translation of the
Sanskrit language to English. Firstly we estab-
lished a baseline with the Transformer architec-
ture. Further, we improved the Transformer model
with Dual Learning methodology and gained small
improvement on BLEU Score. The best BLEU
Score we observed was with the Transfer Learn-
ing method. Although we will not like to make an
explicit comment that Transformers architecture is
the first time explored in our research, a few unof-
ficial repositories have worked and published the
results. In the future, we would try to add more
parallel data to improve the trained models’ qual-
ity. We believe that our research would open the

doors for many researchers, linguists, and students
to work and explore Sanskrit.

Dataset, training subroutine, and trained model
is available at: https://github.com/RavneetDT
U/Improving-Neural-Machine-Translation-f

or-Sanskrit-English

References
Promila Bahadur, AK Jain, and DS Chauhan. 2012.

Etrans-a complete framework for english to san-
skrit machine translation. In International Journal
of Advanced Computer Science and Applications
(IJACSA) from International Conference and work-
shop on Emerging Trends in Technology. Citeseer.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Hiram Calvo, Arturo P Rocha-Ramirez, Marco A
Moreno-Armendáriz, and Carlos A Duchanoy. 2019.
Toward universal word sense disambiguation us-
ing deep neural networks. IEEE Access, 7:60264–
60275.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. arXiv preprint arXiv:1808.09381.

V. K. Gupta, N. Tapaswi, and S. Jain. 2013. Knowledge
representation of grammatical constructs of sanskrit
language using rule based sanskrit language to en-
glish language machine translation. In 2013 Inter-
national Conference on Advances in Technology and
Engineering (ICATE), pages 1–5.

Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu,
Tie-Yan Liu, and Wei-Ying Ma. 2016. Dual learn-
ing for machine translation. In Advances in neural
information processing systems, pages 820–828.

Fei Huang, Alexander Yates, Arun Ahuja, and Doug
Downey. 2011. Language models as representations
for weakly supervised nlp tasks. In Proceedings
of the fifteenth conference on computational natural
language learning, pages 125–134.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander M Rush. 2017. Opennmt: Open-
source toolkit for neural machine translation. arXiv
preprint arXiv:1701.02810.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In MT summit, vol-
ume 5, pages 79–86. Citeseer.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open source
toolkit for statistical machine translation. In Pro-
ceedings of the 45th annual meeting of the ACL

237

on interactive poster and demonstration sessions,
pages 177–180. Association for Computational Lin-
guistics.

Nimrita Koul and Sunilkumar S Manvi. 2019. A pro-
posed model for neural machine translation of san-
skrit into english. International Journal of Informa-
tion Technology, pages 1–7.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing.
arXiv preprint arXiv:1808.06226.

Anoop Kunchukuttan. 2020. The IndicNLP Library.
https://github.com/anoopkunchukuttan
/indic nlp library/blob/master/docs/in
dicnlp.pdf.

Anoop Kunchukuttan, Pratik Mehta, and Pushpak Bhat-
tacharyya. 2017. The iit bombay english-hindi par-
allel corpus. arXiv preprint arXiv:1710.02855.

Guillaume Lample, Myle Ott, Alexis Conneau, Lu-
dovic Denoyer, and Marc’Aurelio Ranzato. 2018.
Phrase-based & neural unsupervised machine trans-
lation. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

DT Mane, PR Devale, and SD SURYAWANS. 2010. A
design towards english to sanskrit machine translatio
and sy thesizer syste 1 si grule base approach. Int J
Multidisp Res Adv Eng, 1(1).

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Vimal Mishra and RB Mishra. 2008. Study of example
based english to sanskrit machine translation. Poli-
bits, (37):43–54.

Vimal Mishra and RB Mishra. 2009. Divergence pat-
terns between english and sanskrit machine trans-
lation. INFOCOMP Journal of Computer Science,
8(3):62–71.

Vimal Mishra and RB Mishra. 2010. Approach of en-
glish to sanskrit machine translation based on case-
based reasoning, artificial neural networks and trans-
lation rules. International Journal of Knowledge En-
gineering and Soft Data Paradigms, 2(4):328–348.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Compu-
tational Linguistics, pages 311–318.

Sarita G Rathod. 2014. Machine translation of natural
language using different approaches. International
journal of computer applications, 102(15).

Rico Sennrich, Orhan Firat, Kyunghyun Cho, Alexan-
dra Birch, Barry Haddow, Julian Hitschler, Marcin
Junczys-Dowmunt, Samuel Läubli, Antonio Valerio
Miceli Barone, Jozef Mokry, and Maria Nădejde.
2017. Nematus: a toolkit for neural machine trans-
lation. In Proceedings of the Software Demonstra-
tions of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 65–68, Valencia, Spain. Association for Com-
putational Linguistics.

Richard S Sutton, David A McAllester, Satinder P
Singh, and Yishay Mansour. 2000. Policy gradient
methods for reinforcement learning with function ap-
proximation. In Advances in neural information pro-
cessing systems, pages 1057–1063.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

238

Proceedings of the 17th International Conference on Natural Language Processing, pages 239–242
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Parsing Indian English News Headlines

Samapika Roy1, Sukhada1, Anil Kr. Singh2

1Dept. of Humanistic Studies, IIT (BHU)
2Dept. of Computer Science and Engg., IIT (BHU)

{samapikar.rs.hss15, sukhada.hss, aksingh.cse}@itbhu.ac.in

Abstract

Parsing news headlines is one of the difficult
tasks of Natural Language Processing (NLP).
It is mostly because news headlines (NHs) are
not complete grammatical sentences. News ed-
itors use all sorts of tricks to grab readers’ at-
tention. For instance, unusual capitalization
as in headline ‘Ear SHOT ashok rajagopalan’;
some demand world knowledge like ‘Church
reformation celebrated’ where ‘Church refor-
mation’ refers to a historical event and not a
piece of news about an ordinary church. The
lack of transparency in NHs can be linguis-
tic, cultural, social, or contextual. The lack of
space provided for a news headline has led to
creative liberty.

Though many works like news value extrac-
tion, summary generation, emotion classifica-
tion of NHs have been going on, parsing them
had been a tough challenge. Linguists have
also been interested in NHs for creativity in
the language used by bending traditional gram-
mar rules. Researchers have conducted studies
on news reportage, discourse analysis of NHs,
and many more. While the creativity seen in
NHs is fascinating for language researchers, it
poses a computational challenge for NLP re-
searchers. This paper presents an outline of
the ongoing doctoral research on the parsing
of Indian English NHs. The ultimate aim of
this research is to provide a module that will
generate correctly parsed NHs. The intention
is to enhance the broad applicability of news-
paper corpus for future NLP applications.

1 Introduction

NHs stands to be an excellent example of
creative writing. Headlines tend to be short,
attention-grabbing, and giving out just enough
information to attract readers’ attention. To
keep readers engage, news editors use all sorts
of tricks possible. Studies on Indian English

have been going on for some decades and be-
ing a part of South Asian English, Indian En-
glish has managed to grab attention for the
past few years. Like other stratification of the
English language, Indian English is unique as
well. Though it follows the basic underlying
structure of British English, the syntax, seman-
tics, and pronunciation of Indian English dif-
fer from world English. Translating from na-
tive language to English sometimes results in
different sentence structures. Due to linguis-
tic diversity, code-mixing and code-switching
are extremely common. These effects can be
found in NHs as well.

Sometimes news editors tend to use local id-
iosyncrasies. NHs are different from standard
text. For example, we can find unusual capi-
talization as in ‘Ear SHOT ashok rajagopalan’,
deliberate subject noun phrase drop as in ‘Ar-
rested for theft’, the deliberate dropping of
main verb as in ‘Identity cards for all urban
street vendors’, dropping of auxiliaries as in
‘18th century stone inscription unearthed’, so
on. Such structures are unique to NHs which
make it difficult to parse them using existing
parsers. This research attempts to solve such
problem of NHs parsing.

2 Contributions

This research contributes at following levels :

1. NHs Corpus: A corpus of 40,000 (ap-
prox.) headlines containing 3 lakh words
(approx.) of Indian English NHs has
been collected.

2. Parallel corpus: A parallel corpus of
NHs and grammatically transformed cor-
responding sentences has been created.

3. Linguistic analysis of the NHs data:
Through the Linguistic analysis, differ-
ent structures of NHs, words composi-
tions, voices, tenses, dropping of sub-
jects, as well as usage of punctuation
have been observed.

239

4. Guideline creation: A proper set of
guidelines for the transformation of NHs
has been drafted covering the various
structures of NHs that were found out as
a result of linguistic analysis,

5. Feature model: We have created a
syntactico-semantic feature model based
on linguistic analysis conducted on NHs
corpus.

6. Headline grammar: The creation of news
headline grammar based on the linguistic
analysis is going on.

7. NHs Module: Creation of a module
which could provide us correct parsing of
NHs is in the process.

3 Methodology

For the study, we deliberately chose Indian
English and collected data for two reasons:
1) apart from the linguistic analysis, a con-
trastive analysis between NHs of Indian En-
glish and British English has been conducted.
This study helped us to understand whether the
structure of NHs in Indian English is differ-
ent from NHs in British English and other En-
glish varieties, 2) Working on Indian English,
collecting Indian English NHs data and build-
ing a parallel corpus will be fruitful for future
endeavors as some computational works have
been already conducted on Indian English. On
the other hand, Indian English data collection
is going on for quite a some time in many or-
ganizations.

We collected data from three different newspa-
pers to analyze the syntactic structures. The
lack of space in hard copy newspapers leads
to an opportunity for creative liberty for news
editors, like excluding grammatical and lexical
elements (dropping subject noun phrase, auxil-
iary drop), the-out-of-grammar use of punctu-
ation, and so on. For a systematic analysis of
the data, we adhered to an inductive research
strategy.

Our very first objective was to analyze the
data for a better understanding of the prob-
lem. This analysis helped us to come up with
an idea about accuracy of the currently avail-
able parsers and areas where parsing output
can be improved. After parsing (Constituency)
the data with existing open-source parsers like
Stanford and Allennlp, we observed several er-
rors like parsing of singular verbs as plural
nouns, adjectives as verbs, and so on. There
was a need to understand the structures of NHs
and thus to analyze the NHs corpus linguis-
tically. This study was exploratory and inter-

pretive. For this we used both qualitative and
quantitative methods for the data analysis.

We found out that NHs can be either com-
plete headlines (headlines following the neces-
sary SVO word order of English language) and
fragments (comprises mostly of noun phrases,
ex. ’A burning issue’). The complete NHs
were further divided into four categories ac-
cording to structures: declarative, imperative,
interrogative, and exclamatory. The grammat-
ical notions we used to describe the headlines
are in a broader sense as headlines can not ful-
fill every linguistic need to belong in any par-
ticular category. Instead, they fulfilled mere
basic needs. The linguistic analysis of NHs
helped us create a grammar and guideline to
transform NHs to their canonical form to get
the correct parse.

Based on the linguistic analysis, we have build
a syntax and semantics-based feature model.
In this model, we have tried to cover the vari-
ous headlines’ structures we have come across
so far in our study. It has been created with
the motive that it will help us in the annotation
of the NHs. Also, it will work as a guideline
to create a transfer grammar analysis module.
In the feature model, we covered all the as-
pects of NHs like headlines structure, which
can be a complete NH or a fragment; there
are NHs with or without subject noun phrase;
NHs which is only a quote from a speaker
but without the mention of the speaker, and so
on. Our next step is to automate the transfor-
mation. We decided to treat the problem as
a machine translation problem, for which we
are working on creating a parallel corpus of
raw NHs and equivalent grammatically trans-
formed sentences. We are also working on cre-
ating transfer grammar for this purpose.

4 Observations

We have observed following specific vital is-
sues during the research so far:

1. Incorrect parsing: We observed that pars-
ing the NHs with the current available
parsers is difficult as some grammati-
cal elements are intentionally dropped in
NHs. The error analysis helped us to
identify the structural issues of parsing
the NHs with existing parsers. In order
to understand the syntax of NHs, the lin-
guistic analysis of the NHs corpus be-
came necessary. For example, Nouns
marked as Verbs: (ROOT (S (NP (CD
Two) (NN policemen)) (VP (VBD sus-
pended) (SBAR (IN as) (S (VP (VBD

240

accused) (NP (NNS escapes)) (PP (IN
from) (NP (NN custody)))))))))

2. Abridged structure: The linguistic analy-
sis of the NHs gave us an insight into the
internal structure of NHs which leads to
a grammar which is specific to headlines.

3. Limited information: We faced specific
issues while transforming the NHs into
grammatical sentences. For transforma-
tions, our intention was not to add any-
thing that is not certain from the NHs as
well as be careful in not removing any vi-
tal information from the NHs. With the
limited information we can get from the
NHs, we focused on fulfilling the basic
yet essential grammatical requirements.

4. Approach: Since there is no existing
framework from which we can draw in-
spirations, we decided to go with hybrid
approach in creating our module for pars-
ing the NHs.

5 Results

The results of the error analysis of the data af-
ter constituency parsing, shows that incorrect
tags e.g. plural nouns as an adjective, singu-
lar verbs as plural nouns, common nouns as
proper nouns and so on led to incorrect parsed
output. Following is an example of such
output which shows multiple parsing errors:
(ROOT(NP(NP (NNP Boat))(NP (JJ capsize)
(NN toll) (NNS touches)) (NP (CD 21)))). As
we can observe here, ’Boat’ has been incor-
rectly parsed as NNP(proper noun)‘capsize’
above is incorrectly parsed as JJ (adjective)
and ’touches’, above is incorrectly tagged as
NNS (singular noun). The reason behind these
incorrect tags is the intentional dropping of
grammatical elements by editors due to space
constraints. The errors occurred mostly be-
cause these NHs are not grammatically struc-
tured. The errors are the lack of crucial gram-
matical elements in the NHs, which distorts
the grammatical bond in a sentence.

To cross-examine our observations, we pro-
vided the parsers with sample data of grammat-
ically transformed raw NHs, where we added
a few essential grammatical elements required.
Proving our theory (which we developed from
error analysis) correct, the parsers provided the
correct parse. This finding has important impli-
cations for developing the module we intend
for the generation of correctly parsed NHs. In
linguistic analysis, we observed specific struc-
tural constructions like dropping off the sub-
ject and out of the grammar style of using lin-

guistic devices like punctuation, idioms, multi-
word expressions, and many more.

6 Future Goals

Future research will be devoted to the develop-
ment of news headline grammar and on the vi-
ability of our approach. We have already con-
ducted linguistic analysis, which will act as a
framework for headline grammar. We are cur-
rently working on automating the NHs corpus
to the standard canonical sentences. We intend
to elaborate the research on the contrastive
analysis between a parallel corpus of raw head-
lines and its grammatically transformed sen-
tences. For the rule-based approach, we are
moving forward with the creation of context-
free-grammar rules. For automating the NHs
to its grammatical form, we are considering
LALR parsers to start. In the meantime, we
are trying to create enough parallel corpus of
the raw NHs corpus we collected and the gram-
matically transformed sentences of those NHs
to go with a statistical approach.

7 Research Roadmap

The research road map is as follows: We did
data collection and sanitization during this re-
search followed by constituency parsing of
data, performed the error analysis, conducted
the linguistic analysis of NHs, did manual
transformations of NHs for the rule-based ap-
proach, and formulated a guideline for the
transformations, and build a feature design
model for the NHs. We are currently working
on constructing a news headline grammar, au-
tomating the feature annotation process, and
finally building a module to provide us with
correctly parsed NHs as final output.

Acknowledgments

I would like to express my sincere gratitude to
my supervisor Dr. Sukhada, Assistant Professor,
dept. of Humanistic Studies, IIT (BHU) and my
co-supervisor Dr. A.K. Singh, Associate professor,
dept. of Computer Science and Engg., IIT (BHU)
for their constant support and guidance.

References
Innocent Ejimofor Agu. 2015. A linguistic-stylistic

analysis of newspaper reportage. International Jour-
nal, 20.

Alireza Bonyadi and Moses Samuel. 2013. Headlines
in newspaper editorials: A contrastive study. Sage
Open, 3(2):2158244013494863.

241

Christine Develotte and Elizabeth Rechniewski. 2001.
Discourse analysis of newspaper headlines: a
methodological framework for research into national
representations. The Web Journal of French Media
Studies, 4(1):1–12.

Daria Lombardi. 2018. Critical discourse analysis of
online news headlines: A case of the stoneman dou-
glas high school shooting.

Novriyanto Napu. 2018. English and indonesian news-
paper headlines: A comparative study of lexical fea-
tures. European Journal of Literature, Language
and Linguistics Studies.

Alicja Piotrkowicz, VG Dimitrova, and Katja Markert.
2017. Automatic extraction of news values from
headline text. In Proceedings of the Student Re-
search Workshop at the 15th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics (EACL SRW 2017), pages 64–74. Asso-
ciation for Computational Linguistics.

Satoru Takahashi, Masakazu Takahashi, Hiroshi Taka-
hashi, and Kazuhiko Tsuda. 2007. Analysis of the
relation between stock price returns and headline
news using text categorization. In International
Conference on Knowledge-Based and Intelligent In-
formation and Engineering Systems, pages 1339–
1345. Springer.

242

Proceedings of the 17th International Conference on Natural Language Processing, pages 243–245
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

1 Introduction

Every language spoken by people in this world

contain words that have more than one meaning.

Meaning of such words at a particular time

depends on the context in which the word has

been used. The process of selecting the meaning

of ambiguous word from the set of possible

meanings is called word sense disambiguation

(WSD). WSD is one of the hot research topics in

the natural language processing (NLP) domain.

For humans it seems to be very easy to understand

the meaning of ambiguous words but it is a very

complex problem for machines to do so. Consider

the following sentences in English:

 This saw is blunt

 I saw a horror dream yesterday

 In the first sentence the word saw is used as

noun and its meaning is a tool used to cut hard

material like wood, metal. In the second sentence

the word saw is past form of verb see.

Similarly consider the following sentence in

Kashmiri:

 Thave dare yel

 Open the window

 Rache daare zeeth.

 Keep long beard.

 In the above two sentences the word daare is

having two different meanings. In the first

sentence it means window where as in the second

sentence it means beard.

 In NLP WSD is considered as an AI

Complete problem, that is, a problem whose

solution presumes a solution to understanding

natural language or common-sense reasoning

(Ide et al, 1998).The meaning of an ambiguous

word depends heavily on the words surrounding

it. To resolve the ambiguity of words number of

approaches have been designed till date and work

is still going on. The research on WSD actually

started in 1940’s making it one of the oldest

problems in the computational linguistics. Some

important research works for handling WSD in

various languages are (Abid et al, 2017), (Borah

et al, 2019), (Khaled et al, 2012), (Richard et al,

2014), (Basuki et al, 2019), (Rajat & Sudip ,

2015), (Himdweep et al, 2017), (Tarjni & Amit,

2019). For resolving ambiguity in Kashmiri

language no work is cited. The objective of this

research is to propose the WSD for Kashmiri

using Supervised Machine Learning approaches.

2 Motivation

The driving motivation for this research is that

WSD is an intermediate step for the various NLP

applications like Machine Translation,

grammatical analysis, speech processing,

Information Retrieval and hypertext navigation

(Ide & Veronis, 1998) and developing efficient

WSD system is very crucial for the better

performance of these NLP applications.

 Since there is no work cited in Kashmiri

language for handling WSD problem this is the

first attempt in this direction, so this also motivated

me for this research.

 The third point is that research in NLP

applications for Kashmiri language is in infancy

stage this research will boost the research in this

field and attract researchers to work in this field

of Artificial Intelligence.

3 Research Challenges

Word sense disambiguation is a computationally

Word Sense Disambiguation For Kashmiri Language Using Supervised Machine

Learning

Tawseef Ahmad Mir1 , Aadil Ahmad Lawaye2

Baba Ghulam Shah Badshah University Rajouri - Jammu & Kashmir – 185234
1 tawseefmir1191@gmail.com

2 aadil.lawaye@gmail.com

243

complex task and poses a lot of difficulties to the

researcher. As far as this study is concerned there

are a number of challenges. Notable challenges

include:
Resource Scarcity: Kashmiri language is a

resource poor language as adequate resources are

not available for research which makes our task

difficult. Only work done in Kashmiri so far in this

domain is the development of some corpus and few

linguistic tools under the project “Development of

Language Tools and Linguistic Resources for

Kashmiri” at the Department of Linguistics,

University of Kashmir (Aadil et al, 2009), (Aadil et

al, 2009), (Aadil et al,2010),(Aadil et al, 2013) ,

(Aadil et al, 2012) , (Aadil et al, 2012), (Aadil et

al,2011).

Sense selection: One important issue related to

WSD is to select senses of ambiguous word as

different sources provide different divisions of

words into senses.

Inter-Judge Variance: This study is the first

attempt towards resolving ambiguity in Kashmiri

language so the only option to evaluate the WSD

system for Kashmiri language is human-

judgement. But different humans may give

different meanings for the same word. This

increases the complexity of WSD task.

Discreteness of senses: WordNet contain very

fine-grained senses and often it is very difficult to

differentiate between these senses. This causes the

disagreements among the lexicographers to specify

which senses should be considered different ones

for a particular word.

3 Grammar Formalism and Issues

specific to Kashmiri Language

Grammar formalism is of great importance for

creating syntactic annotation corpus and

frameworks available can be categorized into two

types: Dependency based annotation scheme and

Constituency based annotation. In constituent-

based annotation scheme sentence is depicted as

hierarchically organized phrases and relation

between and within constituents is not represented

explicitly. In dependency based annotation the

sentence is organized as dependency graph

consisting of a head and dependent with labelled

arc specifying relationship between them.

 Kashmiri language being inflectionally rich

dependency annotation scheme existing for Hindi-

Urdu is considered suitable for annotation. But

some issues needed to be addressed. These issues

include V2 phenomenon, discrepancy that exists

between coordinating and subordinating conjuncts,

rift in complex predicates, pronominal clitics

etc.(Bhat , 2012).

5 Methodology

In this study Supervised Machine Learning

approaches are to be used to handle WSD in

Kashmiri language. The Supervised Machine

learning approaches work in two phases i.e,

training phase and test phase. In training phase

classifier is trained how to resolve ambiguity of a

polysemous word (words having multiple

meanings). In the testing phase the classifier

assigns most appropriate sense to ambiguous word.

The flowchart below depicts the methodology to be

used:

 Fig 1. Proposed WSD System for Kashmiri

5.1 Collection of Raw Data

Data for this study will be collected from online

(newspapers, blogs etc.) and offline resources. It’s

a very challenging task in this study.

5.2 Data Preprocessing

Usually the data is not readily available for

research so it needs to be preprocessed to make it

suitable for research. Data preprocessing usually

involves stop word removal, data cleaning,

stemming, removing inconsistencies in data.

5.3 Preparation of dataset

The data collected is divided into two sets. Training

dataset and test dataset. The trained dataset sense

tagged using Kashmiri WordNet and Hindi-

Kashmiri-English Trilingual dictionary is used to

244

train the classifier so that it can disambiguate the

ambiguous word for which it has been trained.

5.4 Classification

The supervised machine learning approach would

be used to train the classifier and the classifier

would be used to predict the meaning of the

polysemous word in the test phase.

6 Experimental Outcomes

The main outcomes of the study are as follows:

1. Sense Annotated Corpus for Kashmiri

Language.

2. WSD Data Set.

3. Word Sense Disambiguation System for

Kashmir Language.

References

Aadil Amin Kak, Nazima Mehdi and Aadil Ahmad

Lawaye 2009. What should be and What should not

be? Developing a POS tagset for Kashmiri.

Interdisciplinary Journal Of Linguistics (IJL), 2

185-196

Aadil Amin Kak, Nazima Mehdi and Aadil Ahmad

Lawaye.. 2009. Towards Developing A Tagset For

Kashmiri. Nepalese Linguistics, 49-60.

Aadil Amin Kak, Nazima Mehdi and Aadil Ahmad

Lawaye 2010.Building a Cross Script Kashmiri

Converter. Issues and solutions. Proceedings of

Oriental COCOSDA (The International Committee

for the Co-ordination and Standardization of

Speech Databases and Assessment Techniques).

Aadil Ahmad Lawaye and Prof. Bipul Syam

Purkayastha2 2013. Towards Developing A

Hierarchical Part Of Speech Tagger for Kashmiri:

Hybrid Approach. Proceedings of the 2nd National

Conference on Advancements in the Era of

Multidisciplinary Systems, Elsevier Publications,

187-192.

Aadil Ahmad Lawaye, and Dixit N. 2012.

Multilingual Dictionary Generation Using Indo-

Wordnet:A Proposal’, THE COMMUNICATIONS-

Journal of Applied Research in Open and Distance

Education, 188-191.

Aadil Ahmad Lawaye, Bipul Syam Purkayastha. 2014.

Kashmir Part of Speech Tagger Using CRF”,

Indian Journal of Research, 37-38

Basuki, Setio, Ali Sofyan Kholimi, Agus Eko Minarno,

Fauzi Dwi Setiawan Sumadi, and M. Rizal Arif

Effendy. 2019 Word Sense Disambiguation (WSD)

for Indonesian Homograph Word Meaning

Determination by LESK Algorithm Application,"

12th International Conference on Information &

Communication Technology and System (ICTS),

Surabaya, Indonesia, 2019, pp. 8-15

Bhat, S.M., 2012, December. Introducing Kashmiri

dependency treebank. In Proceedings of the

Workshop on Machine Translation and Parsing in

Indian Languages (pp. 53-60).

Borah, Pranjal Protim, Gitimoni Talukdar, and Arup

Baruah. 2019 WSD for Assamese Language. In

Recent Developments in Machine Learning and

Data Analytics, pp. 119-128. Springer, Singapore

Himdweep Walia, Ajay Rana, Vineet Kansal. 2017. A

Naïve Bayes Approach for working on Gurmukhi

Word Sense Disambiguation", 6th International

Conference on Reliability, Infocom Technologies

and Optimization (Trends and Future Directions),

Amity University Uttar Pradesh, Noida, India

Ide, Nancy & Jean Véronis. 1998. Word sense

disambiguation: The state of the art. Computational

Linguistics

Khaled Abdalgader M. OmarAndrew Skabar. 2012

Sense disambiguation using context vectors and

sentential word importance,” ACM Transactions on

Speech and Language Processing, vol. 9, no. 1, pp.

1-21

Muhammad Abid, Asad Habib, Jawad Ashraf, and

Abdul Shahid. 2017. Urdu word sense

disambiguation using machine learning approach”.

Cluster Computing, pages 1—8

Nancy Ide and Jean Veronis 1998, Introduction to the

Special Issue on Word Sense Disambiguation: The

State of the Art

Nazima Mehdi and Aadil Ahmad Lawaye 2011.

Development of Unicode Complaint Kashmiri

Font: Issues and Resolution. Interdisciplinary

Journal of Linguistics (IJL), 4,195-200

Pandit, Rajat, and Sudip Kumar Naskar. 2015. A

memory based approach to word sense

disambiguation in Bengali using k-NN method.

2015 IEEE 2nd International Conference on Recent

Trends in Information Systems (ReTIS), Kolkata,

pp. 383-386.

Singh, Richard Laishram, Krishnendu Ghosh,

Kishorjit Nongmeikapam, and Sivaji

Bandyopadhyay 2014. A Decision Tree Based Word

Sense Disambiguation System In Manipuri

Language. Advanced Computing: An International

Journal 5(4) p 17.

 Tarjni Vyas, Amit Ganatra 2019. Gujarati Language

Model:Word Sense Disambiguation using

Supervised Technique. International Journal of

Recent Technology and Engineering (IJRTE) ISSN:

2277-3878, Volume-8, Issue-2S11, September 2019

245

Proceedings of the 17th International Conference on Natural Language Processing, pages 246–256
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Sentimental Poetry Generation

Kasper Aalberg Røstvold and Björn Gambäck
Department of Computer Science

Norwegian University of Science and Technology
Trondheim, Norway

kasperaarr@gmail.com, gamback@ntnu.no

Abstract

The paper investigates how well poetry can
be generated to contain a specific sentiment,
and whether readers of the poetry experience
the intended sentiment. The poetry genera-
tor consists of a bi-directional Long Short-
Term Memory (LSTM) model, combined with
rhyme pair generation, rule-based word predic-
tion methods, and tree search for extending
generation possibilities. The LSTM network
was trained on a set of English poetry writ-
ten and published by users on a public web-
site. Human judges evaluated poems gener-
ated by the system, both with a positive and
negative sentiment. The results indicate that
while there are some weaknesses in the system
compared to other state-of-the-art solutions, it
is fully capable of generating poetry with an in-
herent sentiment that is perceived by readers.

1 Introduction

Poetry generation is a type of linguistic creativ-
ity that requires certain qualities in both form and
content, as well as the creation of understandable,
meaningful and poetic language. A central part of
poetry is the experience of the reader, including the
emotions poetry can evoke. The overarching goal
of this work is to explore and develop methods for
generating poetry with a specific (pre-defined) in-
herent sentiment, which can be experienced by the
readers. Earlier approaches to poetry generation
followed a range of paths, such as methods based
on templates (Gonçalo Oliveira, 2012) or corpora
(Colton et al., 2012), evolutionary (Levy, 2001) or
Case-Based Reasoning (Gervás, 2001) approaches,
and generate-and-test (Gervás, 2000) or Black-
board (Misztal and Indurkhya, 2014) architectures.
However, in recent years deep learners have proven
powerful as poetry generators, including systems
combining neural models with other techniques.
As described below, Long Short-Term Memory

(LSTM, Hochreiter and Schmidhuber, 1997) net-
works are the most used solutions in state-of-the-art
systems, so an LSTM was implemented here, with
an experimental focus on which specific network
architecture and parameter settings would produce
the best poetry word prediction model. The sen-
timent of the poems to be generated was decided
in advance, with human judges rating their quality
and how well the sentiment was perceived.

2 Related Work

Zhang and Lapata (2014) used a Recurrent Neu-
ral Network (RNN) to generate Chinese quatrains
(stanzas with four lines), with the first line based
on user-provided keywords giving the main con-
cepts of the poem. Subsequent lines were gener-
ated based on previous lines, subject to admissible
tonal pattern and structural constraints. Yi et al.
(2016) also generated Chinese quatrains line-by-
line based on user keywords, but using a sequence-
to-sequence model with attention mechanism (Bah-
danau et al., 2014), with a bi-directional RNN
with gated recurrent units (GRU; Cho et al., 2014)
as encoder-decoder to learn semantic relevance.
Wang et al. (2016a) used a similar approach for
character-by-character iambics generation, utilis-
ing a bi-LSTM as encoder and another LSTM as
decoder to alleviate the quick-forgetting problem
associated with conventional RNNs.

Ghazvininejad et al. (2017) combined hard for-
mat constraints with an RNN to generate 14-line
classical sonnets in iambic pentameter, given a user-
supplied topic and a set of related words, using
word2vec (Mikolov et al., 2013). Rhyme words
were found using CMU Pronouncing Dictionary
(CMUdict),1 with fixed pairs of often used words
added to make the system find rhymes in rare topics.
A Finite-state acceptor was built with paths for all

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict

246

conceivable vocabulary word sequences obeying
formal rhythm constraints, and an RNN selected
the best path. Similarly, Benhart et al. (2018) com-
bined an RNN with sonnet format constraints, but
added part-of-speech restrictions to alleviate er-
roneous word choices, and dynamically trainable
word embeddings, so that the language model was
able to learn some grammar before adjusting its
word representations to suit the training corpus.

Wang et al. (2016b) implemented a 2-phase sys-
tem: planning and generation, with an encoder-
decoder generator using bi-GRUs. A special plan-
ning schema in advance selected sub-keywords
(based on user input) guided by a language model
and each line then generated with the planned word
to improve coherence. Zhang et al. (2017) used the
same attention-based RNN generation model, but
with an additional memory component, effectively
giving regularisation that constrains and modifies
the behaviour of the model. Van de Cruys (2020)
also utilised an encoder-decoder, but generated po-
ems in both English and French. Human evaluators
scored the output highly with regard to fluency,
coherence, meaningfulness and poeticness, even
though only non-poetic text was used as training
data for the generator.

Unlike the one-pass generation for previous neu-
ral networks models, Yan (2016) proposed a gener-
ative model with a polishing schema, refining the
RNN-generated poem through several iterations.
Also, while previous models were based on max-
imum likelihood estimation (MLE), which opti-
mizes word-level loss and can lead to the systems
remembering common patterns of the training cor-
pus, Yi et al. (2018) added reinforcement learning
to a basic generator pre-trained with MLE, simul-
taneously training two generators that learn both
from the teacher (rewarder) and from each other.
Automatic rewarders were designed corresponding
to four criteria: fluency, coherence, meaningful-
ness, and overall quality.

Tikhonov and Yamshchikov (2018b) aimed to
generate poetry in the style of a specific author,
using an LSTM to predict the next word based on
a previous word sequence, with the embeddings
of the document currently being analysed used to
support the model at every step. Two datasets were
used to train the model, in English and Russian.

Several of the systems presented above imple-
ment a form of user input to influence the mood of
the poetry, often related to a given sentiment. How-

ever, two such systems are particularly important
in the way they include the use of sentiment: In the
corpus-based approach of Full-FACE Poetry Gen-
eration (Colton et al., 2012), the system decides on
a mood by checking the average sentiment of a set
of newspaper articles posted during the previous 24
hours, and then selects one of the five articles with
the highest resp. lowest sentiment value. Misztal
and Indurkhya’s (2014) system includes an emo-
tional personality aspect implementing both senti-
ment analysis and emotional modelling. To extract
sentiment, the Sentistrength (Thelwall et al., 2010)
tool is used, rating positive and negative scores on
a valence value scale. An average arousal value of
the input is calculated using Affective Norms for
English Words (ANEW, Bradley and Lang, 1999),
and the poem’s emotional state is set by combining
valence and arousal. WordNet-Affect (Strapparava
and Valitutti, 2004) is used to build a hierarchy
of words describing emotional states in order to
generate the affective content of poems.

3 Data set

The data set used in the experiments here is the
English part of the data collected by Tikhonov and
Yamshchikov (2018a,b). It consists of poems writ-
ten and published by users on a public website,
which leads to a variance in the quality of con-
tent, but both the large size and variance in content
are positive factors for network training. The pro-
vided data set was already cleaned, with all types
of punctuation removed and all letters converted
to lowercase. However, there were some inconsis-
tencies in how contractions were represented, with
some appearing in a joined form (e.g., wouldve)
and others as separate words (would ve). Hence
all spaces between regular contractions were re-
moved, as were line break markers (
), with
every individual poem was instead represented by
single individual lines, so that the structure of the
generated poems would not be constrained.

The original data set contains 3, 943, 982 po-
ems and 155, 066, 504 tokens, with a vocabulary
of 708, 727 unique tokens. Most of the unique to-
kens come from misspellings, alternative spellings,
irregular words and names. The training data was
shortened to specifically reduce the vocabulary size,
in order to remove words that very rarely appear
in the data set, and to reduce the size of the matrix
representation of data used in training the network.
To reduce the data set, tests were run on vocabu-

247

Lemmas Poems Tokens Polar

Data set 1 10 000 205 230 15 847 356 1 849
Data set 2 15 000 306 942 25 883 608 2 424
Data set 3 20 000 395 057 35 178 076 2 900
Data set 4 30 000 530 121 50 505 342 3 519

Table 1: Data set sizes based on vocabulary

lary sizes of 10, 000− 30, 000, finding how many
of the poems only included words within a given
vocabulary, as can be seen in Table 1. Since larger
vocabulary results in that more possible words can
be generated, but negatively effects training time
and is reliant on how much the hardware used for
training can handle, a simple test was run on a
GeForce GTX 1070 graphics card. Creating a bidi-
rectional LSTM using Keras2 with a single hidden
layer of 1, 024 neurons, and training on a random
sample size of the 5, 000, 000 tokens, with different
vocabulary sizes, resulted in the GPU experienc-
ing memory problems when exceeding a vocab-
ulary size of 30, 000, so the vocabulary size was
capped at that value, while the lower limit was set
to 10, 000, as smaller vocabularies would result in
too few words available for generation.

An important aspect of the vocabulary is the
inclusion of words with sentiment values, since
they would be generated to add sentiment to the
poetry. Using Vader (Hutto and Gilbert, 2015), the
data sets were investigated for how many unique
words they contained with a polar (non-neutral)
sentiment, i.e., either having a positive or a negative
sentiment. Those are also reported in Table 1.

Due to the increased number of unique sentiment
words with increased vocabulary sizes, but also
due to memory restrictions and larger vocabularies
resulting in greater training times, the vocabulary
sizes for neural network training was chosen to
be 10, 000 and 20, 000. As Table 1 shows, the
number of individual tokens in the data set with a
vocabulary size of 20, 000 is over 35 million, which
is too large to train on, concerning the time it would
take. The data sets were therefore further reduced
to training data sets, containing only 10% of the
original data. All poems were ordered after the user
name of the person that published it, so every tenth
poem was selected for creating training data, to get
poems from as many different authors as possible.
The training data set sizes are presented in Table 2.

To evaluate the trained networks, new test data
was created from the original data sets, in the same

2https://keras.io/

Lemmas Poems Tokens

Training set 1 9 195 12 273 1 300 068
Training set 2 18 031 26 873 3 106 347
Test set 1 9 195 4 620 405 286
Test set 2 18 031 4 307 406 324

Table 2: Training and test data sets

way as the training data, but from poems not in-
cluded in the training data and only containing
tokens included in the training data vocabularies.
The test data sets are also shown in Table 2.

The training of the neural network is done by
creating input sequences to be fed through the net-
work, but also creating the correct output which is
then compared to the output of the network. The
input is therefore created by choosing a sequence
of the training data with a given length, and the
token following that sequence as the correct output.
A training data sequence length of 5 was chosen,
both for memory storage reasons and since 5 was
decided to be the shortest possible line length of the
generated poetry. Resticting the sequence length
will also make the network predict the next words
based on just a short sequence, instead of all of
the poem that is already generated, which could
lead to more variation. Before creating the network
input matrices, every poem was reversed, with the
last word being the first, and so on, following the
approach used by Benhart et al. (2018). This is
done so it is possible to start with the ending rhyme
word of a line of poetry, and generate the rest of
the line backwards from that rhyme-word.

4 Architecture

This section introduces the architecture for the sys-
tem implemented in this project. The first part
describes the long short-term memory network that
was implemented, while the second part describes
the complete poetry generation process.

4.1 The LSTM network

A bi-directional Long Short-Term Memory neural
network is the main component in the poetry gen-
eration process. After being trained on a large data
set of human-written poetry, its task is to give a
prediction on the next word that should follow after
a given input sequence of words. The prediction
consists of an array, with a predicted score of every
unique word in the vocabulary.

Figure 1 shows the Bi-LSTM network. The in-
put with a sequence length of 5 is transformed into

248

Figure 1: LSTM network prediction process

a matrix representation before being fed to the net-
work. The network’s input layer represents the
matrix data given to the network, which accounts
for both the data used for training and for the input
during the poetry generation process. The output
layer is a softmax activation function layer that out-
puts a matrix representing the network predictions
for all possible words. During training, the result of
these predictions are compared to the actual follow-
ing word of a given sequence, which will update
the hidden layer(s) based on a loss function, which
the network tries to minimise. Between the input
and output layers are hidden layers, consisting of
(recurrent) LSTM cells that compute the possible
values for the next predictions, based on the current
input and the (stored memory of) the previous part
of the input sequence.

During training, the network tries to minimise
the cross entropy loss:

L = − 1

N

N∑

c=1

ln(pc) (1)

where N is the total training set, p the prediction,
and c the category (the word) being looked at. The
loss is the cross entropy between the distribution of
the true labels and the network predictions. To min-
imise the loss function, backpropagation is used
to update the network weights during training, by
taking the error found by the loss function L and
calculating the gradient of L with respect to the
weights, w, in the network, ∂L

∂w . The gradient is fed
to the optimiser, which updates the weights in an at-
tempt to minimise the loss function. The optimiser
used is stochastic gradient descent, a first-order
iterative optimisation algorithm. It is possible to
get stuck in a local minimum when minimising the

loss function, therefore the learning rate is initially
set higher, and decreases during the training to try
to find the global minimum. In addition, dropout
(Srivastava et al., 2014) was used during network
training to reduce overfitting.

4.2 Poetry generation system

The network output consist of an array containing
the predicted value for each word in the vocab-
ulary, to follow the input word sequence fed to
the network. In addition to the LSTM, the poetry
generator has three important components: rhyme
pair generation, prediction score updating, and tree
search. The generation of rhyme pairs is used as
initial input for generating each poetry line and
ensures that the poetry contains end rhymes. The
score updating algorithm adjusts the prediction val-
ues gained from the LSTM, by adding rules and
different weightings on certain types of possible
words, to enhance the quality of the generated se-
quences. The search tree expands the number of
possible sequences created during the generation,
increasing the chance of finding the best possible
sequence to create a poem from.

Rhyme word generation: The first part of the
generation process consists of finding rhyme word
pairs, that are used as input for producing a poetry
line, as it is generated backwards from the rhyme
words. For this, a unique word having a sentiment
value matching the decided sentiment is randomly
chosen from the vocabulary, using Vader (Hutto
and Gilbert, 2015), with words with a sentiment
value above 0.0 selected if the sentiment is to be
positive, and less than 0.0 for negative.

The vocabulary is then searched for another
word of the same sentiment rhyming with the first

249

Figure 2: Poetry generation with rhyme word input

word, with CMUdict identifying the syllables. The
conditions that need to be met to complete a rhyme
do not form a perfect rhyme (i.e., with identical
stressed vowel sounds in both words, as well as any
subsequent sounds, but with different consonant
preceding the stressed vowel), but rather a form of
imperfect rhyme, where the last three sounds, in-
cluding a consonant, are equal for two words. Each
word in a rhyme pair is used for one line of poetry,
and the rhyme form chosen is ABAB, so two pairs
are needed to generate one 4-line stanza.

The first rhyme word found is used to predict
the following words for the first line (which will
be the final line of the poem, since it is generated
backwards). The last four words of the generated
sequence, plus the rhyme word for the next line, are
used as input to generate the next line. This process
is presented in Figure 2, where the rhyme word A1
is used to generate the first line, consisting of the
rhyme word and a sequence of n words w. The
next rhyme word B1 is then added to the sequence
of the four words from wn−3 to wn from the last
sequence, and used as input to generate the next
line. The last generated line with the rhyme word
B2 is the first line of the complete poem.

Updating prediction scores: For every word
generated in a sequence, predictions on all the
possible words are given by the LSTM, based on
network input consisting of the previously gener-
ated words. Four algorithms were implemented for
updating and adjusting the prediction scores, to im-
prove the generated poetry. These algorithms were
similarly used in other state-of-the-art-solutions, in-
cluding Benhart et al. (2018) implementing repeti-
tion and sentence structure restrictions, and Colton
et al. (2012) measuring sentiment values of poetry
lines against a set value.

(i) Since some popular words often appear in the
data set, they will have a high prediction value. To

avoid a repetitive use of these words and to achieve
better variety, related words are found using Word-
Net (Miller, 1995) for the 20 unique words with
the highest prediction value, and the predictions
for those words are increased, thus increasing the
probability of choosing a less used word.

(ii) To reduce the likelihood of a line of poetry con-
taining repeated words, a word’s predicted score
is reduced during sequence generation, if it has
previously appeared in the sequence.

(iii) It was observed that the generated poetry con-
sistently had obvious part-of-speech (POS) errors.
Sequences were thus POS-tagged using the Natural
Language ToolKit (Bird et al., 2009), and used to
implement sentence structure restrictions, such as
disallowing a pronoun directly preceding another
pronoun and a verb directly preceding another verb.

(iv) Based on the intended sentiment for the po-
ems, the scores for the possible words with a cor-
responding sentiment were increased, using Vader
to find all the possible next words in a sequence
having a sentiment value corresponding to the in-
tended sentiment and increasing their predicted
score, resulting in an increased chance of choos-
ing words with the correct sentiment value when
generating sequences. The degree of increasing
predicted scores is based of the sentiment value
of each word. Words that Vader evaluates as hav-
ing a higher correct sentiment value get a larger
predicted score increase; words with the opposite
sentiment get their predicted scores decreased.

Search tree algorithm: To increase the chances
of finding the best possible sequences to create
a poem from, a tree search algorithm was imple-
mented to expand the number of sequences created.
Instead of generating a single next word based on
the highest score, the search takes a number of
the possible words with the highest score values,
and generates different possible sequences. This is
repeated for every new word in the sequence.

The first word w1 can be one of the rhyme words
used to generate the rest of the sequence, but it can
also be a sequence of previously generated words
plus the new rhyme word. Using this as the input
to the LSTM network, we get the predictions for
the next words. These prediction scores are then
updated by the four algorithms described above,
before 20 new sequences are created, that all con-
sist of the first word w1 plus one of the next words

250

x with one of the highest scores, where every se-
quence has a unique next word x. This generation
step is then performed on all the possible sequences
created in the previous step, for adding the third
word in the sequence, and so on.

The search continues with a number of steps i
equal to the total number of words to be gener-
ated in a given sequence. As the search tree grows
exponentially, the possible sequences that are cre-
ated with the lowest scores are continuously pruned
throughout the process.

When all the possible sequences have been cre-
ated, the sentiment values for each complete se-
quence are evaluated using Vader. These sentiment
values are again used to adjust the score for all the
possible sequences. After this final score update,
the sequence with the highest score is chosen, and
used to generate a new line of the current poem.

The process described above is used to generate
8-line poems consisting of two 4-line stanzas with
a rhyming scheme of ABAB CDCD. The system
adds commas after each of the first three lines of
a stanza, a period after the last line, and an empty
line between the two stanzas. The first letter of the
first word of every line is capitalised, in addition
to other letters where capitalising is grammatically
correct. Finally, Vader is used to calculate the senti-
ment value of the entire complete poem. This final
sentiment value is used in the experiments where it
is compared to human evaluations.

5 Network Experiments

Experiment were conducted to decide the final ar-
chitecture of the LSTM network, and what param-
eters to use in the implementation of the poetry
generation system. The network training was per-
formed on a Tesla P100-PCIE-16GB GPU. The
learning rate was initially set to 0.9 for the training
of all networks. A monitor was implemented on
the validation loss calculated on validation samples
each epoch, reducing the learning rate after a given
period when the validation loss has not decreased.
The period before reducing the learning rate was
set to 5 epochs, and the reduction of the learning
rate to a factor of 0.3. The minimum limit for the
learning rate was set to 0.001. The dropout proba-
bility rate was 0.6 for all non-recurrent units. This
value was chosen based on Zaremba et al. (2014),
where the dropout rate used for medium LSTM
(650 units per layer) was 0.5, and 0.65 for large
LSTM (1500 units per layer).

M1 M2 M3 M4 M5

CA 2.25 2.38 2.46 2.41 2.33
L 8.997 8.097 7.951 8.131 8.813
WP 8,077 3,286 2,839 3,400 6,722

Table 3: Results using Training Data set 1

Two different data sets were used in the exper-
iments and the parameters tested were the num-
bers of hidden layers, units in each hidden layer,
and training epochs. The test data input was fed
through the networks, and predictions were mea-
sured against true values, using three measures:

(i) Categorical accuracy (CA) is calculated for the
entire test data set, by taking the mean accuracy rate
across all the predictions, to check if the predicted
word is equal to the true word.

(ii) Categorical cross entropy loss gives the loss
function (L; Eq. 1) used during network training.

(iii) Word perplexity (WP) measures how well a
probability distribution can predict a sample: the
lower the perplexity, the less confused a network is
about predicting the next word. It is calculated by
using the loss function as exponent to the power of
the constant e:

WP = eL = exp(− 1

N

N∑

c=1

ln(pc)) (2)

5.1 LSTM network training

Five LSTM networks were trained over 25, 50 or
75 training epochs on each of the training data sets:
two network models with two hidden layers, with
256 (denoted as model M1 below) resp. 1024 (M2)
hidden units; and three models with three hidden
layers, with the number of hidden units being 256
(M3), 512 (M4) or 1024 (M5).

The LSTM models trained on Training set 1
(with a vocabulary size of 9, 195) were only eval-
uated on the Test set 1, since it has the same size.
Table 3 displays the categorical accuracy, cross
entropy loss, and perplexity for those networks.

The LSTM network models trained on the Train-
ing set 2 on the other hand (with a vocabulary size
of 18, 031), were evaluated on both Test set 1 and
Test set 2, in order to be able to compare LSTM
models trained on different vocabulary sizes, with
results presented in Table 4.

251

M1 M2 M3 M4 M5

Evaluation Data set 1 results

CA 2.53 2.38 2.51 2.41 2.25
L 7.986 8.617 8.000 8.315 9.729
WP 2,939 5,522 2,981 4,084 16,789

Evaluation Data set 2 results

CA 2.34 2.24 2.38 2.24 2.07
L 8.266 8.893 8.617 8.540 9.983
WP 3,888 7,279 5,522 5,117 21,653

Table 4: Results using Training Data set 2

5.2 LSTM network evaluation

The perplexity varied greatly for the different
LSTMs, ranging from 2, 939 to 21, 653, and in-
creasing with increased network complexity. How-
ever, networks trained on a smaller vocabulary did
not have better perplexity scores than those trained
on the larger vocabulary, so the ones trained on
the smaller vocabulary were disregarded, since a
smaller vocabulary means fewer possible unique
words in the generated poems.

The network trained on the large vocabulary with
best perplexity (3, 888 for Test set 2) had 2 hidden
layers and 256 hidden units per layer. However,
generating text solely based on predictions given
by this network, it showed signs of being highly
overfitted, repeating a few select words. Since
this network did not achieve perplexity scores sig-
nificantly better than the alternatives, the larger
network with the next-best perplexity was chosen
instead. It has 3 hidden layers, 512 hidden units
per layer, and was trained for 25 epochs, achieving
a perplexity of 5, 117 for Test set 2, with a cross
entropy loss of 8.540 and a categorical accuracy
of 0.0224. A network with the same architecture,
but trained for an additional 25 epochs, resulted
in a much higher word perplexity score (21, 653),
likely due to underfitting the training data, since it
had a much harder time predicting correct words.

While the perplexity differed greatly for the
LSTMs, it was consistently very high, representing
poor network training results. Zaremba et al. (2014)
achieved a word perplexity of 78.4 with a regu-
larised LSTM where dropout was used, training on
the Penn Tree Bank (PTB) 10k vocabulary (Mar-
cus et al., 1993). While the vocabulary size of the
training data does not differ, there are several no-
table differences that will impact the results: Word
perplexity will be greater for data with a larger vo-
cabulary size (plainly due to the word possibilities

Positive Negative
sentiment sentiment

Rated positive 58.8% 2.7%
Rated neutral 36.2% 27.6%
Rated negative 5.0% 69.7%

Human average 0.360 -0.372
Vader average 0.977 -0.925

Table 5: Sentiment evaluation results

increasing, clearly shown in Table 4. Furthermore,
the PTB consists of grammatically correct litera-
ture, while the data used here consists of publicly
written poetry, which is more irregular and with
greater variation (especially in sentence structure
and grammaticality), which could impact the net-
works’ ability to learn patterns from the texts. The
networks here were also trained on short sequences
with a length of 5, making it harder for them to
learn connections and general rules in the data.

6 Evaluating the generated poetry

Human judges evaluated the generated poetry both
in itself and with regard to the intended senti-
ment. The poetry was rated along the dimensions
suggested by Manurung (2004): Grammaticality,
Meaningfulness, and Poeticness, on a 1–3 scale (1
being “not”, 2 “partially, and 3 “fully”). For the
sentiment rating, the human judges evaluated the
poetry using three categories: Negative sentiment,
No sentiment (neutral), and Positive sentiment. If
a poem was evaluated as having negative or posi-
tive sentiment, it was graded with a score of 1–3
(“Slightly”, “Quite”, and “Very” negative/positive).

Twenty poems were evaluated (i.e., 40 stanzas
and 160 lines), generated to contain 10 each with
positive and negative sentiment. Thirty human
judges participated, evaluating a selection of 6 or 7
poems each, with a near-equal amount of positive
and negative sentiments.

The 20 poems were scored with an average mean
of Grammaticality: 1.488 ± 0.0476, Meaningful-
ness: 1.582 ± 0.0338, and Poeticness: 2.012 ±
0.0342. Table 5 shows the percent of the judges
who rated the poems to contain positive, neutral
or negative sentiment. The evaluators also rated
the degree of perceived sentiment for each poem
they had evaluated to contain a positive or negative
sentiment, with ratings for every poem normalised
to values between 0–1. The poems included in the
experiments were also rated using Vader. Table 5
also shows the average sentiment degree scores.

252

The results show that on average the majority
of judges perceived the poems to contain the senti-
ment value intended by the system, but the degrees
of the sentiment value, both for negative and pos-
itive poems, are rated considerably lower by the
human judges than the ratings given by Vader. One
reason for this is the very high ratings that Vader
assigns, both for negative and positive sentiment
scores, with the generator discouraging the use of
words with an opposite sentiment value (compared
to the intended value), while encouraging the use
of words with a “correct” sentiment value, given by
Vader. The degree ratings from the human judges
on the other hand reflect that a lack of the words
with an opposite sentiment value does not result
in a high degree of sentiment being perceived. It
is also interesting to note the consistency of the
degree ratings given by the human judges, where
positive and negative sentiment poems are on aver-
age rated with almost the same degree of sentiment.

Three of the generated poems are presented be-
low: #8 with one of the lowest scores in the ex-
periment results, and #3 and #14 with some of
the highest. Along with each poem are its scores,
with the first array presenting the grammaticality,
meaningfulness and poeticness scores. The second
array shows the percentage of human judges who
found the poem to contain negative, neutral, or pos-
itive sentiment. Poem 8 achieved a score of 1.22
for both grammaticality and meaningfulness, while
Poem 14 achieved a score of 1.73 for those. The
poeticness scores for both Poem 8 and 14 are below
average, while Poem 3 achieved the highest poetic-
ness score of all the poems with 2.5, and also high
scores for grammaticality and meaningfulness.

A common trait among all the generated poems
is incorrect use of articles and conjunctions, in ad-
dition to erroneous use of other word classes and
poor sentence structure. Examples of this are the
sequences So most from an till and Amid to our so
most from currently in Poem 8. Another noticeable
aspect is the rhyme pairs in the poetry not always
rhyming, e.g., exceptions and solutions at the end
of lines 6 and 8 in Poem 14. This is due to the
system pairing rhyme words based on the last three
syllables using CMUdict. A similar aspect is the
consistent lack of repetitiveness found in the poetry,
since repeated use of words is highly discouraged
by the system, to avoid constant use of the same
high predictions words, resulting in the poems lack-
ing an often used poetic technique, to consciously

Poem 3
Of ravishing sin was naturally deprivation, 1

Of war suffering it tired than two then a situation, 2
And the go on no lies at finding they frustration, 3

Of voice are their seven then limitation. 4

The forest in mystic hands understood, 5
A trapped on must words most from your unarmed, 6

With wind raging to our misunderstood, 7
As a entire my that alarmed. 8

Metric evaluation scores: [1.7, 1.5, 2.5]
Sentiment evaluation scores: [0%, 20%, 80%]

Poem 8
For worst the all sleep as hearted of unpredictable, 1

So most from an till sensations, 2
Poor tall being eye in goes horrible, 3

Without the when todays so most from contradictions. 4

Kept on humanitys your soft in night a frightening, 5
Amid to our so most from currently, 6

In unwanted of feminine with sickening, 7
By no lies at impatiently. 8

Metric evaluation scores: [1.22, 1.22, 1.89]
Sentiment evaluation scores: [0%, 56%, 44%]

Poem 14
Without the oozing in night quickly divine thin lovable, 1

Like non focused best gods so wearing on contentment, 2
Bliss most from victory like favorable, 3

Without the respected of your improvement. 4

A dusty amid to governments, 5
Like mother of god be will certain the exceptions, 6

Amid to our so most from the do innocents, 7
In love a feeling most which are their solutions. 8

Metric evaluation scores: [1.73, 1.73, 1.91]
Sentiment evaluation scores: [82%, 18%, 0%]

repeat words or phrases. Other noticeable factors
include misspellings (e.g., humanitys in Poem 8),
and use of rare and special words. The generator
vocabulary consists of the 20, 000 most frequently
used words in the chosen data set, so any spelling
error would mean that a high frequency of that
misspelling occurs in the data.

The average scores for both grammaticality and
meaningfulness are rather low. This correlates di-
rectly with the results from the LSTM training:
the poor word perplexity scores for the LSTM net-
works have an effect on the words chosen by the
poetry generator, creating poems having poor gram-
maticality, and therefore being more difficult to
perceive meaningfulness from. The variables that
update the word predictions during the generation
could be improved to positively impact the evalu-
ation scores, in particular the feature that updates
prediction values based on sentence structure.

Poeticness had a significantly higher score,
which could be due to factors not influenced by

253

the LSTM model’s performance, specifically in-
cluding the generation and use of rhyming pairs
and the form of the poetry. The form of the poetry
is also not influenced by the LSTM predictions,
as the length of each line is randomly decided be-
tween two outer bounds, and proper punctuation
is added after each line, including a line break be-
tween stanzas. While consistent rhyme form, punc-
tuation, and varying line lengths likely account for
the good poeticness results, possible weaknesses
that might have affected the results are the lack of
perfect rhymes and the lack of known poetry forms
with consistent syllable lengths, such as sonnets.
The lack of repetitiveness as encouraged by the
system might also negatively affect the score.

7 Conclusion and Future Work

A system capable of generating poetry with in-
herent sentiment has been designed and imple-
mented, with the main system component being
a bi-directional Long Short-Term Memory network
used for generating word predictions based on a
given input sequence. The network was trained on
a data set consisting of poetry written by humans.
Other components of the final generation system
are algorithms and rule-based methods for influ-
encing word predictions and word choices during
the generation process, and a search algorithm for
expanding the possibilities of generated sequences.

The implemented system was used to generate
20 poems in total, all consisting of two stanzas with
four lines each. 10 of the poems were generated to
contain an inherent positive sentiment value, while
the other 10 were generated to contain a negative
sentiment value. Several experiments were con-
ducted, both regarding the LSTM network and on
the generated poetry. The first experiment was on
training different LSTM networks with varying ar-
chitecture details, with the goal of training the best
performing network model to use in the implemen-
tation of the final poetry generation system.

Two other experiments were conducted on the fi-
nal generated poetry, both involving human judges
evaluating the generated poetry. The first of these
experiment consisted of the judges evaluating the
poetry based on three standard evaluation criteria.
This enabled evaluation of the performance of the
poetry generation system, and comparison to other
works that have been conducted in this field. In
the second experiment the human judges evaluated

the sentiment value they perceived generated po-
etry to contain, in order to investigate whether the
system was capable of generating poetry with an
inherent sentiment value that would be perceived
as intended by human readers.

The results of the experiments varied, with
LSTM experiments giving word perplexity scores
worse than state-of-the-art solutions. Applying
some standard evaluation metrics showed one of
the metrics achieving similar values to state-of-the-
art solutions, while the other metric gave poorer
results, one reason being the influence from the sub-
par prediction performance of the LSTM network.
The experiment for evaluating the sentiment of the
generated poetry produced good results. While
there is a lack of similar experiments by others to
compare to, the results show a clear trend of the
human judges perceiving the poetry to contain the
intended sentiment value.

Possible future work could include implement-
ing additional features or other architectures, such
as word embedding models or language models like
BERT (Devlin et al., 2018) that show prominent
results for text analysis, or use mutual reinforce-
ment, which has given state-of-the-art results in
poetry generation (Yi et al., 2018). The data set
used to train the neural network model has a consid-
erable effect on the system’s performance and the
generated poetry. Hence using different data sets,
especially data containing poetry of a generally
accepted higher quality, would probably improve
the system. Adding only perfect rhymes for rhyme
pair generation, or a strict poetic form based on
syllables, such as the sonnet form, could improve
the poetic qualities of the output.

The main feature of the generation system is to
generate poetry with an inherent sentiment, and
this can also be further developed. First, the sys-
tem needs to generate poetry with a wider range
of sentiment value words, as it current only uses
words with neutral sentiment or sentiment values
corresponding to the intended sentiment. Adding
more words with opposite sentiment could increase
the poetry’s emotional dynamic. The sentiment
feature could also be extended to generate poetry
with a wider range of emotions, e.g., by using emo-
tional modelling similarly to Misztal and Indurkhya
(2014), or by adapting the system to generate po-
etry with an inherent degree of a specific sentiment,
not just a general negative or positive value.

254

Acknowledgments

Thanks to Trond Aalberg and the AI Master stu-
dents at NTNU’s Department of Computer Science
for discussions, insights and helpful feedback.

Thanks also to the people who participated in the
experiments that were conducted and to Tikhonov
and Yamshchikov for providing the data set used.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

John Benhart, Tianlin Duan, Peter Hase, Liuyi Zhu,
and Cynthia Rudin. 2018. Shall I compare thee to
a machine-written sonnet? An approach to algorith-
mic sonnet generation. CoRR, abs/1811.05067.

Steven Bird, Ewan Klein, and Edward Loper.
2009. Natural Language Processing with Python.
O’Reilly Media.

Margaret M. Bradley and Peter J. Lang. 1999. Affec-
tive norms for English words (ANEW): Instruction
manual and affective ratings. Technical Report C-
1, Center for Research in Psychophysiology, Univer-
sity of Florida, Gainesville, FL, USA.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gülçehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. 2014. Learning phrase representa-
tions using RNN encoder-decoder for statistical ma-
chine translation. CoRR, abs/1406.1078.

Simon Colton, Jacob Goodwin, and Tony Veale. 2012.
Full-FACE poetry generation. In Proceedings of the
3rd International Conference on Computational Cre-
ativity, pages 95–102, Dublin, Ireland.

Tim Van de Cruys. 2020. Automatic poetry generation
from prosaic text. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 2471–2480, Online. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Pablo Gervás. 2000. WASP: Evaluation of different
strategies for the automatic generation of Spanish
verse. In Proceedings of the AISB’00 Symposium
on Creative & Cultural Aspects and Applications of
AI & Cognitive Science, pages 93–100, University of
Birmingham, England.

Pablo Gervás. 2001. An Expert System for the Com-
position of Formal Spanish Poetry. In Applications

and Innovations in Intelligent Systems VIII, pages
19–32, London, England. Springer.

Marjan Ghazvininejad, Xing Shi, Jay Priyadarshi, and
Kevin Knight. 2017. Hafez: an interactive poetry
generation system. In Proceedings of ACL 2017,
System Demonstrations, pages 43–48, Vancouver,
BC, Canada. Association for Computational Lin-
guistics.

Hugo Gonçalo Oliveira. 2012. PoeTryMe: A versa-
tile platform for poetry generation. In Proceedings
of the Workshop on Computational Creativity, Con-
cept Invention, and General Intelligence, pages 21–
26, Montpellier, France. Publications of the Institute
of Cognitive Science.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computation,
9(8):1735–1780.

C.J. Hutto and Eric Gilbert. 2015. VADER: A parsi-
monious rule-based model for sentiment analysis of
social media text. In Proceedings of the 8th Inter-
national Conference on Weblogs and Social Media,
ICWSM 2014, pages 82–91, Ann Arbor, MI, USA.
AAAI Press.

Robert P. Levy. 2001. A computational model of po-
etic creativity with neural network as measure of
adaptive fitness. In Proceedings of the Workshop on
Creative Systems, International Conference on Case-
Based Reasoning, Vancouver, BC, Canada.

Hisar Maruli Manurung. 2004. An evolutionary algo-
rithm approach to poetry generation. Ph.D. thesis,
Institute for Communicating and Collaborative Sys-
tems, School of Informatics, College of Science and
Engineering, University of Edinburgh, Edinburgh,
Scotland.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a Large Annotated
Corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313–330.

Tomas Mikolov, Kai Chen, Gregory S. Corrado, and
Jeffrey Dean. 2013. Efficient estimation of word rep-
resentations in vector space. CoRR, abs/1301.3781.

George A. Miller. 1995. WordNet: A lexical
database for English. Communications of the ACM,
38(11):39–41.

Joanna Misztal and Bipin Indurkhya. 2014. Poetry gen-
eration system with an emotional personality. In
Proceedings of the 5th International Conference on
Computational Creativity, pages 72–81, Ljubljana,
Slovenia.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15:1929–1958.

255

Carlo Strapparava and Alessandro Valitutti. 2004.
WordNet-Affect: an affective extension of Word-
Net. In Proceedings of the 4th International Confer-
ence on Language Resources and Evaluation, pages
1083–1086, Lisbon, Portugal.

Mike Thelwall, Kevan Buckley, Georgios Paltoglou,
Di Cai, and Arvid Kappas. 2010. Sentiment strength
detection in short informal text. Journal of the Amer-
ican Society for Information Science and Technol-
ogy, 61(12):2544–2558.

Aleksey Tikhonov and Ivan Yamshchikov. 2018a.
Sounds Wilde. phonetically extended embeddings
for author-stylized poetry generation. In Proceed-
ings of the 15th Workshop on Computational Re-
search in Phonetics, Phonology, and Morphology,
pages 117–124, Brussels, Belgium. Association for
Computational Linguistics.

Alexey Tikhonov and Ivan P. Yamshchikov. 2018b.
Guess who? Multilingual approach for the au-
tomated generation of author-stylized poetry. In
2018 IEEE Spoken Language Technology Workshop,
pages 787–794, Athens, Greece. IEEE.

Qixin Wang, Tianyi Luo, Dong Wang, and Chao Xing.
2016a. Chinese song iambics generation with neural
attention-based model. CoRR, abs/1604.06274.

Zhe Wang, Wei He, Hua Wu, Haiyang Wu, Wei Li,
Haifeng Wang, and Enhong Chen. 2016b. Chinese
poetry generation with planning based neural net-
work. CoRR, abs/1610.09889.

Rui Yan. 2016. I, Poet: Automatic poetry composi-
tion through recurrent neural networks with iterative
polishing schema. In Proceedings of the 25th Inter-
national Joint Conference on Artificial Intelligence,
IJCAI’16, pages 2238–2244. AAAI Press.

Xiaoyuan Yi, Ruoyu Li, and Maosong Sun. 2016. Gen-
erating Chinese classical poems with RNN encoder-
decoder. CoRR, abs/1604.01537.

Xiaoyuan Yi, Maosong Sun, Ruoyu Li, and Wenhao Li.
2018. Automatic Poetry Generation with Mutual Re-
inforcement Learning. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3143–3153, Brussels, Bel-
gium. Association for Computational Linguistics.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
CoRR, abs/1409.2329.

Jiyuan Zhang, Yang Feng, Dong Wang, Yang Wang,
Andrew Abel, Shiyue Zhang, and Andi Zhang. 2017.
Flexible and creative Chinese poetry generation us-
ing neural memory. CoRR, abs/1705.03773.

Xingxing Zhang and Mirella Lapata. 2014. Chinese
Poetry Generation with Recurrent Neural Networks.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 670–680, Doha, Qatar. Association for Com-
putational Linguistics.

256

Proceedings of the 17th International Conference on Natural Language Processing, pages 257–260
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

1

Abstract

This is a pilot study that aims to explore the
potential of using WEKA in forensic
authorship analysis. It is a corpus-based
research using data from Twitter collected
from thirteen authors from Riyadh, Saudi
Arabia. It examines the performance of
unbalanced and balanced data sets using
different classifiers and parameters of word
grams. The findings further support
previous studies in computational
authorship identification.

1 Introduction

“Authorship attribution, broadly defined, is one of
the oldest and one of the newest problems in
information retrieval.” (Juola, 2008, p. 287). It
aims to identify or attribute one or more disputed
texts to a single or multiple author(s), either from
a closed set or an open one (Stamatatos et al.,
1999; Koppel et al., 2009). Recent trends in
forensic authorship analysis aim for incorporating
artificial intelligence tools to find reliable results
that are free of cognitive biases. WEKA (Witten
et al., 2016) is a collection of machine learning
algorithms that perform data mining tasks. Its
tools can achieve pre-processing, classification,
clustering, and capable of developing new
machine learning schemes. Therefore, WEKA is
ideal to pre-process, classify, and even create
machine learning schemes for identifying
authorship. This study aims to explore the
potential of using WEKA in a corpus-based
forensic authorship analysis research.

1.1 Research questions

This study proposes to answer the following
questions:

1- What is the size of data required for
WEKA to identify authorship accurately?

2- Which classifier can accurately identify
authorship using the NASCT corpus?

3- Which parameter is most accurate to
identify authorship using the NASCT
corpus?

2 Related Literature

This section discusses the notion of idiolect and
related literature of artificial intelligence in
authorship analysis using short texts.

2.1 The term ‘idiolect’

This term was coined by Bloch (1948), which is a
blend of the Greek words ‘idio’ and ‘lect’ to better
reflect the concept of personal language variety.
He defines idiolect as an individual-level variety
that consists of a uniquely patterned set of
linguistic characteristics. The notion of examining
the individual’s production of language was
dismissed till a later stage in language studies.
Crystal (1997) stated that each individual has their
own language system that generates their unique
dialect. Turell (2010) highlighted the importance of
the concepts of markedness and saliency as art of
idiolectal style in forensic text comparison. A text
is a distinctive production thereby making it
marked as it conveys specific and accurate
information of its producer. The concept of
saliency in linguistics is connected to the idea of a
prominent feature that can be easily noticed. The
concept of saliency that works best in forensic text
comparison is a combined approach of discourse
analysis and corpus linguistics. An item or a feature
is considered salient if it stands out statistically
when comparing two subcorpora or when a
subcorpus is compared to the totality of a corpus
(Turell, 2010). For this study, the linguistics
features examined are dialectal features of Najdi
Arabic, a dialect spoken in the central region of
Najd where Riyadh, the capital of Saudi Arabia is

WEKA in Forensic Authorship Analysis:
A corpus-based approach of Saudi Authors

Mashael M. AlAmr, Professor Eric Atwell
School of English and School of Computing
University of Leeds, Leeds, United Kingdom

{enmmaa, e.s.atwell}@leeds.ac.uk

257

2

located. They are 45 dialect-specific features
classified into interrogatives, negatives, and deictic
expressions (Alothman, 2012; Binturki, 2015).

2.2 AI in Authorship analysis

Studies in authorship analysis, authorship
identification in particular, aim to find the optimum
classifiers, parameters, and n-grams that achieve
the task with the highest accuracy rates. Numerous
studies confirm that accurate authorship
identification results can be achieved using small
sized data (Rico-Sulayes, 2011; Brocardo et al.,
2014; Saha et al. 2018). Moreover, several studies
found that Linear Support Vector Machine (SVM)
demonstrate accurate classifying results compared
to others. Decision Tree J-48 and Multinominal
Naïve Bayes perform more accurately with
numeric data (Brocado et al., 2014; Maruktat et al.,
2014).
In terms of n-grams, character grams proved to
perform well in short texts such as WhatsApp and
Twitter but with some limitations to identify
authors’ texts without cross examination (Shrestha
et al., 2017; Banga et al., 2018). As for word grams,
some studies conclude that unigrams even in the
shape of an emoticon can show good results in
indetifying authorship (Fissette, 2010). Bigrams
proved to be successful in identifying authorship in
literary texts (Feiguina and Hirst, 2007).
In addition, body of literature has been published
in the authorship identification field in Saudi
Arabia that focuses on computational approaches
(Alruily, 2012; Althenayan and Menai, 2014; Al-
Tuwairesh et al., 2015, 2018; Assiri et al., 2016)
while linguistic and stylistic approaches fall short.
This calls for a need to contribute to the field of
forensic linguistics in general and forensic
authorship analysis in Arabic in particular. Social
media platforms such as Twitter are heavily
populated by users who sometimes abuse such
mediums. Saudis are responsible for 30% of the
tweets posted (Salim, 2017). Simultaneously, there
are efforts to fight cybercrime and issue regulations
that incriminate hate speech and offensive
language published online.

3 Methodology and corpus design

This section will demonstrate the NASCT corpus
design, the data collection process, the sample
selected for the study, and the pre-processing of the
data and training WEKA.

3.1 Corpus design

Table 1 below shows the breakdown of the Najdi
Arabic Specialized Corpus of Tweets.

3.2 Data collection

The data collected for this study are the authors’
posts published on Twitter. To ensure authorship,
all original tweets and replies were included in the
corpus while retweets were eliminated. The corpus
was compiled using Data Miner, a Google Chrome
extension that identifies Arabic script. The time
period of the data collection was March 1, 2018 –
September 30, 2019. The data was produced as
Excel sheets which the authors converted into
.CSV file format.

3.3 Sample

The sample of the study are six males and seven
females. All originated from the central region of
Najd and current residents of Riyadh, the capital of
Saudi Arabia. In terms of ethical considerations, all
authors’ accounts are public and verified thereby
the tweets they post are public data. Lastly, all
authors run the Twitter accounts personally.

Author Tweets Words
Faisal Alabdulkarim 2,825 60,213
Mansour Alrokibah 2,412 24,727
Abdulrahman Allahim 7,532 135,033
Ali Algofaily 2,424 37,217
Abdullah Alsubayel 5,805 35,791
Abdulaziz Alzamil 4,741 47,832
Taghreed Altassan 5,292 10,560
Wafa Alrasheed 2,200 24,236
Maha Alwabil 1,550 40,263
Arwa Almohanna 1,143 17,956
Ghadah Aleidi 7,952 70,709
Maha Alnuhait 2,089 27,784
Amani Alajlan 12,040 216,027
Total 58,005 748,348

Table 1: NASCT corpus design

258

3

3.4 Data preprocessing and training sets

To explore the NASCT using WEKA, the

authors had to convert the .CSV files into ARFF
file format. In order to train WEKA, the authors
reassembled the corpus into thirteen separate
ARFF files. They created two data training sets, the
first is an unbalanced data set (TS1) which includes
the full corpus. As shown in Table1, the subcorpora
of some authors are substantially larger in size
compared to others. The second one is a balanced
data set (TS2), which includes equal number of
tweets per author. Both data sets include 80% of
the authors’ data, and a header describing the types
of linguistics attributes being examined. The
remaining 20% of the authors’ subcorpora was
combined into one ARFF file for testing. Table 2
shows the number of tweets per data set.

4 Findings and discussion

To examine different classifiers to see which
performs most accurately, the authors ran a test
using seven classifiers: Linear SVM, Multinominal
Naïve Bayes, Decision tree J-48, KNN Depth=3,
KNN Depth=5, Random Forest Estimator=5, and
Random Forest Estimator=15. Table 3 shows the
performance of seven different classifiers in three
categories: unigrams, bigrams, and trigrams.

The results of the first test show that Linear SVM
scores the highest accuracy rates, therefore it was
implemented in the next stage. The authors ran
three tests to explore a range of parameters that can
ensure the highest accuracy rates. In the first range,
the minimum value is words that appear once and
words that appear in 60% in the data files

(min_df=1 – max_df=int (60/100)). The second
one eliminates words that appear twice or less and
words that occur in 80% of the data files (min_df=1
– max_df=int (80/100)). The last parameter test
eliminates words that appear once and words that
appear in 95% of the data files (min_df=1 –
max_df=int (95/100)). Table 4 shows the accuracy
rates of different parameters in both data sets.

In the first parameter test, both data sets scored the
highest accuracy rates. The scores were most
accurate across the three n-gram categories (0.59-
0.6 respectively). The first data set TS1 scored a
consistent and better performance compared to
TS2 in the second parameter. The accuracy rates of
the balanced data TS2 in the second parameter test
were inconsistent. On the other hand, TS2 scored
consistently higher results in the third parameter
test compared to the unbalanced data set TS1.
Nonetheless, both training data sets scored
consistent results in unigrams, bigrams, and
trigrams.
Furthermore, it appears that the balanced data set
scores the highest overall results in unigrams,
while the unbalanced data set scores the highest
overall results in bigrams. However, the optimum
parameter is the first test using bigrams.

5 Conclusion and future studies

This pilot study aimed to explore WEKA in
forensic authorship analysis research. To answer
the first question, the authors found that the
unbalanced data set performed better than the
smaller, balanced one. The large the size of the
data provides WEKA with training and
recognizing the features more accurately. As for
which classifier performs best, results show that
Linear SVM has the most accurate performance.
This conforms to the findings of Fissette (2010)
and Braocardo et al. (2014). Lastly, the results
show that bigrams can accurately identify
authorship, which confirms the findings of
Feiguina and Hirst (2007).

Unbalanced data
set = TS1

Balanced data
set = TS2

44192 25247

Table 2: Training data sets

Parameter Unigram Bigrams Trigrams
TS1 TS2 TS1 TS2 TS1 TS2

1–60/100 0.59 0.58 0.6 0.6 0.59 0.6
2–80/100 0.59 0.58 0.6 0.45 0.6 0.29
0.001–95/100 0.49 0.58 0.49 0.59 0.49 0.59

Table 4: Accuracy rates per parameter using Linear SVM

Parameter Unigram Bigrams Trigrams
Linear SVM 0.59 0.6 0.6
M Naïve Bayes 0.47 0.48 0.48
J-48 0.4 0.4 0.4
KNN Depth=3 0.25 0.25 0.25
KNN Depth=5 0.25 0.25 0.25
Random FE=5 0.4 0.42 0.42
Random FE=15 0.46 0.47 0.47

Table 3: N-gram word models per classifier

259

4

For future studies, implementing different
proportions for training and testing might yield
higher, more accurate rates.

References

Alothman, E. 2012. Digital Vernaculars: An

Investigation of Najdi Arabic in Multilingual
Synchronous Computer-Mediated Communication.
PhD thesis. University of Manchester.

Alruily, M. 2012: Saudi tweets dataset. figshare.
Dataset.

Alshutayri, A and Atwell, E. 2018. Creating an Arabic
Dialect Text Corpus by Exploring Twitter,
Facebook, and Online Newspapers. In Proceedings
of OSACT'2018 Open-Source Arabic Corpora and
Processing Tools. OSACT'2018 Open-Source
Arabic Corpora and Processing Tools, pages 07-
12 May 2018, Miyazaki, Japan. (In Press)

Althenayan A. S. and Menai M.E-B. 2014. Naïve
Bayes classifiers for authorship attribution of
Arabic texts, Journal of King Saud University -
Computer and Information Sciences, 26, pages
473-484.

Banga, R., Bhardwaj, A., Peng, S. L., & Shrivastava,
G. 2018. Authorship Attribution for Online Social
Media. In Social Network Analytics for
Contemporary Business Organizations, pages 141-
165. IGI Global.

Binturki, T. 2015. The Acquisition of Negation in Najdi
Arabic. PhD thesis. University of Kansas.

Bloch, B. 1948. A set of postulates for phonemic
analysis. Language, 24, pages 3-46.

Brocardo, M. L., Traore, I., and Woungang, I. 2014.
Toward a framework for continuous authentication
using stylometry. In 2014 IEEE 28th International
Conference on Advanced Information Networking
and Applications, pages 106-115. IEEE.

Cotterill, J. 2010. How to use corpus linguistics in
forensic linguistics. In O’Keeffe, A and McCarthy,
M., eds., The Routledge Handbook of Corpus
Linguistics. London: Routledge, pages 66-79.

Crystal, D. 1997. The Cambridge Encyclopedia of
Language. Cambridge: Cambridge University
Press.

Feiguina, O. and Hirst, G. 2007. Authorship attribution
for small texts: literary and forensic experiments.
Paper presented to the International Workshop on
Plagiarism Analysis, Authorship Identification and
Near-Duplicate Detection. 30th Annual
International ACM SIGIR (SIGIR ’07).

Fissette, M. 2010. Author identification in short texts.

Juola, P. 2008. Author Attribution, Foundations and
Trends in Information Retrieval. (In Press)

Koester, A. 2010. Building small specialised corpora.
In O’Keeffe, A and McCarthy, M., eds, The
Routledge Handbook of Corpus Linguistics.
London: Routledge, pages 66-79.

Koppel, M., Schler, J. and Argamon, S. 2009. “Comp
utational Methods in Authorship
Attribution.”. Journal of the American Society for
Information Science and Technology, 60(no.
1), pages 9–26.

Rico-Sulayes, A. 2011. Statistical authorship
attribution of Mexican drug trafficking online
forum posts. International Journal of Speech,
Language & the Law, 18(1).

Saha, N., Das, P., & Saha, H. N. 2018. Authorship
attribution of short texts using multi-layer
perceptron. International Journal of Applied
Pattern Recognition, 5(3), pages 251-259.

Salim, F. 2017. The Arab Social Media Report 2017:
Social Media and the Internet of Things: Towards
Data-Driven Policymaking in the Arab World
Dubai: MBR School of Government. Vol. 7.

Shrestha, P., Sierra, S., González, F. A., Montes, M.,
Rosso, P., & Solorio, T. 2017. Convolutional
neural networks for authorship attribution of short
texts. In Proceedings of the 15th Conference of the
European Chapter of the Association for
Computational Linguistics: Volume 2, Short
Papers, pages 669-674.

Banga, R., Bhardwaj, A., Peng, S. L., & Shrivastava,
G. 2018. Authorship Attribution for Online Social
Media. In Social Network Analytics for
Contemporary Business Organizations, pages 141-
165. IGI Global.

Turell, M. T. 2010. The use of textual, grammatical,
and sociolinguistic evidence in forensic text
comparison. The International Journal of Speech,
Language and the Law, 17(2), pages 211-250.

Twitter. About Twitter Verified Accounts. URL:
https://help.twitter.com/en/managing-your-
account/about-twitter-verified-accounts.

WEKA.Witten, I. H., Frank, E., and Hall, M. 2016.
Data Mining: Practical Machine Learning Tools
and Techniques. San Francisco: Morgan Kaufmann
Publishers, fourth edition.

260

Proceedings of the 17th International Conference on Natural Language Processing, pages 261–271
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Native-Language Identification with Attention

Stian Steinbakken and Björn Gambäck
Department of Computer Science

Norwegian University of Science and Technology
Trondheim, Norway

stiansteinbakken94@gmail.com, gamback@ntnu.no

Abstract
The paper explores how an attention-based ap-
proach can increase performance on the task
of native-language identification (NLI), i.e., to
identify an author’s first language given infor-
mation expressed in a second language. Pre-
viously, Support Vector Machines have consis-
tently outperformed deep learning-based meth-
ods on the TOEFL11 data set, the de facto stan-
dard for evaluating NLI systems.

The attention-based system BERT (Bidirec-
tional Encoder Representations from Trans-
formers) was first tested in isolation on the
TOEFL11 data set, then used in a meta-
classifier stack in combination with traditional
techniques to produce an accuracy of 0.853.
However, more labelled NLI data is now avail-
able, so BERT was also trained on the much
larger Reddit-L2 data set, containing 50 times
as many examples as previously used for En-
glish NLI, giving an accuracy of 0.902 on the
Reddit-L2 in-domain test scenario, improving
the state-of-the-art by 21.2 percentage points.

1 Introduction

Native-language identification (NLI) is the task
of identifying an author’s first language (L1; e.g.,
Spanish) given only information expressed in the
author’s second language (L2; e.g., English). NLI
operates under the assumption that an author’s L1
will dispose them towards particular language pro-
duction patterns in their L2 (MacDonald, 2013).
Knowing what mistakes a learner typically makes
when writing or speaking in a foreign language can
help educators create custom tutoring experiences
and give feedback based on L1s. NLI also has ap-
plications within forensic linguistics, where identi-
fying what country an unknown author is originally
from is useful when detecting, e.g., plagiarism, web
fraud and grooming, as well as in web-applications,
web-crawling, and data collection to ensure high
quality data.

Containing English learners of 11 different L1s,
the TOEFL11 data set (Blanchard et al., 2013) has
been the standard corpus for NLI. However, re-
cent advances in auto-generating data based on so-
cial media users of high proficiency (Goldin et al.,
2018) have enabled the collection of much larger
data sets with more languages. State-of-the-art ap-
proaches on TOEFL11 reach over 0.88 accuracy
in identifying the native language of the author
using text only (Cimino and Dell’Orletta, 2017),
while the best results on more English-proficient
social media users approach 0.69 when evaluated
on the same topics as trained on (Goldin et al.,
2018). However, today’s state-of-the-art systems
are known for quite substantial drops in perfor-
mance when tested on documents about topics not
seen during training (Malmasi and Dras, 2018).

While the NLI field is evolving, so are advances
in deep learning. Recently, attention-based mod-
els have shown promising results on various NLP
tasks, and have become the de facto standard in
sequence-to-sequence processing. Models such as
the Transformer (Vaswani et al., 2017) rely solely
on attention mechanisms, allowing for heavy par-
allelisation in the model training, as no recurrence
or convolution is required. Using a network of
transformers, BERT (Bidirectional Encoder Repre-
sentations from Transformers) obtained new state-
of-the-art results on 11 natural language processing
tasks varying from question answering to sentence
classification (Devlin et al., 2018).

Given the success of attention-based systems
and the need for good NLI systems, the paper ex-
plores how such an approach can improve NLI
performance, and investigates how robust attention-
based systems are when tested on different top-
ics than those they were trained on. Furthermore,
while such systems perform well on their own,
the paper also addresses how they can allow for
improvements in combination with existing tech-

261

niques, given that all the best NLI systems to date
include some ensemble or multi-classifier based
architecture.

The paper is structured as follows: Section 2 de-
scribes the main data sets used in the field of NLI,
while Section 3 covers related work. Section 4 in-
troduces the model architectures, before Section 5
provides an overview of the experiments and their
results. Finally, Section 6 sums up the findings and
provides suggestions for further study.

2 Data Sets

The field of Native Language Identification is in a
broader perspective quite young, and only gained
serious momentum during the previous decade,
most notably after Koppel et al. (2005) trained a
Support Vector Machine (SVM) model on a vast
amount of features including part-of-speech (POS)
tags, n-grams and grammatical errors on ICLE, the
International Corpus of Learner’s English (Brooke
and Hirst, 2013). Since then, two shared tasks have
been dedicated to NLI, in 2013 and 2017. The ex-
periments below and the discussed related work all
focus on two data sets, TOEFL11 (the main data
set used in the shared tasks) and Reddit-L2:

The TOEFL11 data set1 (Blanchard et al.,
2013) consists of English essays written by people
with 11 different first languages for the college-
entrance Test of English as a Foreign Language:
Arabic, Chinese, French, German, Hindi, Italian,
Japanese, Korean, Spanish, Telugu and Turkish.
The corpus contains 13,100 essays, with 1,100 es-
says per language distributed as evenly as possible
across 8 different topics. Each essay is also labelled
with its score (low, medium or high). For the 2013
shared task, the data set was split into a training set
consisting of 900 essays per L1, and development
and test sets consisting of 100 essays each per L1.

The Reddit-L2 data set2 was collected by Rabi-
novich et al. (2018) from the social media platform
Reddit, where users can subscribe to areas of inter-
est, called “subreddits” (Singer et al., 2014). These
subreddits vary from general topics such as “pic-
tures” to specific niche areas such as “birds with
arms” (which is for posting pictures of birds pho-
toshopped to look like they have arms). Some
subreddits are dedicated to Europe, where the users
can optionally provide a tag (‘flair’) indicating their
home country. These flairs were utilised by Rabi-

1catalog.ldc.upenn.edu/LDC2014T06
2cl.haifa.ac.il/reports/L2/index.shtml

novich et al. to infer the users’ L1, with experi-
ments performed to quantify the reliability of the
labels. Goldin et al. (2018) added further measures
to verify the labels’ correctness.

While TOEFL11 contains texts written by learn-
ers of English, many of the Reddit-L2 authors are
close to fluent in English, making the task of per-
forming NLI on this data set more challenging. The
data set consists of texts the users have produced
in Europe-related subreddits (in-domain), as well
as texts written in other subreddits, that can have
virtually any topic (out-of-domain). The data is
separated into chunks of 100 sentences from one
user. After pre-processing and removing users with
less than 100 sentences, the Reddit-L2 data set
consists of roughly 200 million sentences and 3 bil-
lion tokens across 29 native countries, from 34,511
unique users.

The number of users varies between countries,
making the data set imbalanced. Hence Goldin
et al. (2018) downsampled the data, grouping 29 na-
tive countries into 23 languages: English, German,
Dutch, French, Polish, Romanian, Finish, Swedish,
Spanish, Greek, Portuguese, Estonian, Czech, Ital-
ian, Russian, Turkish, Bulgarian, Croatian, Norwe-
gian, Hungarian, Lithuanian, Slovenian and Ser-
bian. The number of users per label was capped at
104, which is the number of users present for the
labels with fewest users (Lithuania and Slovenia).
For labels with more than 104 users available, 104
users were selected at random. For each user, the
median number of chunks was selected. 3 chunks
per user for an in-domain scenario, and 17 chunks
per user for an out-of-domain scenario,

3 Related Work

As mentioned in the previous section, two shared
tasks have been dedicated to NLI, taking place
in 2013 and 2017, and with respectively 29
and 19 teams participating. The 2013 NLI
Shared Task (Tetreault et al., 2013) introduced
the TOEFL11 corpus and was divided into three
sub-tasks: Closed-Training, Open-Training-1 and
Open-Training-2. The first was the main task, al-
lowing usage of the training and development sets
only. The Open-Training-1 task allowed the use of
any training data except TOEFL11, while Open-
Training-2 allowed the use of any data, includ-
ing TOEFL11. However, Open-Training-1 showed
that training on external corpora while testing on
TOEFL11 caused a significant drop in accuracy.

262

The most common features used were word, char-
acter and part-of-speech n-grams. Four of the top
five teams used at least word 4-grams, and some
as high as 7- and 9-grams. The best team achieved
an accuracy of 0.846 (Tetreault et al., 2013), and
like the overwhelming majority of the participat-
ing teams used SVMs. Tetreault et al. (2012) ad-
ditionally improved performance using ensemble
methods. Later, Ionescu et al. (2014) improved the
results further using string kernels.

The 2017 NLI shared task (Malmasi et al.,
2017) was similar to the 2013 task, but in ad-
dition to the text utilised TOEFL11 data from a
speech-based NLI task included in the 2016 IN-
TERSPEECH Computational Paralinguistics Chal-
lenge (Schuller et al., 2016). The raw speech
data could not be distributed in that challenge,
so the data set consisted of textual transcripts to-
gether with so called i-vectors, which are vec-
tors of fixed length (here 800), working as lower-
dimensional representations of high-dimensional
sequential speech recordings.

Hence the 2017 shared task was divided into
three tracks: essays only, speech only, and a com-
bined ‘fusion’ track using both text and speech.
The fusion track submissions showed that combin-
ing written and spoken responses provided a large
boost in prediction accuracy (Malmasi et al., 2017).
Furthermore, ensemble-based systems were the
most effective in all tasks, but typically the same
features were used as in 2013, and SVMs were still
the most popular approach, dominating deep learn-
ing models. Ircing et al. (2017) hypothesise that
this could be due to the size of the TOEFL11 data
set, and that more training examples could help
deep learning models perform better.

UnibicKernel (Ionescu and Popescu, 2017) per-
formed best on the fusion track (0.932 accuracy),3

topped the speech-only track, and placed in the top
tier in the essay track, by using multiple kernel
learning and kernel discriminant analysis, KDA.
KDA is a kernelised version of LDA, Linear Dis-
criminant Analysis, that is, a method for finding the
best linear combination of features that characterise
or separate two or more classes, by projecting the
data points down from a feature space where they
not are linearly separable to a lower dimensional
space where they are.

3The 2017 shared task used macro-averaged F1 score as
the official evaluation metric, but also reported accuracy. How-
ever, accuracy will be used here for consistency, and since the
F1 scores were typically almost identical to the accuracy.

Also finishing in the top group was CEMI (Ircing
et al., 2017), using a neural network based meta-
classifier of several isolated feed-forward neural
network (FFNN) models, each trained on a separate
feature type (such as word, character and POS n-
grams, plus i-vectors), with the outputs combined
using softmax to predict the final label.

The ItaliaNLP team (Cimino and Dell’Orletta,
2017) topped the essay-only track with 0.882 accu-
racy, which currently is the highest score achieved
on the textual TOEFL11 test set. They used two
stacked SVM-classifiers, one trained at sentence
level and the other at document level, using the
output of the sentence classifier as input, together
with features from the documents themselves: text
and average word length; function words; as well
as character, word, lemma, POS, and linear depen-
dency n-grams.

After the shared tasks, Malmasi and Dras (2018)
performed a systematic examination of ensemble
methods for NLI, in addition to evaluating deeper
ensemble architectures such as classifier stacks.
The experiments included a rigorous application
of meta-classification models, achieving state-of-
the-art results on several large data sets, evaluated
both intra-corpus and cross-corpus. Two impor-
tant trends were observed: the meta-classification
results were better than the ensemble combina-
tion methods alone, and meta-classifiers trained on
continuous output performed better than their dis-
crete label counterparts. The best performing meta-
classifier was LDA, both individually and as an
ensemble. The ensemble of LDA meta-classifiers
obtained an accuracy of 0.871 — close to the state-
of-the-art accuracy of 0.882 obtained by ItaliaNLP.

Goldin et al. (2018) tried the NLI task in a new
environment using the larger Reddit-L2 data set.
A simple regression classifier was trained for all
experiments, since the main focus was not to build a
new NLI classifier, but to explore possible features
specific to social media and the Reddit-L2 data.
They used content features (3-grams and POS 1-
grams), spelling and grammar features, and content-
independent features such as function words, the
most frequent POS 3-grams in the data set, and
average sentence length. Furthermore, Goldin et al.
experimented with social network specific features
such as votes from other users, average number of
submissions and comments, and the most frequent
subreddits the user had visited, compared to the
most popular subreddits for each country.

263

The most visited subreddits feature performed
stunningly, both in and out of the domain. However,
this feature is not only specific to the particular data
set, but as many users tended to frequent subreddits
specific to their country, the feature often contained
the correct label itself. Hence Goldin et al. reported
the results of using all features, excluding the Sub-
reddit feature, which yielded an accuracy of 0.690
in the in-domain scenario, dropping down to 0.36
when tested out-of-domain.

4 Architecture and Model

Three model architectures were used in the experi-
ments below: a stand-alone BERT model tailored
to NLI, a meta-classifier architecture, and an en-
semble of meta-classifiers. The stacked classifi-
cation architectures use traditional techniques in
combination with BERT. The PyTorch version of
BERT was used,4 which is a clone of Google’s
official BERT implementation for TensorFlow,5 us-
ing the same pre-trained models as provided by
Devlin et al. (2018). All other classifiers were
implemented using the open source Scikit-Learn
(Sklearn) Machine Learning library.6 For SVMs
the default parameters of Sklearn were used, but
with a linear kernel, as it was the kernel used for all
base classifiers in Malmasi and Dras (2018). The
FFNNs (feed-forward neural networks) were run
with the default parameters of Sklearn, unless spec-
ified otherwise. Sklearn was also used for feature
manipulation (e.g., transforming text into TF-IDF
weighted vectors), with Natural Language Toolkit
(NLTK)7 used for basic text-processing, and Pan-
das8 for data manipulation.

All experiments were carried out on a two GPU
cluster, with 16 GB each. For most jobs, 64 GB
RAM was sufficient, but for the largest job 128
GB RAM was needed in order to keep both BERT
and all the data in memory. Running BERT on
TOEFL11 for 5 epochs typically took 2–3 hours,
while experiments using millions of Reddit-L2 ex-
amples took more than 6 days. All the code from
the paper is available on GitHub.9

4github.com/huggingface/
pytorch-pretrained-BERT

5github.com/google-research/bert
6scikit-learn.org/stable/
7www.nltk.org/
8pandas.pydata.org/
9github.com/stianste/BERT-NLI

4.1 BERT Model Architecture

The overall BERT architecture consists of the pre-
trained BERT model followed by a linear layer,
as suggested by Devlin et al. (2018). The linear
layer is randomly initialised and must be trained
from scratch for each classification task. It has an
input size the same as the BERT hidden size output
and an output size matching the number of labels
for the relevant task (11 for TOEFL11 and 23 for
Reddit-L2). The BERT model and the linear layer
are trained together using the cross-entropy loss
with regards to the correct label.

To reduce vocabulary size and tokenisation com-
plexity, the uncased version of BERT was used in
all experiments, although including capitalisation
could in some cases be beneficial for NLI. Follow-
ing Devlin et al. (2018), all experiments utilised the
same hyper-parameter settings, except for three that
were varied in the ranges found by them: batch size
{16, 32}, Adam learning rate {5e−5, 3e−5, 2e−5},
and number of epochs {3, 4}, with fixed numbers
of hidden layers (12), hidden size (768), attention
heads per transformer (12), proportion of training
to perform linear learning rate warmup for (0.1),
and gradient accumulation steps (1).

However, while Devlin et al. restricted the maxi-
mum total input sequence length after WordPiece
tokenisation to 128, it was here set to its largest pos-
sible value, 512, since most documents available in
the NLI data sets contain far more tokens than 128:
the average and maximum number of WordPiece
tokens per document is 369 and 910 for TOEFL11,
growing to 2,072 and 18,149 for Reddit-L2. 98.9%
of the TOEFL11 documents contain more than 128
tokens, but only 4.9% have more than 512 tokens.

In the Reddit-L2 data set, however, all docu-
ments surpass 512 tokens, so it must be split up
into chunks, in order not to waste data. A heuristic
division of the documents was applied, dividing all
examples into smaller sub-examples (sub-chunks)
with a length of roughly 512 tokens, by splitting on
spaces. After training has been performed on the
sub-chunks, evaluation was carried out both on the
individual sub-chunks and on the recombination
back into the original chunks, using a majority vote
based on each sub-chunk prediction. Ties were
broken randomly.

It is important to note that the previous work
on Reddit-L2 by Goldin et al. (2018) evaluated on
the prediction of each chunk. For this reason, the
accuracies obtained at the chunk level will be the

264

comparable measurement of the system’s perfor-
mance, not the ad hoc sub-chunks that have only
been created in order to fit the limitations of BERT.

Preliminary experiments further showed that
BERT-large with a maximum sequence length of
512 caused memory issues with the GPUs avail-
able, as did a batch size of 32 for BERT-base. The
largest models that were able to run with a 512
sequence length were BERT-base with a batch size
of 16 or less, and BERT-large with a batch size of 1.
Hence all experiments used the BERT-base model,
except when running BERT-large with batch size 1.
This is unfortunate, as Devlin et al. (2018) report
that BERT-large provides a significant performance
boost over BERT-base, even for small data sets.

4.2 Meta-Classifier Architectures

To explore how an attention-based system can be
used in union with the current-state-of-the art ap-
proaches to improve NLI performance, two novel
architectures were tested, inspired by the classifier-
stacking of Malmasi and Dras (2018), but including
BERT as an optional base-classifier.

The first is a stacked architecture consisting of
homogeneous base classifiers, with their combined
output fed into a meta-classifier providing the final
decision. An illustration of the meta-classifier ar-
chitecture can be found in Figure 1. The inclusion
of BERT as a base-classifier is optional, indicated
by stippled lines. All base classifiers are fed the raw
text input, but trained on different feature types.

After training, each base classifier produces a
vector of continuous probabilities for each class.
This is used since Malmasi and Dras (2018) showed
continuous probability output in general yielding
better performance than discrete one-hot encoded
label representation. The meta-classifier is then
trained on the concatenated output of the base clas-
sifiers and the original training labels, to produce a
single prediction per example instance.

The second architecture is similar to the first, but
instead of using a single meta-classifier, an ensem-
ble of meta-classifiers is applied to provide the final
decision of the stack. It follows the best performing
ensemble found by Malmasi and Dras (2018), with
200 meta-classifiers merged in a bagging-ensemble,
where all models are trained on different subsets of
the base classifiers.

Figure 1: A meta-classifier stack with BERT as an op-
tional base classifier

5 Experiments and Results

To set reasonable baselines for the experiments, a
simple multinomial Naı̈ve Bayes (MNB) and an
SVM classifier were trained and evaluated on the
unigram representation of the documents. As done
by Malmasi and Dras (2018), the unigram feature
vector was normalised using each word’s TF-IDF
score. Initial experiments were then run to give an
indication of how an attention-based architecture in
isolation performs on the NLI task, as well as when
tested on documents on topics different from what
it was initially trained on. Further experiments
addressed whether the combination of an attention-
based system and the techniques used in the current
state-of-the-art can improve performance. Finally,
it was investigated how the attention-system per-
forms with more data available.

5.1 Attention-based System Only

The first set of experiments aimed to explore how
an attention-based system alone performs on the
NLI task. These initial experiments also indicated
what hyper-parameters the BERT model performs
best under. As most of the related literature trains
on the TOEFL11 training set and evaluates on the
official TOEFL11 test set, that setup was applied.
Similarly, experiments on Reddit-L2 in-domain
data set applied the same downsampling and 10-
fold cross-validation as used by Goldin et al. (2018).
To test how an attention-based system performs on
the task of NLI when tested on documents con-
cerning topics different from what it was initially
trained on, the out-of-domain experimental setup

265

MNB SVM BERT
2e−5 3e−5 4e−5 5e−5

0.559 0.726 0.759 0.777 0.761 0.765

Table 1: TOEFL11 accuracies, different learning rates

described in Goldin et al. (2018) was followed, i.e.,
training the model on the in-domain data, and test-
ing on out-of-domain data of different users.

The results of the experiments on TOEFL11 are
found in Table 1. As expected, the SVM classifier
clearly outperforms Naı̈ve Bayes. The best results
using BERT were obtained with a learning rate of
3e−5, with a final accuracy of 0.777. Under these
hyper-parameters, the model obtained a training
loss of 0.110 and an evaluation loss of 0.824. Ex-
periments were run over 3, 4, 5 and 10 epochs, but
the table only reports the results after 5 epochs,
since increasing epochs typically increased accu-
racy, regardless of the learning rate. However, the
10-epoch model achieved an accuracy slightly be-
low the best at 5 epochs, with a training loss of
0.004, but an evaluation loss of 1.140 on the test
set, indicating that it overfitted the training data.

The BERT experiments reported in Table 1 were
run with a constant batch size of 16. Testing dif-
ferent batch sizes {1, 2, 3, 4, 8} under the optimal
settings (a learning rate of 3e−5 over 5 epochs)
gave no indication that a higher or lower batch size
is better or worse, so the remaining experiments
were run with size 16 batches, in order to keep the
training time as low as possible without encounter-
ing memory issues or reducing model performance.

For comparison, an experiment running BERT-
large with a batch size of 1 was also carried out,
using the best performing learning-rate and number
of epochs found for BERT-base. However, BERT-
large was not able to converge under these settings:
after 5 epochs it produced the same probability
for each L1 for all test cases. Hence BERT-large
was run with both a smaller and larger learning
rate. While larger learning rates did not improve
matters, a learning-rate of 2e−5 produced a final
accuracy on the TOEFL11 test set of 0.759. BERT-
base with a batch size of 1 obtained an accuracy of
0.770, so BERT-large does not seem to provide any
significant benefit over BERT-base for TOEFL11.

Table 2 shows average accuracy over 10-fold
cross-validation on the Reddit-L2 data set. After
downsampling the data set and splitting all doc-
uments into sub-documents of max 512 tokens,

Scenario MNB SVM BERT

In-domain, chunks 0.377 0.716 0.805
In-domain, sub-chunks 0.350 0.574 0.651

Out-of-domain, chunks 0.176 0.400 0.502
Out-of-domain, sub-chunks 0.169 0.322 0.400

Table 2: Reddit-L2 accuracies

there were roughly 18,300 training examples and
1,943 test cases per fold. Both sub-chunk and
chunk/document accuracy are reported. After re-
combining all sub-chunks, there was an average of
500 test chunks per fold.

As expected based on related work, the simple
unigram SVM baseline improves on the 0.690 accu-
racy Goldin et al. (2018) obtained on the in-domain
scenario using logistic regression. The unigram
SVM with an accuracy of 0.400 also beats the pre-
vious best out-of-domain score of 0.362. The ac-
curacy of both Naı̈ve Bayes and SVM drop when
tested in the out-of-domain Reddit-L2 scenario,
and further drop when the models are evaluated
on the more granular sub-chunks. The final aver-
age in-domain accuracy of BERT across the ten
folds was 0.805, a substantial improvement over
the SVM classifier and over the current state-of-the-
art (0.690). When evaluating on each individual
sub-chunk, the accuracy drops to 0.651, indicating
that the model predicts parts of the chunks incor-
rectly, but performs well on the documents/chunks
as a whole using majority vote.

Running BERT in the out-of-domain Reddit-L2
scenario, the final average over random 10-fold
cross-validation was 0.502, a clear improvement
over the single SVM baseline of 0.400, and again a
substantial improvement over the 0.362 obtained by
Goldin et al. (2018). Note that the train-test split in
the out-of-domain scenario can be regarded as un-
favourable: After downsampling, the 10% out-of-
domain test chunks outnumber the 90% in-domain
training chunks, with most folds having 16,000–
16,500 training examples, but 20,000–21,000 test
cases. Commonly, training sets are 5–10 times as
big as test sets, but with the out-of-domain scenario
the training set is smaller than the test set, making
for a rigorous evaluation scenario.

Comparing the out-of-domain results to the in-
domain results, BERT’s accuracy drops from 0.805
to 0.502, a 37.9% relative drop in accuracy, com-
pared to the 47.5% drop obtained by Goldin et al.
(2018), indicating that BERT is more robust than
logistic regression when tested off-topic.

266

Base Classifier / Meta-Classifier SVM FFNN

SVM 0.756 0.745
SVM + BERT 0.794 0.791

FFNN 0.819 0.825
FFNN + BERT 0.838 0.853

Table 3: Meta-classifier results on TOEFL11

5.2 Combining Attention with
State-of-the-Art Techniques

The next set of experiments utilised the meta-
classifier and ensemble architectures described in
Section 4.2. A grid search over several hyper-
parameters was carried out, over the different base
classifiers, the types of features per classifier, and
the maximum number of features per classifier. The
different models and feature types were first ex-
plored individually, in order to assess their individ-
ual contribution to the meta-classifier or ensemble.
Both SVMs and FFNNs were used as base classi-
fiers. Based on the features used by Ircing et al.
(2017) and Malmasi and Dras (2018), word 1–3
grams, character 1–4 grams, and lemma 1–2 grams
were used, in addition to content-independent func-
tion word 1–2 grams. Similarly to Malmasi and
Dras (2018), the main focus was on evaluating
whether the inclusion of BERT can improve the re-
sults obtained by using a predefined set of features,
rather than on feature exploration.

The SVM and FFNN base classifiers were run
with the TF-IDF weighted representation of each
feature-type, with the maximum number of fea-
tures per example capped at 5,000, 10,000, 30,000,
and no limit. Word 3-grams performed surpris-
ingly bad compared to word 1- and 2-grams, and
the content-independent function word features per-
formed far worse than the content-dependent fea-
tures. The single best performing feature type us-
ing both SVM and FFNN was character 4-grams.
The SVM model favoured feature vectors of size
30,000, while the FFNN performed better with no
feature limit, potentially since the FFNN is bet-
ter at filtering out the noise obtained by including
more TF-IDF features, while still finding useful
information in more than 30,000 features.

The results of training a meta-classifier on the
continuous probability outputs of the ten base clas-
sifiers from the previous experiment are found in
Table 3. The inclusion of BERT means appending
the n classes logit outputs of BERT to the train-
ing and test data. Experiments were also carried

Base Classifier / Ensemble SVM FFNN

SVM 0.755 0.801
SVM + BERT 0.798 0.823

FFNN 0.827 0.808
FFNN + BERT 0.849 0.851

Table 4: Ensemble of meta-classifiers on TOEFL11

out normalising BERT’s output using softmax and
raw probabilities, but using the raw logit output
performed better overall.

The inclusion of BERT has a significant impact
on the performance: using SVMs as base and meta-
classifier, the accuracy increases from 0.756 to
0.794. The FFNN trained on the SVM base classi-
fiers reap even more benefits when including BERT,
increasing from 0.745 to 0.791. Perhaps surpris-
ingly, FFNNs perform best both as base-classifier
and meta-classifier: the accuracy obtained by us-
ing FFNN base classifiers and BERT with a FFNN
meta-classifier is 0.853 (up from 0.825), slightly
below the current best text-only score on TOEFL11
test, 0.882 by Cimino and Dell’Orletta (2017).

The results of training an ensemble of meta-
classifiers can be found in Table 4. Again, the
inclusion of BERT causes a significant 4.3 percent-
age point increase for the best performing ensem-
ble. However, contrary to the results of Malmasi
and Dras (2018), there was no clear gain in per-
formance when applying a single meta-classifier
as opposed to using a bagging ensemble of meta-
classifiers. This is surprising and interesting, as the
experiments and setup are quite similar.

Looking more closely at the results of Malmasi
and Dras, though, the increase in accuracy when
going from a single meta-classifier to an ensemble
of meta-classifiers was only present for the LDA
meta-classifier, while the other meta-ensembles
(e.g., the SVM-based one) obtained the exact same
TOEFL11 test set accuracy as their correspond-
ing meta-classifiers. Thus, the lack of increase
in performance when using an ensemble of meta-
classifiers as opposed to using a single one could
actually be expected for the SVM and FFNNs used.

Experiments using LDA as the meta-classifier
were also carried out, but provided disappointing
results, a lot lower than the best single base clas-
sifier, potentially due to the collinearity of the fea-
tures used. Using a more diverse feature set might
have made LDA a more viable candidate, both as a
single meta-classifier and in an ensemble.

267

Classifier / Ensemble In-domain Out-of-domain

FFNN meta-classifier 0.765 0.452
FFNN + BERT 0.818 0.529
BERT alone 0.805 0.502

Table 5: Ensemble of meta-classifiers on Reddit-L2

The stack setup which performed best on
TOEFL11 (i.e., the FFNN meta-classifier trained
on the outputs of the base FFNN classifiers and
BERT) was run also on the Reddit-L2 in- and out-
of-domain scenarios (Table 5). Using the same 10
folds as the previous in-domain experiment, the
ensemble without BERT obtained an accuracy of
0.765. The same ensemble with BERT boosted
the accuracy to 0.818, Hence BERT seems to be
doing most of the heavy lifting in the ensemble
in the in-domain scenario. However, the ensem-
ble also provides BERT with a minor performance
boost, increasing accuracy by 1.3 percentage points
compared to using BERT alone on the task.

The final average accuracy over the 10 out-of-
domain folds obtained by the meta-classifier was
0.452 without using BERT. Including BERT in the
ensemble yielded an average accuracy of 0.529.
This seems comparable to the in-domain results, as
the final meta-classifier accuracy again is slightly
higher than that obtained by using BERT alone.

5.3 More Data

While the Reddit-L2 data set is huge compared
to previous NLI data sets, most of the data is dis-
carded when performing downsampling, which is
done to maintain class balance. Using evaluation
metrics that take class imbalance into considera-
tion, such as the macro-averaged F1 score, can
mitigate this problem. Hence BERT was trained
on the out-of-domain Reddit-L2 data, and then the
entire in-domain data set was used for testing, to
show how the same attention-system as used alone
in the first experiments performs with more data
available. Training on only out-of-domain data will
also display how the system reacts when trained on
some topics and tested on others.

To maintain a fair training-to-test ratio, the
out-of-domain training data was engineered to be
roughly 10 times the size of the in-domain test set,
and was balanced to contain roughly the same num-
ber of examples per label. This was done by cap-
ping the maximum number of training sub-chunks
per label to 80,000, leaving 1,491,198 sub-chunks
for training, with 282,385 for testing. This heuristic

division causes some class imbalance in the train-
ing data, as some languages have less than 80,000
sub-chunks, with Slovenian only having 24,787
sub-chunks available out-of-domain. This issue
will have to be tolerated, however, as the intent
of the experiment was to explore how more data
impacts performance. Using macro-averaged F1 as
evaluation metric will also account for this bias to
some extent, by measuring performance with the
same weighting for each class, An alternative solu-
tion would be to set the cap at 24,787 sub-chunks
per class, leaving only 570,101 training instances.

After recombining the sub-chunks into the origi-
nal chunks, there were a total of 71,716 test chunks,
far more than the roughly 500 test chunks per fold
in the in-domain scenario of Goldin et al. (2018)
and the previous experiments. The final accuracy
obtained by BERT on these test chunks in the in-
domain Reddit-L2 data set was 0.861. For compar-
ison, the Naı̈ve-Bayes unigram baseline classifier
achieved an accuracy of 0.278 when trained and
tested on the same data, while the SVM classifier
failed to finishing training. As the in-domain test
set is not fully balanced with regards to classes,
with English having 27.8% of the test labels, the
accuracy achieved might have been artificially high.
However, the final macro-average F1 score ob-
tained was 0.847, indicating that the model is per-
forming well over all classes.

Inspecting the confusion matrix of the predicted
outputs, the model seemed to be slightly biased
towards predicting English, in particular when the
correct label was French or Dutch. Interestingly,
the model confused Norwegian with Swedish, and
vice versa, both of which were also mistaken for
English in 4% of the cases. As for the classes with
the fewest training and test instances, such as Ser-
bian, Slovenian and Lithuanian, the model seemed
to have no problem, as it obtained 0.86, 0.85 and
0.91 accuracy internally within those classes. In
fact, both Turkish and Estonian have rather few
training examples, and less than 1,600 test cases,
but the model achieved 0.98 and 0.94 in classifying
these labels, respectively.

When evaluating this model on the same 10 folds
as used in the in-domain scenario in the first exper-
iment, it obtained a final accuracy of 0.902, and an
F1 score of 0.901. This task can be considered eas-
ier than the task of predicting the in-domain data
set as a whole, as the average number of chunks
per fold were roughly 500, as opposed to the 70K

268

test cases when testing on the entire in-domain set.
However, the 10 downsampled folds are balanced
for classes, making the task non-trivial. The accu-
racy of 0.902 indicates that BERT thrives with more
data available, even though the out-of-domain ex-
amples used for training contain no specific topic.

6 Conclusion

The paper is the first to apply BERT to the native
language identification task. An empirical explo-
ration showed that BERT alone is not able to com-
pete with traditional state-of-the-art approaches on
the TOEFL11 data. However, a meta-classifier
architecture combining BERT and ten traditional
classifiers trained on different features produced an
accuracy of 0.853 on the TOEFL11 test set, closing
in on the current state-of-the-art of 0.882.

Further experiments showed that BERT can pro-
duce state-of-the-art results on the novel Reddit-
L2 data set, both in- and out-of-domain, with a
0.902 10-fold cross-validated accuracy for the in-
domain scenario, with a model trained only on out-
of-domain data, but tested on in-domain data. This
can be compared to the result of 0.690, obtained by
Goldin et al. (2018) when both training and testing
the model on in-domain data. With the same setup,
BERT achieved an accuracy of 0.805.

Additionally, when evaluated on the entire in-
domain test set as a whole (70,000 test cases versus
roughly 500 test cases for each fold in the previous
in-domain scenario), BERT was able to obtain an
even higher accuracy of 0.861. This is not directly
comparable to any related work, as the entire in-
domain part of the data set has not before been used
for testing; however, this task is potentially more
demanding than the original in-domain task, as it
contains 140 times as many test cases in each fold.

Testing the BERT model out-of-domain showed
that it is more robust to topic differences than pre-
vious approaches on Reddit-L2, both BERT alone
and in a meta-classifier stack, which produced a
final accuracy of 0.529, a 16.7 point improvement
over the state-of-the-art.

The performance of BERT with more data avail-
able indicates that BERT’s performance increases
with more data, regardless of what topics it is
trained on. In addition to the document granularity
the model is trained on, a further reason for why
BERT performs so much better on Reddit-L2 than
on TOEFL11 can be the number of spelling mis-
takes found in the TOEFL11 data. This is due both

to the higher proficiency of the Reddit-L2 users and
to them having spellcheckers and other tools avail-
able. A higher frequency of misspelled words can
cause the WordPiece representations used by BERT
to be different from those which it was pre-trained
on. This might be mitigated by further training of
the pre-trained models from BERT’s check points
on data containing spelling mistakes, providing a
custom BERT model with embeddings tuned to
include spelling mistakes.

As BERT obtained such promising results on
the Reddit-L2 in-domain data set, future work
should look into how to increase the accuracy on
TOEFL11, the standard data set for NLI. In addi-
tion of further pre-training of BERT to learn em-
beddings of spelling errors and other domain at-
tributes, this would include using additional infor-
mation sources, such as the sentiment and emo-
tions reflected in the texts, as done by Markov
et al. (2018b), or including information about punc-
tuation (Markov et al., 2018a) or capitalisation.
Clearly, training on more relevant data would also
improve performance, so including training data
from the italki corpus (Hudson and Jaf, 2018)
should be feasible. It contains about 122,000 doc-
uments gathered from the language learning site
italki, in the same languages as TOEFL11.

With more power available, running BERT-large
with a sequence length of 512 should be feasi-
ble, or alternatively extensions of BERT or sim-
ilar models, such as ALBERT (A lite BERT; Lan
et al., 2020), GPT-3 (Generative Pre-trained Trans-
former; Brown et al., 2020) continuous pre-training
(‘ERNIE 2.0’; Sun et al., 2020) or transformers for
longer sequences (‘BigBird’; Zaheer et al., 2020)
could be tested on the problem.

Opening up the attention mechanism and looking
at what parts of the input sequence the model is
paying attention to could also give new insights,
and could potentially help educators.

Acknowledgments

Thanks to Hans Olav Slotte, Iselin Eriksen, Charles
Edvardsen and Vebjørn Isaksen for good discus-
sions on NLI and BERT.

Further thanks to Rabinovich et al. for making
the Reddit-L2 data set openly available online, to
Devlin et al. for distributing the pre-trained BERT
models and their code open source, and to Malmasi
and Dras for answering questions about their LDA
classifier.

269

References
Daniel Blanchard, Joel Tetreault, Derrick Hig-

gins, Aoife Cahill, and Martin Chodorow. 2013.
TOEFL11: A corpus of non-native English. ETS
Research Report Series, 2013(2):i–15.

Julian Brooke and Graeme Hirst. 2013. Using other
learner corpora in the 2013 NLI shared task. In
Proceedings of the Eighth Workshop on Innovative
Use of NLP for Building Educational Applications,
pages 188–196, Atlanta, Georgia. Association for
Computational Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. CoRR, abs/2005.14165.

Andrea Cimino and Felice Dell’Orletta. 2017. Stacked
sentence-document classifier approach for improv-
ing native language identification. In Proceedings
of the 12th Workshop on Innovative Use of NLP for
Building Educational Applications, pages 430–437,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Gili Goldin, Ella Rabinovich, and Shuly Wintner. 2018.
Native language identification with user generated
content. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3591–3601, Brussels, Belgium. Association
for Computational Linguistics.

Thomas G. Hudson and Sardar Jaf. 2018. On the devel-
opment of a large scale corpus for native language
identification. In Proceedings of the 17th Interna-
tional Workshop on Treebanks and Linguistic Theo-
ries, pages 115–129, Oslo, Norway. Linköping Uni-
versity Electronic Press.

Radu Tudor Ionescu and Marius Popescu. 2017. Can
string kernels pass the test of time in native language
identification? In Proceedings of the 12th Work-
shop on Innovative Use of NLP for Building Edu-
cational Applications, pages 224–234, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Radu Tudor Ionescu, Marius Popescu, and Aoife
Cahill. 2014. Can characters reveal your native lan-
guage? A language-independent approach to na-
tive language identification. In Proceedings of the

2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1363–1373,
Doha, Qatar. Association for Computational Lin-
guistics.

Pavel Ircing, Jan Švec, Zbyněk Zajı́c, Barbora Hladká,
and Martin Holub. 2017. Combining textual and
speech features in the NLI task using state-of-the-
art machine learning techniques. In Proceedings of
the 12th Workshop on Innovative Use of NLP for
Building Educational Applications, pages 198–209,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Moshe Koppel, Jonathan Schler, and Kfir Zigdon. 2005.
Determining an author’s native language by mining
a text for errors. In Proceedings of the 11th ACM
SIGKDD International Conference on Knowledge
Discovery in Data Mining, pages 624–628, Chicago,
Illinois, USA. ACM.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In Eighth
International Conference on Learning Representa-
tions, Addis Ababa, Ethiopia. ICLR.

Maryellen C. MacDonald. 2013. How language pro-
duction shapes language form and comprehension.
Frontiers in Psychology, 4:226.

Shervin Malmasi and Mark Dras. 2018. Native lan-
guage identification with classifier stacking and en-
sembles. Computational Linguistics, 44(3):403–
446.

Shervin Malmasi, Keelan Evanini, Aoife Cahill, Joel
Tetreault, Robert Pugh, Christopher Hamill, Diane
Napolitano, and Yao Qian. 2017. A report on the
2017 native language identification shared task. In
Proceedings of the 12th Workshop on Innovative
Use of NLP for Building Educational Applications,
pages 62–75, Copenhagen, Denmark. Association
for Computational Linguistics.

Ilia Markov, Vivi Nastase, and Carlo Strapparava.
2018a. Punctuation as native language interfer-
ence. In Proceedings of the 27th International Con-
ference on Computational Linguistics, pages 3456–
3466, Santa Fe, New Mexico, USA. Association for
Computational Linguistics.

Ilia Markov, Vivi Nastase, Carlo Strapparava, and Grig-
ori Sidorov. 2018b. The role of emotions in native
language identification. In Proceedings of the 9th
Workshop on Computational Approaches to Subjec-
tivity, Sentiment and Social Media Analysis, pages
123–129, Brussels, Belgium. Association for Com-
putational Linguistics.

Ella Rabinovich, Yulia Tsvetkov, and Shuly Wintner.
2018. Native language cognate effects on second
language lexical choice. CoRR, abs/1805.09590.

270

Björn W. Schuller, Stefan Steidl, Anton Batliner, Ju-
lia Hirschberg, Judee K. Burgoon, Alice Baird,
Aaron C. Elkins, Yue Zhang, Eduardo Coutinho,
and Keelan Evanini. 2016. The INTERSPEECH
2016 computational paralinguistics challenge: De-
ception, sincerity & native language. In Pro-
ceedings of the Annual Conference of the Interna-
tional Speech Communication Association, INTER-
SPEECH, pages 2001–2005, San Francisco, Califor-
nia, USA. ISCA.

Philipp Singer, Fabian Flöck, Clemens Meinhart, Elias
Zeitfogel, and Markus Strohmaier. 2014. Evolution
of Reddit: From the front page of the internet to a
self-referential community? In Proceedings of the
23rd International Conference on World Wide Web,
pages 517–522, Seoul, Korea. ACM.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng,
Hao Tian, Hua Wu, and Haifeng Wang. 2020.
ERNIE 2.0: A continual pre-training framework for
language understanding. In 34th AAAI Conference
on Artificial Intelligence, pages 8968–8975, New
York, New York, USA. AAAI.

Joel Tetreault, Daniel Blanchard, and Aoife Cahill.

2013. A report on the first native language identi-
fication shared task. In Proceedings of the Eighth
Workshop on Innovative Use of NLP for Building Ed-
ucational Applications, pages 48–57, Atlanta, Geor-
gia. Association for Computational Linguistics.

Joel Tetreault, Daniel Blanchard, Aoife Cahill, and
Martin Chodorow. 2012. Native tongues, lost and
found: Resources and empirical evaluations in na-
tive language identification. In Proceedings of COL-
ING 2012, pages 2585–2602, Mumbai, India. The
COLING 2012 Organizing Committee.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. In Advances in Neural Information
Processing Systems (NIPS 2017), pages 5998–6008,
Long Beach, California, USA. NeurIPS.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey,
Joshua Ainslie, Chris Alberti, Santiago Ontanon,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang,
and Amr Ahmed. 2020. Big Bird: Transformers for
longer sequences. CoRR, abs/2007.14062.

271

Proceedings of the 17th International Conference on Natural Language Processing, pages 272–280
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Does a Hybrid Neural Network based Feature Selection Model Improve
Text Classification?

Suman Dowlagar
LTRC

IIIT-Hyderabad
suman.dowlagar@

research.iiit.ac.in

Radhika Mamidi
LTRC

IIIT-Hyderabad
radhika.mamidi@

iiit.ac.in

Abstract

Text classification is a fundamental problem in
the field of natural language processing. Text
classification mainly focuses on giving more
importance to all the relevant features that help
classify the textual data. Apart from these, the
text can have redundant or highly correlated
features. These features increase the complex-
ity of the classification algorithm. Thus, many
dimensionality reduction methods were pro-
posed with the traditional machine learning
classifiers. The use of dimensionality reduc-
tion methods with machine learning classifiers
has achieved good results. In this paper, we
propose a hybrid feature selection method for
obtaining relevant features by combining vari-
ous filter-based feature selection methods and
fastText classifier. We then present three ways
of implementing a feature selection and neural
network pipeline. We observed a reduction in
training time when feature selection methods
are used along with neural networks. We also
observed a slight increase in accuracy on some
datasets.

1 Introduction

Text classification assigns one or more class labels
from a predefined set to a document based on its
content. Text classification has broad applications
in real-world scenarios such as document catego-
rization, news filtering, spam detection, Optical
character recognition (OCR), and intent recogni-
tion. Giving high weights to relevant features is the
objective of text classification.

The field of text classification has gained more
interest during the machine learning (ML) era.
Many discriminative and generative machine learn-
ing classifiers have achieved excellent results in the
field of text classification (Deng et al., 2019). Fea-
ture selection and feature extraction methods are
often used to reduce high dimensionality (Bharti

and Singh, 2015). Feature extraction generates fea-
tures from text (Agarwal and Mittal, 2014). Feature
selection (FS) selects the most prominent features
(Saleh and El-Sonbaty, 2007).

These feature selection and extraction methods
are used along with traditional classification algo-
rithms. These methods reduced the curse of dimen-
sionality and increased the classification accuracy
(Deng et al., 2019).

Recently, deep learning models are used to learn
better text representations and to classify the text
(Minaee et al., 2020). Such models include con-
volutional neural networks (CNN) (Kim, 2014),
recurrent neural networks (RNN) (Hochreiter and
Schmidhuber, 1997), Transformer models (Ad-
hikari et al., 2019), and graph convolutional net-
works (GCN) (Yao et al., 2019). These NN models
capture semantic and syntactic information in local
and global word sequences.

Even though the neural networks capture a com-
plex and dense representation of data, the set of
words introducing noise in the classifier is still
present. Such words add the burden of increased
vocabulary, which results in increased textual rep-
resentation and an increase in the training time of
the classifiers (Song et al., 2011).

Similar to the traditional approaches, we want
to understand the effects of using statistical feature
selection algorithms beforehand to calculate the
features’ relevance and then train a fastText text-
classification algorithm on those relevant features.
Using this feature selection and neural network
pipeline, we assume that the complexity of deal-
ing with larger vocabulary decreases. Including
feature selection with fastText text-classification
helps reduce the classifier’s training time and helps
the classifier reach better local optima, showing a
significant increase in classification accuracy.

In this work, we analyzed a feature selection
and neural network pipeline for text classification.

272

We used a hybrid feature selection method to get
a score on relevant features. Using this score, we
formulated three methods. The first and second
methods deal with modifying the original text by
extracting the relevant features. The third method
deals with using the feature selection scores and
pass it along with the word embeddings. We then
observed the effect of feature selection on various
neural networks.

The rest of the paper is organized as follows.
Section 2 gives a brief review of previous works in
the field of feature selection and text classification.
Section 3 presents a detailed procedure of the pro-
posed pipeline and presents the experiments and
datasets used for our study. Section 4 reports the
performance of text classifiers with and without
feature selection methods. Section 5 concludes the
paper.

2 Literature Survey

This section presents a brief description of the neu-
ral network (NN) classification algorithms and var-
ious feature selection methods.

2.1 Deep Learning for Text Classification

Nowadays, various NNs such as CNN, RNN,
BERT, and Text GCN achieve state-of-the-art re-
sults on text classification. CNN uses 1d convo-
lutions (Zhang et al., 2015) and character level
convolutions (Conneau et al., 2016) to learn the
semantic similarity of words or characters, which
helps in classifying the text. RNN models such
as GRU, LSTM, and BiLSTM (Liu et al., 2016)
take word to word sequences to learn a better tex-
tual representation of a document that helps in text
classification. Attention mechanisms have been in-
troduced in these LSTM models, which increased
the representativeness of the text for better classi-
fication (Yang et al., 2016). Transformer models
such as BERT (Devlin et al., 2018) uses the at-
tention mechanism that learns contextual relations
between words or sub-words in a text (Adhikari
et al., 2019). Text GCN (Yao et al., 2019) uses a
graph-convolutional network to learn a heteroge-
neous word document graph on the whole corpus.
Text GCN can capture global word co-occurrence
information and use graph convolutions to learn
a global representation, which helps classify the
documents.

2.2 Feature Selection on Text Data

The text classification often involves extensive data
with thousands of features. Although tens of thou-
sands of words are in a typical text collection, most
of them contain little or no information to predict
the text label. These features introduce complexity
and increase the training time of an ML classifier.
Feature selection is one method for giving high
scores to relevant features (Deng et al., 2019). The
goal of feature selection is to select highly-relevant
features with minimum redundancy. The relevance
of a feature indicates that the feature is always nec-
essary to predict the class label.

There are various text feature selection methods
in the literature, each being filter, wrapper, hybrid,
and embedded methods. The filter method evalu-
ates the quality of a feature using a scoring func-
tion. Some filter methods evaluate the goodness
of a term based on how frequently it appears in
a text corpus. Document Frequency (DF) (Lam
and Lee, 1999) and Term Frequency - Inverse Doc-
ument Frequency (TFIDF) (Rajaraman and Ull-
man, 2011) comes under this category. Other fil-
ter methods that originate from information theory
are, Mutual Information (MI) (Taira and Haruno,
1999; Tang et al., 2019), Information Gain (IG)
(Yang and Pedersen, 1997), CHI (Rogati and Yang,
2002), ANOVA F measure (Elssied et al., 2014),
Bi-Normal Separation (BNS) (Forman, 2003) and
the GINI method (Shang et al., 2013). They use
hypothesis testing, contingency tables, mean and
variance scores, conditional and posterior probabil-
ities for selecting the features.

The wrapper method (Maldonado and Weber,
2009) use a search strategy to construct each possi-
ble subset, feeds each subset to the chosen classi-
fier, and then evaluates the classifier’s performance.
These two steps are repeated until the desired qual-
ity of the feature subset is reached. The wrapper
approach achieves better classification accuracy
than filter methods. However, the time taken by
the wrapper method is very high when compared
to filter methods.

Embedded methods complete the FS process
within the construction of the machine learning al-
gorithm itself. In other words, they perform feature
selection during the model training. An embedded
method is Decision Tree (DT) (Quinlan, 1986). In
DT, while constructing the classifier, DT selects
the best features/attributes that may give the best
discriminative power.

273

Hybrid methods are robust and take less time
when compared to the wrapper and embedded
methods. They combine a filter method with a
wrapper method during the feature selection pro-
cess. The HYBRID model (Günal, 2012) employs
a combination of filter methods to select to rank the
features and then a wrapper method to the obtained
final features set. Our FS method is similar to the
HYBRID model.

A detailed report on the benefits of using the
feature selection methods in the pipeline with tradi-
tional classifiers is presented in Deng et al. (2019);
Forman (2003).

Apart from using traditional classification meth-
ods, deep feature selection using neural networks
were also proposed. These models use deep neural
network autoencoders for the feature set reduction
and text generation (Mirzaei et al., 2019; Han et al.,
2018).

Lam and Lee (1999) studies the effect of feature
set reduction before applying the neural network
classifiers. The paper uses a multi-layer perceptron
(MLP) classifier in combination with filter-based
FS method. Alkhatib et al. (2017) proposes the use
of neural network-based feature selection and text
classification. Our work comes under this category.

3 Proposed Pipeline

In this section, we present our feature selection and
neural network pipeline.

The feature selection and neural network
pipeline start with selecting a good tokenizer to
tokenize the data and create a feature set. The
tokenizer used for our feature selection is the Sen-
tencepiece tokenizer (Kudo and Richardson, 2018).
Sentencepiece tokenizer implements subword units
by using byte-pair-encoding (BPE) (Sennrich et al.,
2015) and unigram language model (Kudo, 2018).
In the feature subset generation, we considered
a hybrid feature selection method known as HY-
BRID (Günal, 2012). It has proved that a combi-
nation of the features selected by various methods
is more effective and computationally faster than
the features selected by individual filter and wrap-
per methods. Similar to the HYBRID model, we
used three filters to obtain the relevancy score. The
filters we considered were CHI2, ANOVA-F, and
MI. These filters calculate the relevancy between
the word and the class labels.

Before feature selection, we used the Bag-of-
Words(BoW) model to vectorize the data. In the

BoW model, each feature vector is represented by
TF IDF scores.

Then we used statistical measures such as χ2,
ANOVA-F, and MI for obtaining feature scores.
χ2 1 is a statistic to measure a relationship be-

tween feature vectors and a label vector.
Analysis of Variance (ANOVA2) is a statistical

method used to check the means of two or more
groups that are significantly different from each
other.

Mutual Information (MI3) is frequently used to
measure the mutual dependency between two vari-
ables.

Using different statistical methods, we measured
the relevance of each feature. We then aggregate
the relevance scores of all satistical methods for
each feature. The relevance of a feature xi is given
by,

Relevancy(xi) =

χ2(xi) +ANOV A(xi) +MI(xi) (1)

Instead of an LR classifier given in the HYBRID
model, we used the fastText classifier (Joulin et al.,
2016) for the feature selection. We used the fast-
Text classifier as it is often on par with deep learn-
ing classifiers in terms of accuracy and performs
faster computations. The fastText classifier treats
the average of word embeddings as document em-
beddings, then feeds document embeddings into
a feed-forward NN or a multinomial LR classi-
fier. We used pre-trained fastText word embeddings
(Grave et al., 2018) while training a classifier.

To get the final features list, we sorted the nor-
malized, aggregated value in descending order and
divided the entire feature space into k sets. In our
model, we divided the sorted feature space into 20
sets. The value of k is fixed to 20 using a trial and
error basis. We take the first set as the vocabulary
of the classifier. We then trained the classifier and
noted its accuracy. In the second iteration, we con-
sidered the vocabulary as the combination of first

1A detailed explanation and a simple example of
χ2 is given at https://www.mathsisfun.com/data/chi-square-
test.html

2A detailed explanation for ANOVA is given in
https://towardsdatascience.com/anova-for-feature-selection-
in-machine-learning-d9305e228476.

3A simple explanation and working
python example of MI is available at
https://machinelearningmastery.com/information-gain-
and-mutual-information/

274

Figure 1: Modifying text by masking the low ranked words

Figure 2: Meta-Embeddings, including feature scores
along with word embeddings

and second sets. Similarly, the third set has the
vocabulary of the first three sets combined. We
repeated the process until all the lists are exhausted.
The set of features that resulted in a better clas-
sification metric is considered as the final feature
set.

According to the proposed FS method, the fi-
nal feature set is considered relevant, and they are
necessary to perform the text classification. In con-
trast, the other features have little to no effect on the
text classification or might degrade the classifier’s
performance.

After feature subset generation, we propose three
methods for including the feature selection informa-
tion before training the neural network classifiers.

1. Method 1 (Selecting only the relevant fea-
tures)4: Like traditional classification algo-
rithms, we select only the relevant features
that are estimated to be important by the fea-
ture selection method before training a neural
network classifier.

4This method is already used while selecting the final
features set by the fastText classifier.

2. Method 2 (Masking the features that were
given low importance by our FS method):
We felt that removing the features given low
rank by our FS method might disturb the
original data’s grammatical structure, thus
disturbing the word to word dependencies.
We masked the low ranked words with the
help of < MASK > +POS(word) tag.
< MASK > word masks the low ranked
word, and POS preserves the word’s part of
speech. The visual representation of method
2 is shown in figure 1

3. Method 3 (Meta Embeddings): As shown in
figure 2, we pass the relevancy and feature se-
lection information along with embeddings in
this method. Each slot holds the filter scores,
i.e., CHI, ANOVA, MI scores of each feature.
The last slot holds a 1 or 0 value. 1 is used
for the selected features, and 0 is used for low
ranked features that were not selected by our
hybrid feature selection approach.

We analyzed and evaluated the above methods
with various state-of-the-art NN classifiers on the
benchmark datasets.

3.1 Experiment

In this section, we evaluated our feature selection
and neural network pipeline on two tasks. We
wanted to determine:

• If the pipeline decreases the training time of
the classifier

• If it helps in obtaining better local optima,
thus improving the classification accuracy.

We tested our pipeline across multiple state-of-
the-art text classification algorithms.

275

1. CNN: (Kim, 2014) This convolutional neu-
ral network-based text classifier is trained by
considering pre-trained word vectors.

2. Bi-LSTM: (Liu et al., 2016) A two-layer,
bi-directional LSTM text classifier with pre-
trained word embeddings as input was consid-
ered for the task of text classification.

3. fastText: (Joulin et al., 2016) This is a sim-
ple, efficient, and the fastest text classification
method. It treats the average of word/n-grams
embeddings as document embeddings, then
feeds document embeddings into a linear clas-
sifier.

4. Text GCN: (Yao et al., 2019) Builds a het-
erogeneous word document graph for a whole
corpus and turns document classification into
a node classification problem. It uses GCN
(Kipf and Welling, 2017) to learn word and
document embeddings.

5. DocBERT: (Adhikari et al., 2019) A fine-
tuned BERT model for document classifica-
tion. The BERT model (Devlin et al., 2018)
uses a series of multiheaded attention and
feedforward networks for various NLP tasks.

3.2 Datasets
We ran our experiments on three widely used bench-
mark corpora and multilingual corpora. They are
20Newsgroups(20NG), R8, and R52 of Reuters
21578 and MLMRD.

• The 20NG dataset contains 18,846 documents
divided into 20 different categories. 11,314
documents were used for training, and 7,532
documents were used for testing.

• R52 and R8 are two subsets of the Reuters
21578 dataset. R8 has 8 categories of the top
eight document classes. It was split into 5,485
training and 2,189 test documents. R52 has
52 categories and was split into 6,532 training
and 2,568 test documents.

• MLMRD is a Multilingual Movie Review
Dataset. It consists of the genre and synopsis
of movies across multiple languages, namely
Hindi, Telugu, Tamil, Malayalam, Korean,
French, and Japanese. The data set is min-
imal and unbalanced. It has 9 classes and a
total of 14,997 documents. The data was split
into 10,493 training and 4,504 test documents.

We first preprocessed all the datasets by cleaning
and tokenizing. The tokenizer used is the fastText
tokenizer.

For baseline 1 models, we used multilingual fast-
Text embeddings (Grave et al., 2018) of dimension-
ality 300, and baseline 2 models had the dimension-
ality of 304. We used default parameter settings as
in their original papers for implementations. For
calculating TFIDF, CHI2, ANOVA-F, MI scores,
we used the scikit-learn library (Pedregosa et al.,
2011). For POS tagging, we used the NLTK (Bird
et al., 2009) pos tagger.

All the neural network models were run on the
GPU processor on the Windows platform with
NVIDIA RTX 2070 graphics card.

4 Performance

Datasets Our FS HYBRID FS
20Newsgroups 81.27% 77.34%
R8 96.94% 93.79%
R52 92.72% 86.43%
MLMRD 47.09% 42.98%

Table 1: The classification accuracy of our FS model
when compared to the HYBRID model.

In our work, we modified the HYBRID (2012)
feature selection model by changing the LR clas-
sifier to the fastText classifier. We selected the
fastText classifier in the feature selection process
because of its fast learning ability of a NN model
compared to the traditional ML classifiers and other
neural network classifiers (Joulin et al., 2016) with-
out any decrease in classification accuracy. The
neural network classifiers such as MLP, CNN,
RNN, transformer, and GCN models achieve bet-
ter classification accuracy when compared to tradi-
tional ML classifiers, but their training time is very
high.

Using a fastText classifier during feature selec-
tion, we observed that our model performed better
on all the benchmark datasets than the HYBRID
model. The results are shown in table 1. The fast-
Text classifier’s use helped the model obtain better
relevant features, increasing the current feature se-
lection model’s accuracy compared to the HYBRID
model.

As mentioned above, we used the training time-
taken and test accuracy as the metrics to evaluate
our approach. The accuracy and training time are
recorded by running the model 10 times, and the

276

Datasets 20Newsgroups R8 R52 MLMRD
Baseline 1 & 2 1,01,631 (V) 19,956 (V) 26287 (V) 94073 (V)
Method 1 25732 (0.25V) 17364 (0.87V) 22372 (0.85V) 52015 (0.55V)
Method 2 25732+30 (0.25V) 17364+30 (0.87V) 22372+30 (0.85V) 52015+143 (0.55V)
Method 3 1,01,631 (V) 19,956 (V) 26287 (V) 94073 (V)

Table 2: The vocabulary size in all the FS inclusion methods when compared to the baselines. “V” is denoted as
the vocabulary size of the actual data. Baselines 1,2, and method 3 have no change in vocabulary. However, using
our FS method, the vocabulary is reduced to a maximum of 75% (for 20Newsgroups data). Other datasets have
seen a 13% to 45% decrease in vocabulary size. We can see an increase in vocabulary from method 1 to method 2.
It is due to the additional vocabulary resulted from the mask words when they are accompanied by pos tags. Here
Penn Treebank POS tagset is used.

Datasets Method Classifier(s)
CNN Bi-LSTM fastText DocBERT Text GCN

20Newsgroups Baseline 1 79.31% 73.60% 81.04% 90.19% 86.13%
Baseline 2 79.46% 74.25% 82.44% NA 86.23%
Method 1 78.27% 73.44% 81.27% 89.37% 86.25%
Method 2 77.29% 70.48% 80.14% 88.43% 85.65%
Method 3 80.59% 76.57% 84.48% NA 86.15%

R8 Baseline 1 97.24% 92.70% 96.13% 97.62% 96.80%
Baseline 2 97.37% 93.82% 96.50% NA 96.94%
Method 1 97.39% 93.74% 96.94% 97.44% 96.28%
Method 2 96.57% 94.34% 96.07% 97.44% 96.85%
Method 3 97.39% 96.74% 97.18% NA 96.94%

R52 Baseline 1 94.78% 87.53% 92.02% 92.95% 93.56%
Baseline 2 94.84% 90.79% 92.76% NA 93.64%
Method 1 94.29% 87.47% 92.72% 93.10% 92.97%
Method 2 91.71% 91.90% 90.30% 92.10% 93.19%
Method 3 94.84% 91.48% 92.83% NA 93.74%

MLMRD Baseline 1 47.63% 46.43% 46.92% 53.11% 47.62%
Baseline 2 47.79% 47.43% 48.92% NA 49.62%
Method 1 44.98% 44.82% 47.09% 51.90% 46.58%
Method 2 44.63% 44.05% 46.61% 50.90% 46.98%
Method 3 48.44% 49.13% 49.55% NA 51.50%

Table 3: Test accuracy on various neural network classifiers for the task of document classification. As the BERT
model used is a fine-tuned one, we did not modify the model.

average of the metrics was presented.

4.1 Effects of our methods on classification
accuracy

Table 3 demonstrates the accuracy of feature selec-
tion methods on NN classifiers.

When methods 1 and 2 were used, there is a
slight decrease in classification accuracy because
the first two methods lost semantic connection
among words. Thus, the classification performance
is degraded. Also, some words which were rele-
vant to the classifier were masked out during the FS
method. Whereas in method 3, including the fea-

ture selection scores with word-embeddings, has
shown a significant improvement in accuracy on
all the datasets.

Compared to the other datasets, the 20NG
dataset has seen a significant decrease in vocab-
ulary size. The vocabulary was decreased by 75%.
However, eliminating those features did not affect
the accuracy of the classifier for methods 1 and 2.

Introducing the masked features in method 2
shown an increase in accuracy only in the Bi-LSTM
method as this method considers word dependen-
cies while training a classifier.

Including the feature selection scores along with

277

the word-embeddings improved the classification
accuracy on all the datasets. The feature selection
metadata helped the neural network classifier learn
a better relationship between the words and classes
and improve the classifier’s accuracy by reaching
better local optima.

In R8 and R52 datasets, we have seen an increase
in accuracy using method 1 because our hybrid FS
method worked better on these datasets by remov-
ing the noisy words without disturbing the relevant
words. The maximum improvement in accuracy is
shown in the R8 dataset, with a +4% increase in
classification accuracy.

Our approach did not show any better results
on MLMRD datasets as this dataset has a limited
number of documents to train and test the data for
some languages (Telugu, Tamil, Malayalam, Ko-
rean). Reducing vocabulary size by the FS method
decreased the classification accuracy.

4.2 Effects of our methods on training time

The pictorial representation of time taken by the
classifiers for all the datasets is given in appendix
B of the supplementary material.

The time taken by method 1 is lower than in
all baseline models. In method 1, as the text is
modified by considering only relevant features, the
vocabulary size is reduced, and the sentence length
is reduced. It resulted in the more accelerated train-
ing of the neural network.

The time taken by baseline 2 and method 3 is
similar because of the same embedding dimension-
ality of 304, but method 3 has achieved local op-
tima a few epochs before compared to baseline
2, resulting in a time decrease of a few seconds.
This phenomenon is attributed to the use of feature
selection scores along with word embeddings.

Method 2 has shown an increase in training time
even though the vocabulary is decreased because
of 2 factors.

1. The masking of features created unknown
words in the data, and the classifier has to be
trained to learn the representation of masked
words, whereas the other words had pre-
trained embeddings.

2. Apart from vocabulary, the neural network
training time also depends on the input batch
size given to the network and the length of the
sentence in each batch. Because of the masked
words, there is no decrease in either batch size

or the sentence length. So the masking of
data did not decrease the training time of the
classifier.

On the contrary, the Text GCN model has shown
a decrease in training time because the classifier
computes heterogeneous graph embeddings of each
word based on the textual data before classification.
It did not use any pre-trained embeddings.

In method 3, there is a slight increase in training
time because of increased vocabulary size due to
the inclusion of feature selection metadata.

Of all the NN classifiers, the Text GCN model
had shown a maximum decrease in training time by
488 sec when method 1 was used on 20NG data. As
the Text GCN operates on building a graph on the
complete vocabulary of data, the time taken by the
method to build the graph is reduced significantly
by reducing the vocabulary size. It is followed by
the DocBERT and Bi-LSTM on 20NG data with
a decrease in training time by 480 and 394 sec.
Text GCN and Bi-LSTM have shown a significant
decrease in training time on all the datasets. On
the contrary, fastText and CNN are very fast while
training the NN model. The training time of such
models was unchanged when our method 1 was
used.

When compared to all the classifiers, DocBERT
achieved better results because of its evolutionary
multi-headed attention and transformer models. As
the Text GCN captures both local and word em-
beddings by constructing a heterogeneous graph,
their results were better than those of the CNN
and Bi-LSTM models, which work only on local
word dependencies. As we increased the size of
the embedding in FS method 2, this increased the
dimensionality of vocabulary, resulting in the clas-
sifier’s increased training time.

5 Conclusion

In our work, ”Does a Hybrid NN FS Model Im-
prove Text Classification?”, we used the NN based
hybrid FS method to extract relevant features and
used NN classifiers for text classification. We ex-
tracted the relevant or high ranked features using
filter-based methods and a fastText classifier. We
then proposed three methods on how the feature
selection can be included in the NN classification
process. First, modifying the corpus by consid-
ering only relevant features. Second, modifying
the data by masking the low ranked features, and

278

the third method introduces feature selection in-
formation along with word embeddings. We ob-
served that method 1 had shown a significant re-
duction in training time when large datasets or
slower models are used, accompanied by a min-
imal change in classification accuracy. By intro-
ducing MASK + P0S(word), we inferred that
the masked word was a burden to the classifier,
and it always tried to adjust the word embeddings,
which resulted in increased epoch time during train-
ing and a slightly negative effect on classification
accuracy. Whereas method 3 has shown no effect
on decreasing the training time, it has shown a max-
imum of 4% increase in the classification accuracy
compared to baseline. It proved that introducing
feature scores along with pre-trained word embed-
dings while training the NN classifier is beneficial.

Instead of opting for random naive vocabulary
reduction techniques such as using min df and
max df (minimum and maximum document fre-
quency) for selecting features, by using FS meth-
ods, we can calculate the relevance of the word
beforehand and use that as metadata to the NN clas-
sifier. When the datasets are huge, these methods
are of more significance. We can use the modi-
fied data while tuning the hyperparameters. Then
we can use the real data to train and evaluate the
model. Even in the critical domain datasets such
as “medical”, we cannot rely on removing a word
based on min df and max df scores. Each word in
those datasets should be treated with utmost sig-
nificance. FS methods help in such scenarios by
calculating the word’s relevance and helps maintain
better vocabulary before training neural network
classifiers.

References
Ashutosh Adhikari, Achyudh Ram, Raphael Tang, and

Jimmy Lin. 2019. Docbert: Bert for document clas-
sification. arXiv preprint arXiv:1904.08398.

Basant Agarwal and Namita Mittal. 2014. Text classifi-
cation using machine learning methods-a survey. In
Proceedings of the Second International Conference
on Soft Computing for Problem Solving (SocProS
2012), December 28-30, 2012, pages 701–709, New
Delhi. Springer India.

Wael Alkhatib, Christoph Rensing, and Johannes Sil-
berbauer. 2017. Multi-label text classification us-
ing semantic features and dimensionality reduction
with autoencoders. In International Conference on
Language, Data and Knowledge, pages 380–394.
Springer.

Kusum Kumari Bharti and Pramod Kumar Singh.
2015. Hybrid dimension reduction by integrating
feature selection with feature extraction method for
text clustering. Expert Systems with Applications,
42(6):3105–3114.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: analyz-
ing text with the natural language toolkit. ” O’Reilly
Media, Inc.”.

Alexis Conneau, Holger Schwenk, Loı̈c Barrault,
and Yann Lecun. 2016. Very deep convolutional
networks for text classification. arXiv preprint
arXiv:1606.01781.

Xuelian Deng, Yuqing Li, Jian Weng, and Jilian
Zhang. 2019. Feature selection for text classifica-
tion: A review. Multimedia Tools and Applications,
78(3):3797–3816.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Nadir Omer Fadl Elssied, Othman Ibrahim, and
Ahmed Hamza Osman. 2014. A novel feature selec-
tion based on one-way anova f-test for e-mail spam
classification. Research Journal of Applied Sciences,
Engineering and Technology, 7(3):625–638.

George Forman. 2003. An extensive empirical study
of feature selection metrics for text classification.
Journal of machine learning research, 3(Mar):1289–
1305.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learn-
ing word vectors for 157 languages. arXiv preprint
arXiv:1802.06893.

Serkan Günal. 2012. Hybrid feature selection for text
classification. Turkish Journal of Electrical Engi-
neering and Computer Science, 20(Sup. 2):1296–
1311.

Kai Han, Yunhe Wang, Chao Zhang, Chao Li, and
Chao Xu. 2018. Autoencoder inspired unsupervised
feature selection. In 2018 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pages 2941–2945. IEEE.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

TN Kipf and M Welling. 2017. Semi-supervised clas-
sification with graph convolutional networks iclr.

279

Taku Kudo. 2018. Subword regularization: Improving
neural network translation models with multiple sub-
word candidates. arXiv preprint arXiv:1804.10959.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing.
arXiv preprint arXiv:1808.06226.

Savio LY Lam and Dik Lun Lee. 1999. Feature re-
duction for neural network based text categorization.
In Proceedings. 6th international conference on ad-
vanced systems for advanced applications, pages
195–202. IEEE.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang.
2016. Recurrent neural network for text classi-
fication with multi-task learning. arXiv preprint
arXiv:1605.05101.

Sebastián Maldonado and Richard Weber. 2009. A
wrapper method for feature selection using sup-
port vector machines. Information Sciences,
179(13):2208–2217.

Shervin Minaee, Nal Kalchbrenner, Erik Cambria,
Narjes Nikzad, Meysam Chenaghlu, and Jianfeng
Gao. 2020. Deep learning based text classifica-
tion: A comprehensive review. arXiv preprint
arXiv:2004.03705.

Ali Mirzaei, Vahid Pourahmadi, Mehran Soltani, and
Hamid Sheikhzadeh. 2019. Deep feature selection
using a teacher-student network. Neurocomputing.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

J. Ross Quinlan. 1986. Induction of decision trees. Ma-
chine learning, 1(1):81–106.

Anand Rajaraman and Jeffrey David Ullman. 2011.
Mining of massive datasets. Cambridge University
Press.

Monica Rogati and Yiming Yang. 2002. High-
performing feature selection for text classification.
In Proceedings of the Eleventh International Confer-
ence on Information and Knowledge Management,
CIKM ’02, page 659–661, New York, NY, USA. As-
sociation for Computing Machinery.

S. N. Saleh and Y. El-Sonbaty. 2007. A feature selec-
tion algorithm with redundancy reduction for text
classification. In 2007 22nd international sympo-
sium on computer and information sciences, pages
1–6.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Changxing Shang, Min Li, Shengzhong Feng, Qing-
shan Jiang, and Jianping Fan. 2013. Feature selec-
tion via maximizing global information gain for text
classification. Knowledge-Based Systems, 54:298–
309.

Qinbao Song, Jingjie Ni, and Guangtao Wang. 2011.
A fast clustering-based feature subset selection algo-
rithm for high-dimensional data. IEEE transactions
on knowledge and data engineering, 25(1):1–14.

Hirotoshi Taira and Masahiko Haruno. 1999. Feature
selection in svm text categorization. In AAAI/IAAI,
pages 480–486.

Xiaochuan Tang, Yuanshun Dai, and Yanping Xiang.
2019. Feature selection based on feature interac-
tions with application to text categorization. Expert
Systems with Applications, 120:207–216.

Yiming Yang and Jan O Pedersen. 1997. A compara-
tive study on feature selection in text categorization.
In Icml, volume 97, page 35.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 conference of the North
American chapter of the association for computa-
tional linguistics: human language technologies,
pages 1480–1489.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
Graph convolutional networks for text classification.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 7370–7377.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems, pages 649–657.

280

Proceedings of the 17th International Conference on Natural Language Processing, pages 281–286
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Efforts Towards Developing a Tamang Nepali Machine Translation
System

Binaya K. Chaudhary1 Bal Krishna Bal2 Rasil Baidar1

Information and Language Processing Research Lab
Department of Computer Science and Engineering

Kathmandu University
Dhulikhel, Kavre, Nepal

1{binayachaudari, rasilgrt}@gmail.com
2bal@ku.edu.np

Abstract

The Tamang language is spoken mainly in
Nepal, Sikkim, West Bengal, some parts of As-
sam, and the North East region of India. As per
the 2011 census conducted by the Nepal Gov-
ernment, there are about 1.35 million Tamang
speakers in Nepal itself. In this regard, a Ma-
chine Translation System for Tamang-Nepali
language pair is significant both from research
and practical outcomes in terms of enabling
communication between the Tamang and the
Nepali communities. In this work, we train
the Transformer Neural Machine Translation
(NMT) architecture with attention using a
small hand-labeled or aligned Tamang-Nepali
corpus (15K sentence pairs). Our preliminary
results show BLEU scores of 27.74 for the
Nepali→Tamang direction and 23.74 in the
Tamang→Nepali direction. We are currently
working on increasing the datasets as well as
improving the model to obtain better BLEU
scores.

1 Introduction

Machine Translation (MT) Systems today represent
one of the biggest achievements of human mankind
in the field of Artificial Intelligence (AI) and Lan-
guage Technologies (LT). With the advancement
of Deep Neural Networks (DNN) and abundance
of data, today’s MT Systems already claim more
than 90% accuracy in the translation thus opening
doors for the adoption and use of highly reliable
translation systems.

These systems serve multiple folds: (1) bridge
the language barrier between different language
speaking communities; (2) preserve languages that
are not as popularly spoken or used in the younger
generations and many more. If we talk about the
Tamang language, native to the Tibeto-Burman
group of the Sino-Tibetan language family and spo-
ken by about 1.35 million native speakers in Nepal

according to the 2011 census by the Nepal Govern-
ment1, then we can say that it can greatly benefit
from MT systems. This is further enunciated by
the fact that Tamang is one of the languages which
is highly affected by the latest migration trends,
both within and outside the country, in quest of
better lives and opportunities. Consequently, the
language is not being spoken or learned by the
younger generation and is being limited to the older
generations thus creating a fear of extinction. On
the contrary, in areas with dense Tamang popula-
tions in Nepal the primary language of communi-
cation is Tamang and even the medium of teaching
is Tamang in these areas. Needless to note, MT
Systems can open up the Tamang community from
such areas to the outer world via the knowledge
sources available in Nepali and English languages
on the Internet.

In this paper, we discuss our efforts on develop-
ing a Tamang↔Nepali Machine Translation Sys-
tem. The biggest contribution of this work is
the development of the parallel corpus of 15,000
parallel sentences in Tamang and Nepali from
scratch. Moreover, we have adopted the Trans-
former architecture (Vaswani et al., 2017) for a low-
resource language pair (Tamang-Nepali) with quite
a few language-based customizations of hyper-
parameters. We have achieved a BLEU score of
27.74 for Nepali→Tamang and a BLEU score of
23.74 for Tamang→Nepali on the test sets.

2 Challenges in Parallel Corpus
Development

This is the first work of any kind in terms of
Nepali↔Tamang Machine Translation; there is no
related work in this regard. When we started work-
ing on the project, we did not have any parallel

1https://unstats.un.org/unsd/
demographic-social/census/documents/
Nepal/Nepal-Census-2011-Vol1.pdf

281

sentences for the Tamang-Nepali pair. Hence, we
started to look for any available resources for the
language pair. The problem with Tamang is that
there is still no consensus in the community re-
garding the script for the language. There are a
significant number of people in the Tamang com-
munity advocating for the Tamyig script which
is very close to Tibetan script. However, since
the Tamyig script is mostly confined to scriptures,
holy books of the Lamas and not taught widely in
schools, a large chunk of the Tamang community
still uses the Devanagari script for writing and print
media. Hence, we can find quite a few publica-
tions in Tamang written in the Devanagari script.
Based on the popular usage and availability, we
also decided to opt for Devanagari script-based
Tamang language texts. Our very first preliminary
attempt included seeing if we could use the Bible
translations in Nepali2 and Tamang3 as the parallel
sentences. However, the resource had its own set
of issues

• the quality of the translation was not good,

• sentence-level alignment of translations did
not yield satisfactory results,

• there was an issue of inconsistent use of the
Eastern and Western Tamang, dialects of the
Tamang language in Nepal.

So, we dropped the idea of using this resource. We
also tried using Tamang songs and their transla-
tions but this attempt was not fruitful as the trans-
lations lacked wide coverage of texts of varying
complexity in the languages. Finally, we estab-
lished contact with Tamang linguists and experts
as well as activists who had been working for the
Tamang language in different capacities for long
and we decided to initially develop 15,000 paral-
lel sentences for Tamang-Nepali. These sentences
range from simple to medium and complex sen-
tences and have been taken from different sources
like day-to-day spoken communication texts, child
storybooks, general articles from Tamang language
magazines, literary articles, etc.

2https://www.bible.com/bible/1711/MAT.
1

3https://www.bible.com/bible/1177/MAT.
1

3 Crowdsourcing the Development of
Parallel Corpus

In order to make the process of the parallel cor-
pus development more managed, we developed a
tool, namely the Corpus Development Software
which is a platform for submitting translations to
the pre-selected sentences for the source language,
as one sentence at a time. This approach prevents
the misalignment of the sentences in due course
of translation as the task demands one sentence in
the target for each source sentence. The tool does
not just provide an interface for submission of the
translations but also lets us know the assigned trans-
lator regarding the deadline and what the status of
the assigned task is (“Not Started”, “In Progress”,
“Completed”, “Past due” etc.). Once the translator
submits the task, then the system similarly assigns
the task to the reviewer and accordingly sets the
status of the task for the review phase. Only after
the reviewer submits the task, it becomes part of
the finalized parallel corpus. We present the high-
level workflow of the Corpus Development tool in
Figure 1.

Nepali Corpus Article

Nepali Corpus Sentence

Translators

Reviewers

Parallel Corpus

Nepali - Tamang

Nepali Tamang

Nepali Tamang

Figure 1: Workflow of the Corpus Development tool

4 Choosing the Right MT System
Architecture

We studied a few state-of-the-art NMT architec-
tures in due course of finalizing the MT architec-
ture for our system. The first one included Google’s
Neural Machine Translation system (GNMT) (Wu
et al., 2016), developed by Google. It is an LSTM
network with 8 layers of encoders and decoders

282

with an attention mechanism. GNMT (Wu et al.,
2016) tackles some of the well-known problems
in NMT such as slower training, ineffectiveness in
dealing with rare words, etc.

Similarly, Gehring et al. (2017) introduced a
NMT architecture based on Convolutional Neural
Network (CNN) for sequence-to-sequence learn-
ing that outperformed GNMT (Wu et al., 2016)
on WMT’14 English to German translation and
WMT’14 English-French.

Johnson et al. (2017) suggest a simple solution
for a multilingual translation system using a single
NMT model. The proposed model is identical to
the GNMT system (Wu et al., 2016) with some
optional connections on the actual network and
few modifications in the input sequence. Johnson
et al. (2017) describes the improvements in transla-
tion quality of low resourced language pairs when
low-resourced language pairs and high resourced
language pairs are mixed into a single model.

For this research, we follow the recent state-of-
the-art Transformer (Vaswani et al., 2017) NMT
architecture to create a fully supervised Neural Ma-
chine Translation system for developing a transla-
tion system for the Tamang-Nepali language pair.
The core concept behind the Transformer model is
self-attention—the ability to look at the multiple po-
sitions of an input sequence to understand/compute
the representation of the sequence. This approach
has proven to be better than recurrent methods, pop-
ularly being used for sequence-to-sequence learn-
ing. Transformer architecture addresses the recur-
sion problem and allows parallelization, therefore
reducing training time and increasing the perfor-
mance making it cheaper and quicker to train. It
can handle longer-range dependencies than most
other translation models.

5 Experimental Setup

In this section, we present the experimental settings
used for training the MT architecture and models
for experimenting and reporting the results. The
models which varied with different vocabulary of
pre-selected words (1K, 2.5K and 5K) were trained
using fairseq4 toolkit (version 0.9.0) (Ott et al.,
2019). Google Colab5 (free-tier) is used for train-
ing the MT architectures with hardware acclerator
set to GPU.

4https://github.com/pytorch/fairseq
5https://colab.research.google.com/

5.1 Experiment Settings

The Transformer model is a general sequence to
sequence model with self-attention. We pass the
input sentence through 5 layers of encoder stacked
on top of each other that generates an output for
each word/token in the sentence and 5 decoder
layers to the encoder’s output with its own input
(self-attention) to predict the next word. The model
handles variable-sized input using self-attention
heads. We use 8 attention heads for both the en-
coder and the decoder. Similarly, the number of
embedding dimensions and inner-layer dimensions
used are 512 and 2048, respectively. We train the
model with a learning rate of 7e−4, the minimum
learning rate being 1e−9 for 150 epochs with a
batch size of 64, updating a checkpoint after every
10 epochs. We set dropout, weight decay, and label
smoothing to be 0.4, 10−4, and 0.2 respectively.
Adam optimizer with betas (0.9, 0.98) is used to
optimize the model.

5.2 Data and Pre-processing

The corpus is developed from scratch accruing pre-
cise data directly from community linguists, which
contains Nepali (Nep) and Tamang (Tamg) trans-
lation aligned at the sentence level; though the
corpus is directly collected from community lin-
guists, many instances of repeated sentence pairs
were found, all such repeated sentence pairs are
removed programmatically keeping alignment in-
tact. After the removal of repeated sentence pairs,
there are around 8243 + 3622 training sentence
pairs, where 3622 sentence pairs are used for vali-
dation/development. We report results on the test
set containing 3023 sentence pairs. The Train,
Test and Valid dataset split is shown in Table 2.

Sentence Pairs
Train 8243
Test 3023
Valid 3622

Table 2: Train, Test and Valid dataset split

IndicNLP6 library (Kunchukuttan, 2020) is used
to normalize and tokenize both Nepali and Tamang
language texts. Translation, although being an
open vocabulary problem, it is not possible to feed
all the possible words in a language into a model.

6https://github.com/anoopkunchukuttan/
indic_nlp_library

283

Translation Direction Test Valid Vocabulary Size

Nepali→Tamang 27.74 29.41
1000

Tamang→Nepali 23.74 24.91

Nepali→Tamang 27.33 29.07
2500

Tamang→Nepali 22.41 23.75

Nepali→Tamang 26.13 27.53
5000

Tamang→Nepali 22.08 22.95

Table 1: BLEU scores for Test and Valid set trained for 150 epochs using multiple vocabulary sizes.

Sennrich et al. (2015) describes the capability of
open-vocabulary translation by encoding rare and
unknown words as a sequence of subword units.
For learning the vocabulary of source and target
language, we use BPE7 (Gage, 1994). BPE is the
standard technique in Neural Machine Translation
(NMT) and has been applied successfully in many
systems. Ding et al. (2019); Gupta et al. (2019)
argues that the impact of vocabulary size is signif-
icant in a low resourced dataset and that optimal
BPE for Transformer architectures is small for low
resource languages. Thus, based on the findings of
Ding et al. (2019); Gupta et al. (2019), we chose
the vocabulary size as ≤ 5000. Tokens not in-
cluded in the vocabulary are replaced by universal
tokens <unk>. Sentencepiece8 library (Kudo and
Richardson, 2018) is used to learn BPE in both the
source and the target languages.

6 Results

After training all the models for 150 epochs, the
best performing checkpoint9 is used for each model
with beam size of 5 (Yang et al., 2018) and length
penalty of 1.2 to measure the translation quality us-
ing the BLEU10 metric. The BLEU score (Papineni
et al., 2002) is a general way to evaluate the perfor-
mance of machine translation system when there
can be multiple right outputs. Sacrebleu11 (version
1.4.10) (Post, 2018) is used to compute the BLEU
scores. BLEU scores obtained after training on
multiple vocabulary sizes (1K, 2.5K and 5K) are
shown in Table 1.

The model trained with vocabulary size of 1000
performs better among all and was able to obtain a

7Byte-Pair Encoding: A data compression technique
8https://github.com/google/

sentencepiece
9Fairseq saves best performing checkpoint as

“checkpoint best.pt”
10BLEU: Bilingual Evaluation Understudy
11https://github.com/mjpost/sacreBLEU

BLEU score of 27.74 in Nepali→Tamang direction
and 23.74 in Tamang→Nepali direction. Transla-
tion examples by the system generated by applying
the best performing model are as follows:

Nepali→Tamang

Source

Reference

System

बच्चाहरुको निहुमा मखुमा आएजति शब्दमा अल्झकेो
मायाको आमा पनि घरको झ्यालमा बसरे दईुटी

बच्चीलाई हरिरहकेी थिईन ्।
कोलाकादलेा निउरि सङुरि खातदेोना छिकरि हाल्बा
मायाला आमा नोन दिमला झ्यालरि चिसि कोला

ङिदान च्यासि चिबा मबुा ।
कोलाकादलेा कुरि हापख्वाइरि छिकरि आझोबा
मायाला नोन दिमला झ्यालरि चिसि कोला ङ्हिदा

च्याचिबा मबुा ।

Source

Reference

System

क्या महान ्ईश्वर जसल ेथर्थरी कामरे सतं्रस्त भएका
अर्जुनमा शौर्य भर्दछ र कस्तो ठुलो योद्धा जो समाप्त

भसैकेको शत्रमुाथि आक्रमण गर्दछ !

तिला ग्रने ला थसे ेलोङ्सि लगलग दार्बा अर्जुनरि

पराक्रम यलुा ओम खाराङ्बा ग्रने योद्धा जो जिनजिन्बा

सत्तरुफिरि आक्रमण लाला !
क्या महान ग्लसि निसस ेच्याङ्ना ग ेलासि सतं्रस्त ताबा
अर्जुनरि शौर्य भर्दाम्ला ओम खाराङ्बा ठुलो च

जोद्धा च ुजोप्त तासि जिन्बा ल्हुइरि आक्रमण लाला !

Source

Reference

System

त्यो इ.प.ू २०० र सन ्३०० का बीचको अवधि– पनि
चाखलाग्दो छ र यस अवधिका महत्वपर्ण लक्षणहरू

छन ्।
थ ेइ.प.ू २०० थने सन ्३०० ला गङुला दइु– नोन
चाखलाग्दो मलुा ओम च ुदइुला महत्वपर्ण लक्षणजगु ु
मलुा ।

थ ेइ . प ू. २०० थने सन ्३००० दइुला अवधि– नोन
चालाबा मलुा ओम च ुअवधिला महत्वपर्णजगु ु
लक्षणजगु

मलुा ।

284

Tamang→Nepali

Source

Reference

System

चरि पाङ्बा मतुबेा अहकंार छ्याम च ुवक्तव्यस ेदने्बा
दइुदा उन्बा मलुा ।
यहा ँव्यक्त सम्पर्ण अहकंार सहित यस वक्तव्यल े
वास्तविक अवस्थालाई दखेाएको छ ।
यहा ँबोल्न ेसब ैअहकंार सबसगँ ैवक्तव्यल ेसाचँ्चालाई
दखेाएको छ ।

Source

Reference

System

शताब्दीयौं हने्सलेा गीताला अस्ङख्य थने ल्होलो
किसिमला फ्राल्तामन्हाङरि खाजिबाइ याखार्गिस ेनोन

च ुमलूभतू रुपरखेादा अतिक्रमण लाबा आर े।

शताब्दीयौंदखिका गीताका असङ्ख्य र विविध
किसिमका व्याख्यामध्य ेकुन ैएउटाल ेपनि यस मलूभतू

रूपरखेालाई अतिक्रमण गरकेो छनै ।

शताब्दीयौंदखि गीताको अस्ख्य र विभिन्न किसिमको
फ्याल्तमा आइसकेको एउटा मलूभतू रूपल ेपनि यो

मलूभतू रूपलाई अतिक्रमण गर्ने छनै ।

Source

Reference

System

विडम्बनावस,् कम्यनिष्ट हिन्ना बिबा थनेोन जीवजगुलुा
चोथबेा जमात तिनि थोक हिसाबस ेसढाउ फुमरि

स्खलित ताजिबा मलुा ।
विडम्बनावस,् कम्यिनिष्ट हौँ भन्न ेउन ैजीवहरूको यत्रो
जमात आज थोक हिसाबल ेसढाउ अण्डामा स्खलित

भइरहकेो छ ।
विडम्बनावस ्, कम्यनिष्ट हो भन्न ेतिन ैजीवनहरूको यत्र
ज्ञान आज लिएर हिसाबल ेसढाउ फुत्तमा स्खलित

भएका छन ्।

7 Discussion

For a low-resource language like Tamang, which
has very negligible digital footprints, the achieved
BLEU scores are quite encouraging. Besides,
the gathered dataset (approx. 15K) can serve as
a benchmark data for the Tamang - Nepali MT.
We consider this as a significant contribution and
achievement for the language pair. The deployed
MT system is made available in the link12 and is
open for testing. We are really encouraged by the
preliminary feedback that we have received from
the community.

8 Future Plans and Road Map

We are in touch with the linguists and experts from
the community and working towards further in-
creasing the dataset. Similarly, we will also be
looking further into how the MT model can be
further optimized via hyper-parameter tuning, vo-

12https://translation.ilprl.ku.edu.np/

cabulary size modification, changes in the learning
rate etc.

The Tamang community has been involved in
the testing of the system throughout and they are
quite satisfied with the gradual improvement of the
quality of the system. We plan to increase the size
of the parallel sentences to 100K via crowdsourc-
ing and other methods. We also plan to extend the
bi-lingual MT system to a trilingual one incorporat-
ing English to the system so that the Tamang and
the Nepali community benefit from the knowledge
sources available in English on the Internet.

Acknowledgments

We would like to thank the Information and Lan-
guage Processing Research Lab, Kathmandu
University for providing the research opportunity
and platform for this work. Similarly, our sincere
thanks goes to Mr. Amrit Yonjan-Tamang and his
team from Tamang Nangkhor for their support in
the parallel corpus development. We would also
like to extend our gratitude to Mr. Dawa Tamang,
Virginia, US for providing support to the work.

References
Shuoyang Ding, Adithya Renduchintala, and Kevin

Duh. 2019. A call for prudent choice of subword
merge operations in neural machine translation. In
Proceedings of Machine Translation Summit XVII
Volume 1: Research Track, pages 204–213, Dublin,
Ireland. European Association for Machine Transla-
tion.

Philip Gage. 1994. A new algorithm for data compres-
sion. C Users J., 12(2):23–38.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N. Dauphin. 2017. Convolutional
sequence to sequence learning.

Rohit Gupta, Laurent Besacier, Marc Dymetman, and
Matthias Gallé. 2019. Character-based nmt with
transformer.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2017. Google’s
multilingual neural machine translation system: En-
abling zero-shot translation.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing.

Anoop Kunchukuttan. 2020. The IndicNLP Library.
https://github.com/anoopkunchukuttan/

285

indic_nlp_library/blob/master/docs/
indicnlp.pdf.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Belgium, Brussels. Association for Computa-
tional Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin John-
son, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws,
Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith
Stevens, George Kurian, Nishant Patil, Wei Wang,
Cliff Young, Jason Smith, Jason Riesa, Alex Rud-
nick, Oriol Vinyals, Greg Corrado, Macduff Hughes,
and Jeffrey Dean. 2016. Google’s neural machine
translation system: Bridging the gap between human
and machine translation.

Yilin Yang, Liang Huang, and Mingbo Ma. 2018.
Breaking the beam search curse: A study of (re-
)scoring methods and stopping criteria for neural
machine translation. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3054–3059, Brussels, Bel-
gium. Association for Computational Linguistics.

286

Proceedings of the 17th International Conference on Natural Language Processing, pages 287–296
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Event Argument Extraction using Causal Knowledge Structures

Debanjana Kar1, Sudeshna Sarkar2, and Pawan Goyal3

Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur.

1debanjana.kar@iitkgp.ac.in
2,3{sudeshna, pawang}@cse.iitkgp.ac.in

Abstract

Event Argument extraction refers to the task
of extracting structured information from un-
structured text for a particular event of inter-
est. The existing works exhibit poor capabili-
ties to extract causal event arguments like Rea-
son and After Effects. Furthermore, most of
the existing works model this task at a sen-
tence level, restricting the context to a local
scope. While it may be effective for short
spans of text, for longer bodies of text such
as news articles, it has often been observed
that the arguments for an event do not neces-
sarily occur in the same sentence as that con-
taining an event trigger. To tackle the issue
of argument scattering across sentences, the
use of global context becomes imperative in
this task. In our work, we propose an external
knowledge aided approach to infuse document
level event information to aid the extraction
of complex event arguments. We develop a
causal network for our event-annotated dataset
by extracting relevant event causal structures
from ConceptNet and phrases from Wikipedia.
We use the extracted event causal features in
a bi-directional transformer encoder to effec-
tively capture long-range inter-sentence depen-
dencies. We report the effectiveness of our pro-
posed approach through both qualitative and
quantitative analysis. In this task, we estab-
lish our findings on an event annotated dataset
in 5 Indian languages. This dataset adds fur-
ther complexity to the task by labeling argu-
ments of entity type (like Time, Place) as well
as more complex argument types (like Reason,
After-Effect). Our approach achieves state-
of-the-art performance across all the five lan-
guages. Since our work does not rely on any
language specific features, it can be easily ex-
tended to other languages as well.

1 Introduction

Event argument extraction is a key information
extraction task that extracts structured informa-

Figure 1: Sample document with annotated events and
arguments. The global event category of the document
is Flood and the words in red indicate the event trig-
gers.

tion from unstructured texts. A widely studied
task, it often involves multiple complex sub-tasks
like entity retrieval, trigger detection and event-
entity linking. In almost all the existing works,
the terms event arguments and entities have been
used interchangeably. Popular entity types which
are frequently mined are that of place, time, or-
ganisations, and persons of interest. Our data set
contains arguments of entity type, like Time and
Place along with more complex argument types,
like After Effects and Reason. These arguments
with non-entity type attributes have comparatively
much fewer instances in the data set than the entity
type arguments. Not only that, these arguments
also constitute a much more complex lexical and
syntactical structure and are hard to capture using
the existing architectures. In our work, we propose
a novel event feature that helps capture rare com-
plex argument instances more accurately than the
existing models on this task. We construct a causal
knowledge structure with the aid of external knowl-
edge bases and for a given event, we extract its
corresponding causal attribute from the structure.

Context has always been of paramount impor-
tance for the task of event argument extraction.
Existing literature outlines different paradigms of
modeling the contextual scope for this task. The

287

traditional sentence level event argument extrac-
tion tasks performed on popular datasets like ACE
2005 and TAC-KBP 2017 largely restrict their con-
textual scope to within sentence boundaries (Chen
et al., 2015; Subburathinam et al., 2019). However,
some researchers identified the need to mine global
contextual features to enhance the argument extrac-
tion capabilities and modelled the task at a multi-
sentence or paragraph level (Yang and Mitchell,
2016; Duan et al., 2017; Zhao et al., 2018), and at
a document level (Yang et al., 2018; Zheng et al.,
2019). In our work, we also identify the need to
explore cross-sentence contextual scope to aid ac-
curate extraction of events and argument spans.
For example as illustrated in Figure 1, the sen-
tence ”The Brahmaputra is flowing above the dan-
ger mark in six districts.” could refer to a Reason
or an After-Effect argument in different contexts.
But on reading the document, one can understand
that the document talks about a Flood event, and
that the sentence can be tagged as Reason argument
with considerable confidence. Event arguments do
not necessarily co-occur in the sentence containing
the event trigger. This behaviour is even more fre-
quently observed in longer documents like news
articles. With no thematic signals obtained from
event trigger words, it becomes difficult to iden-
tify the correct argument labels and their spans in
such cases. In our work, we look beyond sentences
for stronger contextual clues to better capture the
events and their arguments from a document.

In summary, the contributions of our work are
four fold :

1. We propose a novel event causal feature for
improved extraction of complex causal argu-
ments.

2. Through our work, we emphasize on the effec-
tiveness of global vs. local scope of contextual
information in this task.

3. We compare different approaches of modeling
global information in this task and evaluate
the effectiveness of each.

4. We provide a novel end-to-end system for
event argument extraction which beats the
state-of-the art model’s performance.

1.1 Terminology

We introduce certain terminologies to facilitate bet-
ter understanding of our work .

• Event : An event is any real life happening or
occurrence which may be denoted by a word
or a phrase.

• Event Trigger : The particular word or phrase
that evokes a particular event type is known
as an event trigger.

• Argument : The words or phrases which pro-
vide supporting information about the event
are known as arguments.

• Causal Argument : The causal arguments re-
fer to the Reason & After Effect arguments
of an event. The Reason argument holds in-
formation regarding why a particular event
happened whereas After Effects argument de-
tails information about the after-math of an
event. It is of importance to note here that
the deaths and injuries that occur because of
an event are noted under the Casualties argu-
ment whereas all other effects of an event are
covered under the After Effects argument .

• Entity : Words or phrases which specifically
refer to terms that represent real-world objects
like people, places, organizations are known
as entities.

2 Related Work

Event Argument Extraction is a well researched
domain, primarily in English (Chen et al., 2015),
(Nguyen et al., 2016) and Chinese (Lin et al., 2018),
(Yang et al., 2018). While there have been efforts
to extend this task to a limited number of languages
like Spanish and Arabic (Akbik et al., 2016), (Sub-
burathinam et al., 2019), the task has been hardly
explored in Indian languages. In this paper, we
make an effort to explore five out of the twenty
two commonly spoken languages of India. The
existing literature for Indian languages for this task
are minimal and have either extracted arguments
from unstructured text irrespective of their event
links (Ahmad et al., 2019), or have jointly extracted
event and argument mentions with rule based ap-
proaches (Patel et al., 2019). Each of these works
are modelled to focus at an intra-sentence local
scope and do not capture inter sentence dependen-
cies. While the sentence level extraction mecha-
nisms outlined by prior works present a promis-
ing preface for this task in low-resource languages,
the results are indicative of a huge scope of im-
provement - especially for arguments like Reason

288

which are scant on annotations. In our work, we
try to address this gap and extract sentence level
events and arguments by infusing document level
context. Infusing cross-sentence or global context
to extract sentence level information has already
shown great improvements in many related works.
The work by (Zhang et al., 2020) studies the event-
argument extraction task by infusing contextual
information from the five sentences surrounding an
event trigger. Their work highlights the fact that
learnt architectures usually capture arguments from
sentences containing event triggers better than from
non-event-trigger sentences. Addressing this gap,
we adopt a trigger-less event detection approach
in our work, similar to (Zheng et al., 2019) and
use document-level event information to mitigate
the dependence on local event clues obtained from
event triggers. The method adopted by (Wadden
et al., 2019) uses a graphical span enumeration ap-
proach with a document input to model cross-task
and inter-sentence dependencies. We model our
work to include inter-sentential context to extract
event-argument spans from input documents with
greater accuracy.

3 Dataset

We have curated an event argument annotated
dataset for English and four Indian languages,
namely Bengali, Hindi, Marathi and Tamil as part
of a collaborative effort. The dataset comprises
of documents with sentence-level annotations of
events and argument mentions. The data set caters
specifically to the disaster domain and covers 32
event types at a fine grain level and 12 event types
at a coarse level. The dataset contains annotations
for 14 argument types, but in this work we focus
on 6 main argument types which are, Time, Place,
Casualties, After-Effect, Reason and Participant.
Almost all possible man-made and natural disas-
ter event types have been covered in this corpus.
Typically used datasets in this task like ACE 2005
and TAC KBP cater to generic events with only
entity type arguments. This corpus contains ar-
guments of both entity type and non entity type
with widely varying argument boundaries. Non-
entity type arguments constitute of complex argu-
ment types like Reason and After-Effects which
may constitute one/many entities within it’s span.
This makes the task even more challenging and
contributes to it’s uniqueness. The raw data for
the corpus was collected from the FIRE document

Language Train Valid Test
English 456 56 131
Bengali 699 100 199
Hindi 678 150 194

Marathi 815 117 233
Tamil 1085 155 311

Table 1: The number of documents for each language
in their Train, Test and Validation splits.

Figure 2: Overview of the general architecture.

repository as well as by crawling popular news web-
sites for the respective languages. The dataset was
annotated by eight linguistic experts over a span
of two years. The multi-rater Kappa agreement
ratio of the annotators has been evaluated as 0.85
approximately. The data distribution is reported in
Table 1

4 Approach

In this section we elaborate on the approaches we
have taken to accomplish the task of extracting
the event labels and it’s corresponding arguments
from a document. This is essentially a two-fold
task: i) Document Level Event Extraction, and ii)
Argument Extraction. The generic overview of our
approach is illustrated in Figure 2.

4.1 Problem Formulation
In our work, we treat the task of event-argument
extraction as a sequence labeling task. Given N
training instances D = (xn, yn)Nn=1, where x is
a sequence of tokens from an input document
and y is the corresponding event-argument anno-
tation sequence for x, our aim is to build a neural
model which maximises the conditional probability
pθ = (y|x), parameterized by model parameters
θ. To capture events and arguments better, we pro-
pose modeling context at a global scope for this
task. Infusion of global context in our work is done

289

Language Micro F1-Score (%)
English 97.71
Bengali 68.34
Hindi 87.63

Marathi 78.54
Tamil 84.89

Table 2: Document Level Event Extraction Results

in two ways. First, instead of processing each sen-
tence as a training instance, we process an entire
document with sentence demarcations. Second, we
infuse the document level event information into
the model to aid more accurate identification of
complex argument types. In the sections to fol-
low, we have described the different approaches we
have adopted to process event information into the
model. We have conducted our experiments on five
Indian languages.

4.2 Document Level Event Extraction

Traditional approaches for event extraction involve
extracting event triggers at a sentence level. We
adopt a no-trigger approach to label the documents
with their corresponding events but instead of
adopting a distant supervision method like (Zheng
et al., 2019), we adopt a supervised approach with
the aid of pre-trained language models in this task.
Our dataset comprises of news articles, and most
often, it has been observed that the central theme
of such documents are divulged in the title of the
document itself. Moreover, we find that only 6%
of the total corpus contains documents with multi-
event instances. Hence, we formulate this task
as a multi-class sentence classification task where
each document corresponds to one event category.
We consider the event labels of the first event trig-
ger instance in each document as the document’s
manually assigned event label. We fine-tune a pre-
trained multilingual BERT (mBERT) encoder with
a linear classification head on top to classify each
document title instance to an event category. Since
the titles of the documents are not explicitly de-
fined, we take the first two sentences as the title
of the news article and use it as our training and
testing instances. We use the the pooled output of
the encoder as input to the linear classification head
in the model. We find this approach to be highly
effective with a very high percentage of documents
being assigned their correct event labels as shown
in Table 2.

4.3 Argument Extraction

The main focus of this sub-task is to extract the
sentence level arguments given the document-level
event information. To aid the extraction of causal
arguments, we introduce a causal feature along
with the input document to the argument extrac-
tion module. In the following sections, we discuss
how we build and use the causal feature for event
argument extraction.

4.3.1 Event Causal Feature
Unlike the generic entity type arguments like Time
and Place, causal type arguments follow complex
patterns, ranging over variable lengths and show
a strong reliance on the event category. This is a
natural observation - the cause and effects of an
Earthquake will not be similar to that of a flood
or a terrorist attack. To make the task even more
challenging - these argument types, especially the
Reason argument, have very few training instances
in the corpus. We define a novel event causal fea-
ture in our approach to aid the extraction of causal
arguments.

Causal Graph Construction We manually con-
struct a disaster event graph ontology based on the
structures defined in the annotation guidelines of
the corpus as well as background knowledge of
linguistic experts. Given a graph G = (V,E), the
vertices V correspond to events and their causal
argument roles (Reason & After-Effects) and the
edges E show the relationships among the various
events and their arguments. We manually define
the event-event relationships in the graph to aid
knowledge transfer across events, such that empty
nodes in the graph corresponding to argument roles,
can inherit knowledge for that specific argument
role.

Node population The event nodes contain the
event-types. The children nodes correspond to the
causal argument roles. These nodes are populated
using words and phrases from external knowledge
bases like ConceptNet (Speer et al., 2017) and
Wikipedia. For ConceptNet, we have identified a
few edge-relations which correspond to our causal
argument labels and nodes that correspond to our
event types. It is worth mentioning here, that not
all the event types could be accessed in the exter-
nal resources. To mitigate that, we used a list of
manually curated synonyms of the event types or
merged some related event types (like Transport

290

Figure 3: Detailed overview of the causal feature construction process. Since our data is of Disaster domain, we
have labeled the graph in the diagram as Disaster Causal Graph.

Hazards and Vehicular Collision) to find relevant
resources in the external knowledge bases. For
each event type, we query the nodes associated
with the identified edges, extract the words and
phrases present in the nodes and use that to pop-
ulate our corresponding causal graph nodes. We
also crawl the cause and effects section of relevant
Wikipedia pages corresponding to the event types
in our corpus. We use an unsupervised language-
agnostic phrase extractor (Campos et al., 2020) to
extract phrases from the crawled Wikipedia sec-
tions and populate the corresponding causal graph
nodes with the extracted phrases. Each argument
node in the graph maintains a minimum of 3 and
a maximum of 10 words or phrases. In the event
that a certain argument node in the causal graph
has less than 3 words or phrases, we exploit the de-
fined event-event relations in the causal graph and
inherit values from related event-argument nodes.
The entire process is illustrated in Figure 3.
In an additional final step, we use a sentence tem-
plate to string together the words and phrases of
the argument nodes of a particular event. The con-
structed event-causal sentence for each event will
henceforth be referred to as the event causal feature
in the paper.

4.3.2 Argument Span Identification &
Classification

Following the pipeline illustrated in Figure 2, for
each document, we extract it’s event category and
use the extracted event to obtain the correspond-
ing event causal feature. Each input instance to
the argument extraction module is augmented with

the event causal feature at both ends. We train all
the 12 encoder layers of the pre-trained bert-base-
multilingual-cased model along with an additional
linear classification head on top. The linear layer
classifies the hidden states output corresponding to
each token to one of the six argument types (Time,
Place, Casualties, After-Effects, Reason, Partici-
pant) or to Others.
In the sections to follow, we will refer to our ap-
proach defined in this section (Section 4) as Event
Causality Augmentation or ECA.

5 Results

5.1 Experimental Settings

We use Huggingface’s bert-base-multilingual-
cased model pre-trained on 104 languages1.
Adam(Kingma and Ba, 2014) was used to opti-
mize the parameters. The model was trained with
a mini-batch size of 4 on a single Tesla k40-C ma-
chine and a maximum sequence length of 512. The
models were trained for 20 epochs or until no sig-
nificant changes were observed in the validation
loss, whichever was earlier.

5.2 Baselines

We compare our work with the following enlisted
approaches:

1. Patel-Emb: (Patel et al., 2019) are considered
the state-of-the-art results on this dataset. The
works of (Patel et al., 2019) employ a set of
rules to create a rule vector for each token

1https://huggingface.co/bert-base-multilingual-cased

291

Models Time Place Casualties After-Effects Reason Participant Avg.
Patel-Emb 83.05 88.41 90.09 55.90 81.56 76.40 79.23

Patel-Parallel 84.65 87.48 89.09 56.48 86.31 75.42 79.90
Patel-KD 81.74 87.19 89.83 47.79 87.35 75.45 78.23
mBERT 91.50 92.80 93.50 55.30 85.90 84.00 83.80
JETAE 90.37 91.84 92.87 47.42 77.07 83.41 80.49

EA 90.90 92.90 93.60 54.90 83.60 86.40 83.71
ECA (Our model) 92.65 93.41 94.22 58.39 90.76 87.29 86.12

Table 3: Argument-Wise comparison of our approach (ECA) with other baseline approaches on the English Corpus
using F1-scores. The bold text refers to the best result obtained for each argument as well as overall (Avg.).

which embeds event class information. They
use different approaches to infuse the rule vec-
tor into the model. In this approach, the rule
vector was appended with each sentence to-
ken representations and fed to a single layer
Bi-LSTM model.

2. Patel-Parallel : In this approach of (Patel et al.,
2019), the rule vector and word embeddings
were fed to two parallel single layer Bi-LSTM
models. Their learnt hidden layer representa-
tions were concatenated to learn a joint repre-
sentation of words and rules.

3. Patel-KD: In this approach of (Patel et al.,
2019), the knowledge of rules is distilled to
the Bi-LSTM network by using the rule vector
to bias the weights of the neural network.

4. mBERT: We adopt the BERT-NER from (De-
vlin et al., 2019) and fine-tune the mBERT To-
ken Classifier to extract event-argument spans
and compare it with our feature based mBERT
argument extractor.

5. JETAE: We adapt the mBERT Token Classi-
fier for Joint Event Trigger and Argument
Extraction task as defined in (Patel et al.,
2019) and report it’s argument extraction ca-
pabilities as compared to our approach.

6. EA (Event Augmentation): Instead of aug-
menting the event causal feature, we augment
the event type at both ends of the document
and compare it’s results against our’s.

We compare the overall performance in Table 3 for
English. For the Indian languages, we compare the
F1-scores we have obtained using our approach for
each argument type against the corresponding F1
score obtained from (Patel et al., 2019) in Table 5.
Since none of the three approaches defined in (Patel

Arg. Type ECA-gold ECA-pred
Time 91.84 92.19
Place 71.81 70.82

Casualties 82.96 82.79
After-Effects 53.31 53.13

Reason 42.71 39.88
Participants 55.11 54.00

Table 4: Results to highlight error propagation for the
Bengali corpus. We report the F1-scores for each argu-
ment type with manually annotated event labels (ECA-
gold) and predicted event labels (ECA-pred).

et al., 2019) were reported as the best performing
method for the task, for a given natural language,
we have considered the highest F1-score obtained
for each argument type among the three approaches
as the state-of-the-art result for the same. We report
our results using precision, recall and f1-scores.

6 Analysis

We perform a thorough analysis of our approaches
and enlist their merits and demerits in this sec-
tion. We compare our models to the state-of-the-art
models established on this dataset. As reported in
Table 3, we establish new state-of-the-art results on
this dataset. We present a comparative analysis of
the approaches explored in our work and observe
that our approach Event Causality Augmentation
(ECA) reports the best performance (Table 3). In
the table, we can observe a huge performance boost
with the use of fine-tuned contextualised word rep-
resentations of mBERT. The intended performance
boost in the extraction of causal arguments is also
observed on introduction of the causal feature. We
report the argument extraction performance of ECA
with both manually annotated event labels (ECA-
gold) and event labels predicted by our event ex-
traction module (ECA-pred) in Table 4. We specif-

292

Lang. Arg. Type SOTA ECA ∆%

Time 88.59 92.19 +4.06
Place 68.20 70.82 +3.84

Casualties 78.95 82.79 +4.86
After Effects 41.54 53.13 +27.90

Reason 17.91 39.88 +122.67
Bengali

Participant 49.93 54.00 +8.15

Time 68.57 72.54 +5.79
Place 63.79 73.06 +14.53

Casualties 68.21 71.93 +5.45
After Effects 44.67 45.43 +1.70

Reason 19.25 12.42 -35.48
Hindi

Participant 43.18 56.24 +30.25

Time 75.59 80.97 +7.12
Place 69.44 74.74 +7.63

Casualties 75.69 79.48 +5.01
After Effects 47.29 59.18 +25.14

Reason 35.93 35.57 -1.00
Marathi

Participant 59.35 64.55 +8.76

Time 81.03 89.09 +9.95
Place 75.86 83.84 +10.52

Casualties 80.20 87.21 +8.74
After Effects 72.15 83.82 +16.17

Reason 42.72 67.94 +59.04
Tamil

Participant 65.71 74.61 +13.54

Table 5: Comparison of Argument Extraction Perfor-
mance of our model (ECA) with the state-of-the-art
(SOTA) results ((Patel et al., 2019) for each language.
We show the % increase (+) or decrease (-) in F-Scores
with respect to the SOTA results.

ically show these results on the Bengali dataset as
it had reported the weakest event extraction results
among the five languages in Table 2. In table 2 we
observe that the F1-scores for Bengali and Marathi
are considerably low compared to the other lan-
guages. The drop in performance can be attributed
to the fact that these two languages contain the max-
imum number of multi-event documents while our
approach is based on the assumption that each docu-
ment in the corpus is a single event document. Even
in multi-event documents, we had observed that the
dominant event was mostly present in the title of
the document. The Bengali corpus consisted of a
few exceptional multi-event news articles which
contained news snippets about completely unre-
lated topics. In such cases the event extraction
algorithm performs poorly, thus reporting a signif-

Figure 4: Manually annotated and Inferred example
from the Hindi dataset highlighting the systemic con-
fusion between event triggers and reason arguments. It
also highlights the annotation errors existing in the cor-
pus, which is discussed in Section 6.4.

icant drop in performance on the Bengali dataset
for the document level event extraction task.
We can observe the error from the event extrac-
tion module propagating to our argument extraction
method in ECA-pred with the effects being visible
mostly in the causal arguments in Table 4. We leave
the task of a joint event label identification and ar-
gument extraction as a future task, which should
be able to mitigate this problem. In both Table 3
and Table 5, we can see the desired improvement
for the causal arguments. For almost all arguments
we notice a major improvement in the performance
in Table 5. In Hindi & Marathi though, we observe
a dip in the performance for the Reason argument.
We find that the dip can be attributed to two fac-
tors: i) the model confuses event triggers in certain
cases as the Reason argument - events can be the
reason for other events in the document as well;
ii) there are Reason argument instances which are
not annotated but gets detected by the model. We
have illustrated (i) through an example in Figure 4.
In the example, it can be observed that the model
confuses the event trigger due to landslide as the
Reason for the death of two workers. Although, it
is correct in it’s essence, as per the task, the phrase
due to landslide is an event trigger and not part of
a Reason argument.

293

(a) Example 1 (b) Example 2

Figure 5: Various inferred examples collected for a thorough qualitative analysis. The different approaches com-
pared are our model (ECA), Event Augmentation (EA), without event (mBERT), and Joint Event Trigger and
Argument Extraction model (JETAE).

6.1 Importance of event causal information

To investigate the importance of event information
in our model for the task of argument extraction, we
present our findings in Table 6, where we compare
mBERT based argument extraction models with-
out event information (without-event), with event
type information (EA) and finally with event causal
feature (ECA - our model). We can see a signif-
icant improvement in performance with event in-
formation, especially with the causal feature. This
rise can mainly be attributed to the significant im-
provement in causal argument extraction capabili-
ties which rely heavily on event information. We
also qualitatively analyse our findings in the first
example cited in Figure 5. As can be observed,
without event information, it is unable to detect
the presence of a Reason Argument. With event
type information, the model is able to detect the
argument’s presence, but we observe the model suf-
fering from ambiguity over argument types. This
ambiguity often rises with complex argument types
being nested among each other, as can be observed
in this example. Bus is a Participant in this event
but in this example, it is part of longer Reason ar-
gument span. With addition of the causal feature,

we find causal contexts getting learnt better and as
observed in this example, causal argument spans
get captured efficiently.

6.2 Importance of document level event
information

Extracting document level event information has
multiple benefits compared to event trigger extrac-
tion: i) It helps capture the overall thematic preface
of the document, ii) By not extracting event trig-
gers, we avoid the problem of ambiguous event
triggers for multiple event types. For example, the
word explosion can be an event trigger for event
types Terrorist Attacks, Volcano, as well as Indus-
trial Accidents.; iii) It saves annotation labour and
cost. Labeling document-level events is much sim-
pler a task than annotating event triggers in each
sentence of the document. By taking into account
the thematic preface of the document, we will now
observe it’s effects on the task of event argument ex-
traction using the same example as we used above
(first example of Figure 5). In JETAE, we often ob-
serve the model exhibiting bias towards sentences
with event triggers when it comes to the task of
argument extraction. In this example, since the

294

model was unable to detect the event trigger in the
sentence, it is unable to detect it’s corresponding
argument as well. Because of the use of document
level event context, we can observe that both EA
and our model, ECA are able to detect the Reason
argument span.

6.3 Sentence vs. Paragraph vs. Document
We study the importance of document context in
the task of extracting arguments of an event. To
investigate the importance of the contextual scope,
we have experimented in three different settings
by formatting the input instance to either include a
single sentence, a paragraph or the entire document.
Since paragraph boundaries were not mentioned
in the dataset, we have assumed the paragraphs in
our work to constitute four sentences. This deci-
sion was taken after finding the average length of
the documents to be 15 sentences. We present our
findings in Table 7 where we can observe a con-
sistent increase in the F1-scores as we widen our
contextual scope. The scores in each setting were
evaluated by averaging the individual argument
scores. While the performances at sentence and
paragraph level are comparable, it is in document
level context that a significant increase is observed.
This increase can be mainly attributed to the ef-
fective extraction of the scattered arguments with
no localised event clues to aid in their extraction
process.

6.4 Case Study
In this section, we analyse a few inferred examples
across different approaches adopted in our task.
Apart from the points already discussed, we ob-
serve a few more challenges and their solutions
along with their merits and demerits through our
approaches. If we analyse the second example in
Figure 5, we find a classic confusion between the
Reason & After Effect arguments. Reason and after-
effects are often interchangeable concepts depend-
ing on the contextual premise. As can be observed,
addition of causal feature helps resolve this ambi-
guity. We also observe that the model efficiently
captures arguments which were otherwise missed
by human annotators like the Participant argument
car in this example. This is primarily because of
the document context and other similar Participant
instances being annotated in likewise document
context that the model is able to capture the missed
annotations in the document as well. We also ob-
serve, across examples that the argument boundary

P R F
Without-event 66.32 62.57 63.45

EA 67.21 63.45 64.14
ECA 67.91 65.69 66.20

Table 6: Comparison of different approaches on the
Bengali Dataset to establish the importance of event in-
formation and event causal feature in our task.

Model Sentence Paragraph Document
EA 59.59 62.59 64.14

ECA 61.20 62.42 66.20

Table 7: Comparison of argument-extraction F1-scores
with respect to the contextual scope, for the Bengali
dataset of our corpus.

mismatch persists in our approaches as well. The
argument window may not be precise and may dif-
fer by a few tokens on either ends of the span.
Another observation that we make is more in lieu of
the annotation errors in the corpus which the model
has been observed to overcome in many situations.
A confusion among annotators was observed about
the semantic scope of Casualties and After Effect
arguments as observed through the example in Fig-
ure 4. However, the model in most cases extracts
the argument with the correct label (as also illus-
trated in Figure 4) and thus, exhibits the model’s
robustness against noise.

7 Conclusion

In our work we have shown a pipeline approach to
mine document level event labels and their argu-
ments from each sentence in a document. We have
reported a comparison study across different ap-
proaches based on multiple parameters, like input
context and event information. In future, we want
to extend this task to handle more languages in a
multilingual setting. Our approaches have shown a
huge improvement over the state-of-the art meth-
ods. In conclusion, through our work, we empha-
size on the importance of both contextual and event
information and report our thorough investigations
on the same.

Acknowledgments

The work done in this paper is an outcome of
the project titled “A Platform for Cross-lingual
and Multi-lingual Event Monitoring in Indian Lan-
guages”, supported by IMPRINT-1, MHRD, Govt.
of India, and MeiTY, Govt. of India.

295

References
Zishan Ahmad, Deeksha Varshney, Asif Ekbal, and

Pushpak Bhattacharyya. 2019. Multi-linguality
helps: Event-argument extraction for disaster do-
main in cross-lingual and multi-lingual setting.

Alan Akbik, Laura Chiticariu, Marina Danilevsky,
Yonas Kbrom, Yunyao Li, and Huaiyu Zhu. 2016.
Multilingual information extraction with polyglotie.
In Proceedings of COLING 2016, the 26th Inter-
national Conference on Computational Linguistics:
System Demonstrations, pages 268–272.

Ricardo Campos, Vı́tor Mangaravite, Arian Pasquali,
A. Jorge, C. Nunes, and Adam Jatowt. 2020. Yake!
keyword extraction from single documents using
multiple local features. Inf. Sci., 509:257–289.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and
Jun Zhao. 2015. Event extraction via dynamic multi-
pooling convolutional neural networks. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 167–176.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Shaoyang Duan, Ruifang He, and Wenli Zhao. 2017.
Exploiting document level information to improve
event detection via recurrent neural networks. In
Proceedings of the Eighth International Joint Con-
ference on Natural Language Processing (Volume 1:
Long Papers), pages 352–361, Taipei, Taiwan. Asian
Federation of Natural Language Processing.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization.

Hongyu Lin, Yaojie Lu, Xianpei Han, and Le Sun.
2018. Nugget proposal networks for chinese event
detection. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1565–1574.

Thien Huu Nguyen, Kyunghyun Cho, and Ralph Gr-
ishman. 2016. Joint event extraction via recurrent
neural networks. In Proceedings of the 2016 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, pages 300–309, San Diego,
California. Association for Computational Linguis-
tics.

Hrishikesh Patel, Nandan Rathod, Ayush Maheshwari,
Ritesh Kumar, Ganesh Ramakrishnan, and Push-
pak Bhattacharyya. 2019. Tale of tails using rule

augmented sequence labeling for event extraction.
arXiv preprint arXiv:1908.07018.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: an open multilingual graph of gen-
eral knowledge. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, pages
4444–4451.

Ananya Subburathinam, Di Lu, Heng Ji, Jonathan
May, Shih-Fu Chang, Avirup Sil, and Clare Voss.
2019. Cross-lingual structure transfer for rela-
tion and event extraction. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 313–325.

David Wadden, Ulme Wennberg, Yi Luan, and Han-
naneh Hajishirzi. 2019. Entity, relation, and event
extraction with contextualized span representations.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 5788–
5793.

Bishan Yang and Tom Mitchell. 2016. Joint extraction
of events and entities within a document context. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 289–299.

Hang Yang, Yubo Chen, Kang Liu, Yang Xiao, and
Jun Zhao. 2018. DCFEE: A document-level Chi-
nese financial event extraction system based on au-
tomatically labeled training data. In Proceedings
of ACL 2018, System Demonstrations, pages 50–
55, Melbourne, Australia. Association for Compu-
tational Linguistics.

Zhisong Zhang, Xiang Kong, Zhengzhong Liu, Xuezhe
Ma, and Eduard Hovy. 2020. A two-step approach
for implicit event argument detection. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 7479–7485,
Online. Association for Computational Linguistics.

Yue Zhao, Xiaolong Jin, Yuanzhuo Wang, and Xueqi
Cheng. 2018. Document embedding enhanced event
detection with hierarchical and supervised attention.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 414–419, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Shun Zheng, Wei Cao, Wei Xu, and Jiang Bian. 2019.
Doc2edag: An end-to-end document-level frame-
work for chinese financial event extraction. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 337–346.

296

Proceedings of the 17th International Conference on Natural Language Processing, pages 297–302
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Claim Extraction from Text using Transfer Learning

Acharya Ashish Prabhakar1, Salar Mohtaj1,2, and Sebastian Möller1,2

1Quality and Usability Lab, Technische Universität Berlin, Berlin, Germany
2DFKI Projektbüro Berlin, Berlin, Germany
a.prabhakar@campus.tu-berlin.de

{salar.mohtaj|sebastian.moeller} @ tu-berlin.de

Abstract

Building an end to end fake news detection
system consists of detecting claims in text and
later verifying them for their authenticity. Al-
though most of the recent works have focused
on political claims, fake news can also be prop-
agated in the form of religious intolerance,
conspiracy theories etc. Since there is a lack of
training data specific to all these scenarios, we
compiled a homogeneous and balanced dataset
by combining some of the currently available
data. Moreover, it is shown in the paper that
how recent advancements in transfer learning
can be leveraged to detect claims, in general.
The obtained result shows that the recently de-
veloped transformers can transfer the tendency
of research from claim detection to the prob-
lem of check worthiness of claims in domains
of interest.

1 Introduction

The advent of social media and mobile-based mes-
saging applications has led to a rapid spread of fake
news and misinformation, which are having serious
consequences in real-world scenarios. Manual fact-
checkers are often overwhelmed by the number of
sources that need to be verified. Facebook has re-
leased some statistics in its regular enforcement
reports, as follow:

• In 2016, known fake news content was getting
around 200 million engagements on Facebook
each month

• In Q1 of 2018, Facebook removed 837 million
pieces of spam

• In Q1 2018, Facebook also removed 583 mil-
lion fake accounts

The automated fact-checking process can help to
mitigate this problem. The very first step of a fact-
checking system is to identify claims from the text,

which can then be verified by querying a knowl-
edge base or by converting it into a question and
looking for suitable answers using a crawler (Vla-
chos and Riedel, 2014). Since identifying claims
is the very first step of a fact-checking pipeline,
the performance on this task has a major impact
on the result of an end to end fact-checking sys-
tem. As the performance of the state-of-the-art
deep learning models are highly dependent to the
availability of labelled data, in this paper, we in-
troduce a novel dataset to assist in training models
for the task of claim detection. Moreover, we in-
vestigate the performance of some of the recent
transformers based language models (e.g., BERT)
on the proposed data.

The paper is organized as follow. Some of the re-
cently proposed models and datasets for the task of
claim detection are presented in Section 2. Section
3 contains a brief introduction to transfer learning
and the state-of-the-art models. The proposed ap-
proaches for compiling the dataset and detecting
claims, and also the baseline model are described
in details in Section 4.

2 Related Work

Since fact-checking and fake news detection is
time-consuming and effort-full tasks, in many sys-
tems, claim detection and argument mining are
considered as the preliminary modules that provide
input for fact-checking module.

ClaimBuster, which is introduced in (Hassan
et al., 2017), tries to rank political claims in de-
bates based on their check-worthiness using super-
vised models. To this end, a labelled dataset of
spoken sentences by presidential candidates is con-
structed. Each sentence in the dataset is given one
of the three possible labels; it is not a factual claim;
it is an unimportant factual claim; it is an impor-
tant factual claim. Among various classification

297

Method Source of training data Model used Precision Recall F1
ClaimBuster Hand annotated US presidential debates SVM 79% 74% 76%
ClaimRank Popular fact checking organizations FNN 93% 65% 77%
Full Fact Crowd sourced annotations LogReg 88% 80% 83%
Logically Annotated news articles Google USE 90% 89% 89%

Table 1: Comparison of the scores of previous works

methods which have been trained on the proposed
dataset, support vector machine outperforms the
other methods in the accuracy of finding important
claims. Its ClaimSpotter component performs the
task of claim detection with a precision of 79% and
a recall of 74%.

Konstantinovskiy et al. (2018) focused on mon-
itoring news sources and identifying ”if a particu-
lar sentence constitutes a claim that could be fact-
checked?”. Since the definition of claim and also its
importance are subjective tasks and rely on many
factors (e.g. personal background), one of the most
important aspects of their work is proposing an an-
notation guideline in which ’claim’ and ’important
claim’ are defined to annotators. Their final results
show that logistic regression classifier gives the
highest overall F1 score, comparing to the other
supervised models in a different setting.

Another recent approach to claim detection is
ClaimRank (Jaradat et al., 2018). The authors claim
that although the system originally trained on polit-
ical debates, it works for any text, e.g. interviews
and regular news articles. They compiled a dataset
by taking the outputs of fact-checking of a political
debate, published by nine reputable organizations
simultaneously. Models were created to predict if
the claim would be highlighted by at least one or
by a specific organization. The modelling is done
with a large variety of features from both the in-
dividual sentence and the wider context around it.
To classify claims and rank them on their check
worthiness, a two hidden layered neural network
is trained. Adler and Boscaini-Gilroy (2019) used
Google’s universal sentence encoder to obtain the
sentence embedding and passed it through a logis-
tic regression layer to get the final classification.
Their model has trained on a dataset based on news
articles created by them.

A detailed comparison of the previously pro-
posed methods is presented in Table 1. In addi-
tion to develop a claim detection based on trans-
fer learning approach, in this paper we compile a
new balanced dataset for the claim detection task,

containing sentences from different domain and
contexts.

3 Transfer Learning

Neural networks need large scale datasets to be
trained efficiently. They are difficult to apply where
the available data is sparse. The Imagenet moment
(Deng et al., 2009) where fine-tuning, a model
trained on a large dataset could be applied in var-
ious applications with limited availability of data,
created a breakthrough in computer vision.

Language modelling was seen as the most ap-
propriate task to model this achievement by Im-
agenet in Natural Language Processing (NLP).
When trained for language modelling, neural net-
works capture the basic structure and understanding
of language and can thus be fine-tuned on down-
stream tasks with limited data. Many attempts have
been made in creating a sophisticated model trained
on a large dataset that can be fine-tuned easily on
a downstream task. ULMFit (Howard and Ruder,
2018) was one of the earliest models to achieve
this through an AWD LSTM (Merity et al., 2018).
ELMO (Peters et al., 2018) used a bi-directional
LSTM architecture with character level encoding
of features to avoid out of vocabulary errors. BERT
(Devlin et al., 2019) used the recently developed
transformer architecture to perform language mod-
elling.

Transformers have the advantage of being able
to train faster due to possibility of parallelization.
DistilBert model (SANH et al.) was created by
a method called model distillation, and it is 40%
smaller, and 60% faster than BERT and it retains
97% of its performance, making it more deploy-
ment friendly. In our experiments, BERT and Dis-
tilBert have been used to extract claims from text.

4 Proposed Approach

In this section we present the applied approaches
for compiling the dataset and detecting claims.
Moreover, the baseline model is also described in
this section.

298

Description No.

Document statistics
Total number of samples 395,057
Total number of claim samples 197,528
Total number of non-claim samples 197,529

Word/Char statistics
Average number of words per sample 83.61
Average character per sample 408.94
Average number of stop words per sample 39.18

Table 2: Statistics of our dataset.

4.1 Dataset
To train a neural network for detecting claims, we
need a dataset with claim and non-claims classes.
There are several datasets available for the task of
claim detection. FEVER (Thorne et al., 2018) is
the largest available dataset for this task. Their an-
notators performed several types of mutations of
Wikipedia articles summary section to create claims.
Wang (2017) collected claims from well-known
fact-checking organizations. However, there are no
significant datasets available for the negative class
(i.e. non-claims). Since several machine learning
methods expect a balanced training dataset to get
the desired result. With this motivation, we have
come up with the following methodology to com-
plement the abundance of publicly available claim
samples with non-claim samples.

We have created a large scale dataset of non-
claim sentences and made it publicly available at
the following Github repository 1. Although such a
large dataset is not needed for the transfer learning
based models, we aim to assist future researchers
in training simpler models which would expect a
balanced ratio of classes.

These non-claim sentences have been obtained
from Wikipedia. Wikipedia’s citation policy states
that;

”Wikipedia’s verifiability policy requires
inline citations for any material chal-
lenged or likely to be challenged, and
for all quotations, anywhere in article
space.”

The definition of a claim also happens to be;

”A statement about the world that can be
verified”.

Since Wikipedia expects citations for anything ver-
ifiable, it inturn requisites that claims in their arti-
cles be cited. Wikipedia also expects quotations to

1https://github.com/ashish6630/Claim extraction.git

be cited which may or may not be claims. Thus sen-
tences without citations would be non-claims and
sentences with citations can be both. By filtering
out citations from Wikipedia articles we would be
left with only non-claims. Since any user can edit
a Wikipedia page, and it can happen that beginners
are not entirely aware of its policy and ignore these
rules. We only work with pages having pending
changes protection, extended confirmed protection,
semi-protection and full protection. Only verified
users can edit these pages with these protection
levels.

We created a web crawler to access Wikipedia’s
page contents and filter out the sentences con-
taining citations leaving us with only non-claim
sentences. This crawler is programmed using
Python and uses libraries such as Spacy, Regex
and Wikipedia’s API features. For our final bal-
anced dataset, we use the samples returned by the
above-mentioned crawler as non-claims and take
data samples of class claim from FEVER and Wang
(2017). We summarize some of the statistics of our
final combined dataset in Table 2. Moreover, some
samples from the combined dataset are presented
in Table 3.

4.2 Baseline model

We trained a two-layered Long short-term mem-
ory (LSTM) network (Hochreiter and Schmidhuber,
1997) as a baseline model. Its input words are
converted into word embeddings using google’s
pre-trained word2vec model (Mikolov et al., 2013),
which creates word embeddings of dimension 300.
The network’s configurations consist of a hidden
layer size of 300, a learning rate of 0.001, Adam
Optimizer (Kingma and Ba, 2015), negative log-
likelihood as loss function and a mini-batch size of
64 for training. We train for the dataset mentioned
in section 4.1, in a five-fold cross-validation set
manner, on a Tesla GPU based computing cluster.

299

Sentence Claim

In Georgia, women earn 82 cents for every dollar earned by men. Yes
Bermuda Triangle is in the western part of the Himalayas. Yes
In Azerbaijan 53% of the population, according to polls, state that religion
has little to no importance in their lives. Yes
Tupac Shakur is my favourite Rapper. No
Some praised Rogan for hosting a pragmatic discussion while others seemed
rather stunned by Sanders decision to appear on the show at all. No

Table 3: Some samples from the proposed dataset

The results are summarized in Table 4.
Further experiments were tried with a varying

range of dropout and learning rates, but there was
no increase in the scores. Increasing the size of the
training data is the only option to improve model
accuracy. The transfer learning based model is
described in the next section.

4.3 Transfer learning models

We perform transfer learning by fine-tuning a pre-
trained BERT base and DistilBert base model.
These models have the advantage of having been
pre-trained on a large corpus for the unsupervised
task of language modelling. They also include
multiple self-attention heads which encode how a
word in a sentence relates to the other words, and
this information can prove useful during the final
classification.

Although BERT does not use character level em-
bedding like ELMO, it is still able to avoid out
of vocabulary errors by breaking words into sub-
words wherever possible. Unlike the LSTM, where
the next time step of the computation requires infor-
mation from the previous time step, making it chal-
lenging to parallelize, BERT being a transformer-
based model processes the entire sentence at once.
Training time is now significantly faster. The sen-
tence embedding generated at the end is used for
further steps, and the rest of the output is discarded.
This embedding is passed through a linear transfor-
mation layer to map the embedding of size 768 to
the class size of 2, i.e. claim and non-claim. These
models were fine-tuned on our combined dataset
shown in Table 3 for three epochs with a learning
rate of 2e-5 with Adam optimizer on a Tesla GPU
cluster. Table 4 contains the results after training
for three epochs with 2000 samples (1000 claims
and 1000 non-claims) and testing with the remain-
ing samples from the dataset mentioned in section

4.1.

The ratio of the distribution of claims can vary
depending on the scenario, e.g. A presidential de-
bate transcript will mostly consist of claims. In
contrast, some scenarios might only have a lesser
percentage of claims. Taking that into account,
we experimented with varying ratios of claims and
non-claims, and the results are shown in Table 4.
The results of the transfer learning model are robust
regardless of the ratio of claims in the dataset. As
highlighted in the table, both BERT and DistilBert
obtain promising results with only a fraction of the
dataset.

5 Conclusion and Future Work

In this work, we have presented our publicly avail-
able dataset and quantified the performance of
BERT and DistilBert in detecting claims in gen-
eral. These are one of the most advanced transfer
learning methods available and can provide highly
accurate results with fewer data. The transfer learn-
ing based pre-training of these models helped it to
achieve high evaluation scores despite having been
trained with a fraction of the available dataset.

Until now, Fake news detection has been thought
of as a two-step process consisting of detecting
claims and verifying them. The first part can be
further subdivided into detecting claims and sorting
them according to the check worthiness of a claim.
Other research domains such as argument mining
would benefit from this since they would want
to sort claims according to argumentative claims
rather than check worthiness. Researchers can thus
decide themselves the type of claim to filter out.
We will address the problem of check worthiness
in our future work.

300

Model Data distribution Accuracy Precision Recall F1% of claims % of non-claims

LSTM(Baseline) 50% 50% 70.32% 74.37% 77.82% 76.06%
BERT 10% 90% 95.32% 95.12% 96.24% 95.68%
BERT 25% 75% 96.13% 96.43% 96.89% 96.66%
BERT 50% 50% 98.42% 97.38% 98.61% 97.99%
BERT 75% 25% 97.06% 97.10% 97.79% 97.44%
BERT 90% 10% 95.54% 95.21% 95.88% 95.54%
DistilBert 10% 90% 95.36% 94.95% 95.39% 95.17%
DistilBert 25% 75% 95.85% 95.72% 95.91% 95.81%
DistilBert 50% 50% 97.78% 96.61% 98.37% 97.66%
DistilBert 75% 25% 96.12% 96.24% 96.31% 96.27%
DistilBert 90% 10% 94.47% 94.59% 94.63% 94.61%

Table 4: Final Results on the proposed dataset

References
Ben Adler and Giacomo Boscaini-Gilroy. 2019. Real-

time claim detection from news articles and re-
trieval of semantically-similar factchecks. In Pro-
ceedings of the Third International Workshop on
Recent Trends in News Information Retrieval, co-
located with 42nd International ACM Conference on
Research and Development in Information Retrieval
(SIGIR 2019), Paris, France, July 25, 2019, volume
2411 of CEUR Workshop Proceedings, pages 36–41.
CEUR-WS.org.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Fei-Fei Li. 2009. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition (CVPR 2009), 20-25 June 2009, Miami,
Florida, USA, pages 248–255. IEEE Computer Soci-
ety.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Pa-
pers), pages 4171–4186. Association for Computa-
tional Linguistics.

Naeemul Hassan, Fatma Arslan, Chengkai Li, and
Mark Tremayne. 2017. Toward automated fact-
checking: Detecting check-worthy factual claims
by claimbuster. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, Halifax, NS, Canada,
August 13 - 17, 2017, pages 1803–1812. ACM.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2018,
Melbourne, Australia, July 15-20, 2018, Volume 1:
Long Papers, pages 328–339. Association for Com-
putational Linguistics.

Israa Jaradat, Pepa Gencheva, Alberto Barrón-Cedeño,
Lluı́s Màrquez, and Preslav Nakov. 2018. Claim-
Rank: Detecting check-worthy claims in Arabic
and English. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics: Demonstrations,
pages 26–30, New Orleans, Louisiana. Association
for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Lev Konstantinovskiy, Oliver Price, Mevan Babakar,
and Arkaitz Zubiaga. 2018. Towards automated
factchecking: Developing an annotation schema and
benchmark for consistent automated claim detection.
CoRR, abs/1809.08193.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2018. Regularizing and optimizing LSTM
language models. In 6th International Conference
on Learning Representations, ICLR 2018, Vancou-
ver, BC, Canada, April 30 - May 3, 2018, Confer-
ence Track Proceedings. OpenReview.net.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In 1st International Con-
ference on Learning Representations, ICLR 2013,
Scottsdale, Arizona, USA, May 2-4, 2013, Workshop
Track Proceedings.

301

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Victor SANH, Lysandre DEBUT, Julien CHAU-
MOND, Thomas WOLF, and Hugging Face. Dis-
tilbert, a distilled version of bert: smaller, faster,
cheaper and lighter.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
FEVER: a large-scale dataset for fact extraction
and verification. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2018, New
Orleans, Louisiana, USA, June 1-6, 2018, Volume
1 (Long Papers), pages 809–819. Association for
Computational Linguistics.

Andreas Vlachos and Sebastian Riedel. 2014. Fact
checking: Task definition and dataset construction.
In Proceedings of the Workshop on Language Tech-
nologies and Computational Social Science@ACL
2014, Baltimore, MD, USA, June 26, 2014, pages
18–22. Association for Computational Linguistics.

William Yang Wang. 2017. ”liar, liar pants on fire”: A
new benchmark dataset for fake news detection. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2017,
Vancouver, Canada, July 30 - August 4, Volume 2:
Short Papers, pages 422–426. Association for Com-
putational Linguistics.

302

Proceedings of the 17th International Conference on Natural Language Processing, pages 303–307
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Assamese Word Sense Disambiguation using Genetic Algorithm

Arjun Gogoi
Dibrugarh University

Dibrugarh-786004, India
agogoi440@gmail.com

Nomi Baruah
Dibrugarh University

Dibrugarh-786004, India
baruahnomi@gmail.com

Shikhar Kr. Sarma
Gauhati University

Guwahati-781014,India
sks001@gmail.com

Abstract

Word sense disambiguation (WSD) is
a problem to determine a word accord-
ing to the context in which it occurs.
There are plenty amount of works done
in WSD for some languages such as En-
glish, but research work on Assamese
WSD remains limited. It is a more ex-
igent task because Assamese has an in-
trinsic complexity in its writing struc-
ture and ambiguity, such as syntactic,
semantic, and anaphoric ambiguity lev-
els. A novel unsupervised genetic word
sense disambiguation algorithm is pro-
posed in this paper. The algorithm
first uses WordNet to extract all possi-
ble senses for a given ambiguous word,
then a genetic algorithm is used taking
Wu-Palmer’s similarity measure as the
fitness function and calculating the sim-
ilarity measure for all extracted senses.
The winner sense which will have the
highest score declared as the winner
sense.

1 Introduction
The specific task that resolves the lexical
ambiguity is commonly referred to as Word
Sense Disambiguation(WSD). It is a process
to assign a meaning to a word based on the
context in which it occurs. WSD is quite
important for resolving some problems in
such NLP applications as text clustering and
classification, word similarity computation,
and so on.

Suppose there is a word জকা/Jika. The
word জকা/Jika is an ambiguous word which
has multiple senses.
Sense 1: জকা/Jika= To Win
Sense 2: লতাজতীয় গছত লগা তৰকাৰী িহচােপ

খাৱা এিবধ দীঘল আ পাতল ফল /Lota jatio
gosot loga torkari hisape khuwa abhid dighol
aru patol fol = a kind of Vegetable
A. মােয় আজ জকাৰ তৰকাৰী ৰাি েছ/Maa’e
aaji jikar torkari randhise/Mother is cooking
jika curry today.
→ This জকা/Jika gives a sense as a kind of
vegetable
B.ৰাহেল বাজী জিকল/Rahul e baji jikil/Rahul
won the toss
→ This জকা/Jika gives a sense as to win.

Various WSD Methods uses external
knowledge source, for example, Word Net/
Thesaurus as a basement to disambiguate the
ambiguous words. There are also some hybrid
methods, such as an Iterative Approach to
WSD, Sense Learner which first used textual
definitions of senses from a machine-readable
dictionary and then used a corpus to identify
and calculate the relatedness between two
senses. Another kind of approach to disam-
biguate words using machine learning-based
algorithms (Tatar, 2005) rather than taking
it directly from an explicit knowledge source
such as:

i. Supervised WSD: These types of ap-
proaches use machine learning techniques and
sense annotated corpora to train the data.
ii. Unsupervised WSD: These types of
methods are based on unlabeled corpora, and
make groupings of similar words based on
their similarity.

In this paper, we propose to do word
sense disambiguation using genetic algorithms
which is a novel unsupervised based algorithm.
The basic idea is to maximize the overall sim-
ilarity of disambiguated senses. We propose
a novel similarity measure which combines
domain information with the Wu-Palmer
similarity measure (Zhang et al., 2008) to

303

calculate the similarity between senses in
Word-net.

The structure of this paper is as follows:
Related works of the proposed approach,
Methodology of the proposed approach, Data
set and Experiments of the proposed ap-
proach, Some close observations, Conclusion
of the proposed approach.

2 Related works

As no work on the unsupervised approach
is done to date in the Assamese language,
we had considered work in Indian languages
done to date as Assamese is one of the Indian
languages. Most of the Indian language
structure is the subject-object-verb(sov). The
proposed works in the unsupervised approach
are as follows:

A work on Malayalam language WSD have
proposed by (Sankar et al .,2016) . In this
paper, an Unsupervised Approach has been
proposed and the proposed system makes
use of a corpus which is taken from various
Malayalam web documents. Based on the
similarity between the given input and the
sense clusters, the most similar sense is
selected as the winner sense. The proposed
system gives an accuracy of 72 percent.

A work on Gujarati language WSD have
proposed by (Vaishnav and Sajja,2019) . In
this paper, a Genetic algorithm has been
proposed which uses a Knowledge-based
approach where Indo-Aryan WordNet for
Gujarati is used as a lexical database for
WSD .

A work on Hindi language WSD have
proposed by (Tayal et al., 2015). In this
paper, an Unsupervised Approach has been
proposed and applied the Fuzzy C-Means
Clustering algorithm to form clusters. They
test the approach on the corpus created using
Hindi news articles and Wikipedia and then
compare the approach with other methods
available in all the previous works done for
the Hindi Language. The training data used
consists of 3753 words in total and found an
accuracy of approximately79.16 percentage .

A work on Hindi language WSD have pro-
posed by (Sangwan and Singh, 2013). In this
paper, a Genetic algorithm has been proposed

and this is the very first use of a Genetic
Algorithm for the Hindi language WSD. Here,
Hindi Wordnet has been used as a lexical
database for WSD. To date, they have found
some results which are under process.

A work on Gujarati language WSD have
proposed by (Mamulkar and Nandanwar,
2020) have proposed ”Word Sense Disam-
biguation for the Marathi language”. In
this paper, they are proposing the Genetic
Algorithm Approach for the disambiguation
of ambiguous words. In their survey, it is
found that a genetic algorithm gives better
results than other approaches

A work on Tamil language WSD have pro-
posed by (Priya et al .,2018). In this paper,
the Hierarchical Fuzzy Clustering Algorithm
is applied along with the WordNet dictionary.
To identify the disambiguated words, sense
identification is performed for the adjectives,
and comparison is performed. On comparing
with previous methods for WSD in the Tamil
language, their work gives a better result with
a percentage of 91.2 percentage .

A work on Bengali language WSD have
proposed by (Pal and Saha, 2019). In this
paper, Word Sense Disambiguation has been
done using the unsupervised methodology. In
this work, clustering has been implemented
using the weka tool and the test sentences are
extracted from the Bengali text corpus devel-
oped in the TDIL (Technology Development
for Indian Language) project of the Govt. of
India.

A work on Assamese language WSD have
proposed by (Sarmah and Sarma,2016) using
a supervised Machine Learning approach
”Decision Tree-based”. In this approach, a
few polysemous words with different real
occurrences in Assamese text with manual
sense annotation were collected as the training
and test dataset. They have been able to get
an average F-measure of .611 when 10-fold
cross-validation evaluation when performed
on 10 Assamese ambiguous words.

A work on Assamese language WSD have
proposed by (Borah et al., 2014). This is
the first work to the best of our knowledge
on developing an automatic WSD system for
the Assamese language using Naive Bayes ap-
proach. They have conducted the experiment

304

using 25 highly polysemic words using the
articles collected from the Assamese textbook
of class X.

A work on Assamese language WSD have
proposed by (Kalita and Barman, 2020) in
which the Walker algorithm, a thesaurus
based algorithm, is applied that makes use of
the category of each word as defined in the
thesaurus. But for a language like Assamese,
WSD is far from being a topical approach.
Moreover, due to the non-existing thesaurus
with a tagged category particularly for the
Assamese language.

3 Methodology

The initial idea of Genetic Word Sense
Disambiguation(GWSD) comes from disam-
biguating a set of domain words extracted
from a domain corpus. Because the terms can
belong to the same domain and we can assume
that they tend to be similar in semantics
with each other. So a good disambiguation
solution should be a solution that assigns
one sense to each term and increases the
overall similarity on the set of selected senses.
Each sense of a word corresponds to a synset
present in the WordNet and hence we use
genetic algorithms to find an optimal set of
senses, which increases the overall similarity
as it is a global search heuristic. For the WSD
task, in a given population each chromosome
which is equal to the all possible sense for
a given term in the WordNet will be tested
using a fitness function, and the most fitted
chromosome or sense will be declared as the
correct sense.

We give a simple example of initialization.
If we want to disambiguate a word, the pop-
ulation size is equaled to the collection of all
the possible senses from the wordnet, and for
each sense, we calculate the fitness function,
and the fittest sense is declared as the winner
sense i.e which sense scores the maximum
similarity using the fitness function. A fitness
function is an objective function that is used
to summarize, as a single figure of merit, how
close a given design solution is to achieving
the set aims. Fitness functions are used in
genetic programming and genetic algorithms
to guide simulations towards optimal design

solutions. In our proposed approach, we
are using conceptual similarity between two
senses using Wu-Palmer’s similarity measure
as the fitness function as described in section
3.1.

For example: ভাল/Bhul/Vegetable.
There a total of 2 sense for
ভাল/Bhul/Vegetable so 2 will be the

population size and then we calculate the
fitness function as mentioned above.

Figure 1: Diagram of the proposed approach

In Figure 1, after we take the input at first
initialize the initial population i.e collect all
the possible senses from the wordnet. For each
chromosome/Sense in the population, test
the fitness function(Wu-Palmer’s similarity
measure). The sense/ chromosome which gets
the maximum similarity to assign declared as
the winner sense i.e required output.

3.1 Conceptual similarity
In our approach, the conceptual similarity
between two senses is measured using Wu-
Palmer’s similarity measure (Zhang et al. ,
2008). In Wu-Palmer’s similarity measure,
Conceptual similarity between a pair of
terms C1 and C2 in a hierarchy is defined by
(Slimani, 2013) as:

SIM(C1, C2) = (2×N/(N1 + N2 + 2 ∗ N))
(1)

Where N1 and N2 are the distance that
separates, respectively, the concept C1 and
C2 from the specific common concept and

305

N is the distance which separates the closest
common ancestor of C1 and C2 from the root
node.

In our proposed approach, at first to dis-
ambiguate a word from an input sentence we
draw a tree based on their similarity measure
considering the Syn-sets(meaning) from the
WordNet and calculate its Wu-Palmer’s
similarity measure.

For example. Wu-Palmer’s similarity mea-
sure for the two senses জৰ/Jor/Fever and
বমাৰ/

Bemar/Illness) is given by
SIM(জৰ/Jor/Fever, বমাৰ/Bemar/Illness)=1.2

4 Data set and Experiment

We evaluate the genetic algorithm developed
and applied a sense annotated Assamese
corpus as shown in the table below. The
sense inventory used in this research has been
derived from the Assamese WordNet. There
are a total of 50000 words and among them,
15606 words are ambiguous (Baruah et al.,
2020).

Table 1: Details of the corpus
Details Values
Total Number of
Words

50001

Ambiguous
Words(Nouns)

15606

Total Number of
Unique Words

12282

Total number of In-
stances

12282

Total number of word
senses

50001

Total number of in-
stances per word

4.07

Total number of
senses per word

1.0

Using precision, recall metrics we have
done the experiment for genetic algorithm as
follows:

Precision = correct senses/Sentences taken
(2)

Recall = correct senses/Total Sentences taken
(3)

Table 2: Results
Precision 81.25
Recall 74.28

As no unsupervised works are done ear-
lier, our work is compared with the available
works related to supervised approaches in the
Assamese language.Though we have been able
to get a few papers only which have calculated
their results in precision and recall metrics, we
have been able to get quite better results while
comparing.

5 Some close observations
a.Very short sentence: Having sentences too
short in length, the proposed system could not
retrieve sufficient data and it creates difficulty
in the case of the similarity measure.
b.Spelling error: It is a very important factor
as spelling errors in words can decrease the
performance of the system.
c.Scarcity of information in Assamese Word-
Net: In this dictionary, synonymous sense
definitions of the common Assamese am-
biguous words are absent and it is a great
difficulty in the proposed approach.
d.Same contextual words with different senses:
various sentences that are not similar through
their similar contextual words. For example:

I. মােয় আজ ভালৰ চি ৰাি েছ/Maa’e
aaji bhulor sobji randhise/Mother is cooking
bhul curry today.
This ভাল/Bhul/Vegetable gives a sense as a
kind of Vegetable
II.এইেটা মুৰ ভল/Aitu mur bhul/This is my
fault.
This ভাল gives a sense as To do something
wrong.

6 Conclusion
In this paper, the WSD system for the
Assamese language using a genetic algorithm
has been proposed and analyzed. Works on
Assamese language using genetic algorithm

306

are almost none. Therefore we have an at-
tempt to disambiguate the ambiguous words
using a genetic algorithm. This proposed
system has been tested on a manually sense-
tagged corpus of 30 most ambiguous words.
Wu-Palmer similarity measure method has
also been applied as a fitness function to the
algorithm and found that Precision is 81.25
percentage and Recall is 74.28 percentage.

In the future, the scalability of the proposed
system can be improved by adding more
ambiguous words to the Assamese language.
This proposed system is one target word WSD
and can be extended to an all-word WSD
system and will show more good results once
the Assamese will fully complete.

7 Refrences

Deborah Gail Tatar. 2005. Word Sense Dis-
ambiguation by Machine Learning Approach.
Fundamental Informaticae, pages 433-442.

ChunHui Zhang, Yiming Zhou, and Trevor
Martin. 2008. Genetic Word Sense Disam-
biguation Algorithm. Second International
Symposium on Intelligent Information Tech-
nology Application, pages 123-127.

Sruthi Sankar, Reghu Raj, Jayan. 2016.
Unsupervised Approach to Word Sense
Disambiguation in Malayalam. In textitpro-
ceedings of the International Conference on
Emerging Trends in Engineering, Science and
Technology, pages 1507 – 1513.

Zankhana Vaishnav and Priti Sajja. 2019.
KnowledgeBased Approach for Word Sense
Disambiguation Using Genetic Algorithm for
Gujarati. Information and Communication
Technology for Intelligent Systems, pages
485-45.

Devendra Tayal, Leena Ahuja, Shreya Chhabra.
2015. Word Sense Disambiguation in Hindi
Language Using Hyperspace Analogue to
Language and Fuzzy C-Means Clustering.
In Proceedings of the 12th International
Conference on Natural Language Processing,
pages 49–58.

Shabnam Sangwan and Paramjit Singh. 2013.
Genetic Algorithm Based Hindi word sense
disambiguation. International Journal of
Computer Science and Mobile Computing ,
2(5):139-144.

Kalyani Mamulkar and Lokesh Nandanwar.
2020. Marathi Word Sense Disambiguation
Using Genetic Algorithm. In IJACEN , pages
16-18.

Mohana Priya, Krishna Priya, Geetha Harini,
Ragavi. 2018. Handling WSD using Fuzzy
Hierarchical Clustering of Sentence Level
Text. International Journal of Research in
Advent Technology, 6(11):3209 -3214.

Alok Ranjan Pal and Diganta Saha. 2019.
Word Sense Disambiguation in Bengali lan-
guage using unsupervised methodology with
modifications. Sådhanå, pages 44:168.

Jumi Sarmah and Shikhar Kumar Sarma. 2016.
Decision Tree based Supervised Word Sense
Disambiguation for Assamese. International
Journal of Computer Applications, 141(1):42-
48.

Pranjal Protim Borah, Gitimoni Talukdar,
Arup Baruah. 2014. Assamese Word Sense
Disambiguation using Supervised Learning.
International Conference on Contemporary
Computing and Informatics, pages 946-950.

Purabi Kalita and Anup Kumar Barman. 2015.
Implementation of Walker algorithm in Word
Sense Disambiguation for Assamese language.
In ISACC, pages 136-140.

Thabet Slimani. 2013. Description and
Evaluation of Semantic Similarity Measures
Approaches. International Journal of Com-
puter Applications, 80(10):25-33.

Nomi Baruah, Arjun Gogoi, Shikhar kumar
Sarma, Randeep Borah. 2020. Utilizing
corpus statistics for Assamese word sense
disambiguation. CoCoNET’2020.

307

Proceedings of the 17th International Conference on Natural Language Processing, pages 308–316
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Free Word Order in Sanskrit and Well-nestedness

Sanal Vikram and Amba Kulkarni
sanal.vikram@gmail.com, ambakulkarni@uohyd.ac.in

Department of Sanskrit Studies, University of Hyderabad

Abstract
The common wisdom about Sanskrit is that
it is free word order language. This word
order poses challenges such as handling non-
projectivity in parsing. The earlier works
on the word order of Sanskrit have shown
that there are syntactic structures in Sanskrit
which cannot be covered under even the non-
planarity. In this paper, we study these struc-
tures further to investigate if they can fall un-
der well-nestedness or not. A small manu-
ally tagged corpus of the verses of Śrı̄mad-
Bhagavad-Gı̄tā (BhG) was considered for this
study. It was noticed that there are as many
well-nested trees as there are ill-nested ones.
From the linguistic point of view, we could get
a list of relations that are involved in the pla-
narity violations. All these relations had one
thing in common—that they have unilateral ex-
pectancy. It was this loose binding, as against
the mutual expectancy with certain other rela-
tions, that allowed them to cross the phrasal
boundaries.

1 Introduction

Sanskrit is inflectionally rich and it rarely uses
position to encode any syntactic or semantic re-
lation between words. This enables Sanskrit to
move the words freely in a sentence. Within In-
dian tradition, the word order was regarded as free,
provided the proximity (sannidhi) is not violated.
The Indian theorists found the sentences with dif-
ferent arrangements of words to be equivalent in
meaning, with an exception of subject-predicate
(uddeśya-vidheya). The difficulty in understand-
ing the verses due to deviation from the ‘default’
word order, however, had been realised. The com-
mentators commenting on the verses have followed
this ‘default’ word order known as the anvaya of
a verse (śloka)1. But this default word order is

1ādau kartr. padam vācyam dvidı̄yādipadam tatah. |
ktvātumunlyap ca madhye tu kuryād ante kriyāpadam ||

not followed strictly either by the commentators
or by the authors while composing prose. When
the Sanskrit texts started being translated into fixed
word order European languages, the free word or-
der of Sanskrit had been noted. The westerners
tried to propose a framework for the Sanskrit word
order. However, these studies also lead to only a
preferential, or frequent arrangement, and not ‘the’
arrangement. The deviations were considered to be
the exceptions. Even while discussing the syntax,
much emphasis had been laid on the concord and
government rather than order.

Though Sanskrit allows free movement of words,
and there are preferential word orders, certainly
not all permutations of the words are allowed. So
the attention of the researchers then was drawn to
the restrictions on word order rather than possible
word orders. The first systematic account of the
word order in Sanskrit was by Staal (1967). He
introduced a concept of ‘wild tree’ which allows
the movement of the items within a phrase freely.
In this model, any two items from different phrases
cannot interleave or the words in one phrase cannot
leave their place and move to the domain of other
phrases.

This model was formalised and empirically
tested by Gillon on a corpus of approximately thou-
sand Classical Sanskrit prose sentences. Half of the
sentences of this corpus was from a single text,2

and the other half was selected at random from the
sentences found in Apte (1925). His empirical ob-
servations confirm the model suggested by Staal

viśes. an. am puraskr. tya viśes. yam tadanantaram |
kartr. karmakriyāyuktam etad anvayalaks. an. am ||

(Samāsacakra karikās 4, 10)
(English: Starting with kartr. , followed by other words,

placing the non-finite verb forms such as ktvā, tumun, lyap
in between, place the main verb at the end. Starting with
adjectives, targeting the headword, in the order of kartr.-karma-
kriya gives an anvaya (natural order of words).)

2Prose commentary by Dharmakı̄rti on the
Pramān. avārttika.

308

with an exception of movement of genitives and
adjectives across the clause boundaries.

Aralikatti (1991) studies the modern Sanskrit
texts and conversations from the point of view of
the flexibility in word order. He found that the
modern writings and the conversations follow the
default word order. Scharf et al. (2015) presents
the preliminary observations with regards to the
comparison of the word order in prose and verse
which confirm more flexibility in verses than in
prose.

In order to develop a computational parser for
Sanskrit, these theoretical insights are very much
useful. Kulkarni et al. (2015) studied and carried
out an empirical study of the verses in Srimad-
Bhagavad-Gı̄tā(BhG). The aim of this study was to
gain insights regarding the flexibility in the word
order to build a computational model of grammati-
cal sentences in Sanskrit. They could fit a weakly
non-projective (or planar) model for the Sanskrit
sentences, barring a few cases. One important ob-
servation was that the number of cases of violation
of planarity condition in verse was higher than the
number of exceptions studied by Gillon in prose.
Another observation was with respect to the rela-
tions involved in the planarity violation. It was
observed that in addition to the two relations viz.
the adjective (viśes. an. a) and the genitive, pointed
out by Gillon, a few other relations such as voca-
tive, negation etc. also violated the planarity of the
graph. But these relations were not as frequent as
the genitive and adjective. At the same time, the be-
haviour of these relations was the same irrespective
of whether the text is a prose or a verse.

These relations which do not conform to the pla-
nar graphs had a special status. A peep into the
Indian theories of verbal cognition revealed that
these exceptions correspond to the cases where
the words have unilateral expectancy (utthāpya
ākāṅks. ā). Such grammatically accepted sentences
were studied further in order to build a proper com-
putational model for parsing them. In this paper,
we test whether the exceptions to the planar graphs
fall under the category of well-nested graphs or not.

The organisation of the rest of the paper is as
follows. In the next section, we describe various
parameters to classify the syntactic structures math-
ematically. In the third section we discuss two ma-
jor concepts—the concept of expectancy (ākāṅks. ā)
and the concept of proximity (sannidhi)—from In-
dian theories of verbal cognition (śābdabodha) that

are useful from the point of view of dependency. In
the fourth section, we describe the empirical experi-
ments we carried out to classify the cases of proxim-
ity violation. We show that the violations do occur
both in the well-nested as well as ill-nested graphs
and that the non-planarity is mainly due to the ad-
jectival and genitive relations with a few cases of
other non-kāraka relations such as negation, voca-
tive, conjunction, etc. Finally we conclude that
the utthita and utthāpya ākāṅks. ā provide a better
classification for the non-planar graphs rather than
well-nested and ill-nested classification.

2 Dependency Structures

In this section we present the formal definition of
various mathematical structures associated with the
dependency. The dependency parse of a sentence is
expressed in the form of a tree structure. This tree
is a Directed Acyclic Graph with one root node,
and all other nodes connected to at least one other
node in the tree by a direct edge.

2.1 Projectivity Principle

The principle of projectivity imposes certain con-
straints on the dependency tree which bans certain
dependency structures.

A sentence is projective if and only if we
can draw a dependency tree whose every
node can be projected by a vertical line
onto its word form in the surface string
without crossing another projection or a
dependency edge.

Thus, if A depends directly on B and some other
element C intervenes between them (in linear or-
der of string), then C depends directly on A or
on B or on some other intervening element. Thus
the projectivity requires the node to dominate a
continuous substring of the sentence and bans on
discontinuous constituents. The intuitive ‘wild tree’
notion of Staal comes very close to this projectiv-
ity principle. Dependency grammars that allow
only projective structures are closely related to the
context-free grammars (Gaifman, 1965), and hence
can be parsed in cubic time (Eisner, 1996).

It was noticed that there are certain constructions
in natural languages that do not fit in with the de-
pendency tree satisfying the projectivity principle.
Hence the constraint was further relaxed, so as to
allow some non-projectivity. Figure 1 shows one
dependency graph exhibiting non-projectivity.

309

A

B

C

A B C

Figure 1: Non Projective Graph

2.2 Weak Non-projectivity (Planarity)

A dependency tree is weakly non-projective if there
is no crossing among the relation edges when plot-
ted on one side of the sentence (either above or
below). This is also a planar graph. The planar
graph in computational linguistics is the same as
the one from the computer science with one mod-
ification that all the edges are drawn on the same
side (either above or below) of a sentence. Thus
a dependency graph is planar, if it does not con-
tain nodes i, j, k, l such that i < j < k < l and
edge(i, k) and edge(j, l).

For example, Figure 1 shows the crossing of a
dependency relation with the projection. But the
same dependency relations when drawn with words
arranged in a linear order and the edges drawn
above the sentence, the crossing disappears (See
Figure 2).

A B C

Figure 2: Planar dependency graph for (1)

2.3 Well-nestedness

The well-nested constraint imposes restrictions on
the positioning of the disjoint sub-trees. Two trees
are called disjoint if neither of their roots dominates
the other. Two subtrees T1 and T2 interleave, iff
there are nodes l1, r1 of T1 and l2, r2 of T2, such
that l1 < l2 < r1 < r2. A dependency graph
is well-nested, iff no two of its disjoint subtrees
interleave. If the two trees that interleave are not
disjoint, that is if the root of one tree governs the
root of the other tree, then the interleaving of edges
in such trees is allowed. Dependency trees which
have overlapping edges across disjoint subtrees are
considered as ill-nested.

Figure 3 is well-nested, because the edges 1→ 3
and 2 → 5, of the two disjoint trees 1 → 3 → 4

and 2 → 5, interleave, but the node 1 of the first
tree governs the node 2 of the second tree.

In Figure 4, the edges 3 → 5 and 2 → 4 inter-
leave, and neither 2 nor 3 is governed by the other.
Hence this is an ill-nested tree.

In Figure 5, the edges 1 → 3 and 2 → 5 inter-
leave, and again neither 1 nor 2 govern the other.
Hence this is also an ill-nested graph.

All projective trees are weakly non-projectives
and all weakly non-projective trees are well-nested
by definition.

1

2

3 4

5

a b c d e

Figure 3: Well-nested graph

1

2

3

4

5

a b c d e

Figure 4: Ill-nested graph

1

2

3 4

5

a b c d e

Figure 5: Ill-nested graph

In the next section, we look at some linguis-
tic concepts that are useful for understanding the
potency of various dependency relations in the in-
terleaving.

3 Indian Theories

According to the exegesists (mı̄mām. sakas) a sen-
tence is defined as

arthaikatvāt ekam vākyam
sākāṁks. am cet vibhāge syāt | MS 2.1.46

(A sentence is an integral unit conveying a single
purpose, and when it is split into two parts, some
words in one part would have an expectancy for

310

some other words in the other part.)
This implies that each word in a sentence either
satisfies an expectancy of or has an expectancy for
some other word in a sentence. That is every word
in a sentence should be connected with at least
one other word in it. Let us represent the words
in a sentence by the nodes, and the expectancies
between words by edges joining the nodes. Two
nodes connected by an edge do not have the same
status. One of them has an expectancy and the
other one satisfies the expectancy. Hence we use
directed edges to mark this asymmetry.

3.1 Expectancy and Proximity

Indian grammatical texts discuss two kinds of ex-
pectancies—utthita and utthāpya. The expectan-
cies which are mutual, direct and natural are
termed niyata/utthita ākāṅks. ā (restricted or risen
expectancy) (Kunjunni Raja, 1963). The ex-
pectancy between a verb and the words denoting
kārakas or between relational words falls under this
category. In a Sanskrit sentence ‘dvāram pidhehi’
(close the door), the verb ‘close’ has an expanc-
tancy of a karma (object) which is fulfilled by the
word ‘dvāram’ (the door). Inversely, a verb is ex-
pected with the word ‘door’ mentioning what to
do with the door. Expectancies of kāraka rela-
tions are mutual. In contrast to mutual expectancy,
the expectancy that is unilateral is called aniyata
or utthāpya ākāṅks. ā (unrestricted or to be raised).
This is aroused only if necessary. So it is poten-
tial. For example, in a phrase such as ‘white cow’,
the expectancy of ‘white’ for a noun is natural,
but the expectancy of ‘cow’ to have an adjective
is potential. It gets aroused only in the presence
of an adjective such as ‘white’. Even a noun in
apposition may arouse an expectancy. Similarly, a
noun in genitive arouses an expectancy of another
noun. And this expectancy is uni-directional and
not mutual.

Another concept from the Indian grammar viz.
sannidhi (proximity) puts certain constraints on the
word order. It states that the words that are related
to each other should not be intervened by other
words.

The proximity, along with the expectancy was
further studied by Kulkarni et al. (2015). They car-
ried out an empirical evaluation of a manually an-
notated corpus to understand the nature of this ban
on crossing of dependency relations. They found
that one of the relations involved in the crossing

of edges was corresponding to the unilateral ex-
pectancy. A few cases were also found where both
the relations involved had mutual expectancies.

In this paper, we study these cases where the
planarity constraint is violated and investigate if
these cases of violations are well-nested or not.

4 Dependency Graphs and Planarity

Sanskrit is inflectionally rich. So the common wis-
dom is that we can move around the words in any
order. For example, the following sentence with
three words,

(1) śvetah.
White

aśvah.
horse

dhāvati
runs

can have 3! (=6) permutations. But among these
the following permutation, for example,

(2) aśvah.
A horse

dhāvati
runs

śvetah. .
white.

is non-projective (See Figure 6).

aśvah.

dhāvati

śvetah.

aśvah. dhāvati śvetah.

kartā

viśes. an. a

Figure 6: Non Planar Graph

However if the relation edges are plotted above the
sentence, we notice that it produces a planar graph
(See Figure 7).

aśvah. dhāvati śvetah.
horse runs white

Figure 7: Planar dependency graph for (2)

But every non-projective graph may not produce
a planar graph. For example, consider sentence (3).

(3) Rāmah.
Rama{nom.}

dugdham
milk{acc.}

pı̄tvā
drink{abs.}

śālām
school{acc.}

gacchati.
go{3p.sg.}.

Rama goes to school after drinking milk.

311

This sentence has 5 words. But not all the 5! (=120)
combinations are meaningful. The following sen-
tence obtained by permuting the words in the above
sentence is not meaningful.

(4) *Rāmah.
Rama{nom.}

śālām
school{acc.}

dugdham
milk{acc.}

gacchati
go{3p.sg.}

pı̄tvā.
drink{abs.}.

*Rama to school milk goes drinking.

It not only violates the projectivity principle, but
even the graph is non-planar as there are crossings
(See Figure 8). And this sentence is grammatically
ill-formed.

*Rāmah. śālām dugdham gacchati pı̄tvā
Rama to the milk goes after

school drinking

Figure 8: Planar dependency graph for (4)

On the other hand, the sentence (5) below has a
non-planar graph and the sentence is grammatically
well-formed.

(5) es. ah.
This

vāk-vis. aya-bhūtah.
speech-topic-become

sah.
he

te
your

vı̄rah. .
hero.

This is the hero who has become the topic of
your speech.

In this sentence, the demonstrative adjective ‘sah. ’
modifying a predicate noun ‘vı̄rah. ’, intervenes be-
tween its predicate ‘bhūtah. ’ and the agent (kartā)
of the ‘speech’ (vāk) viz. ‘te’, as shown in Figure 9.

es.ah. vāk-vis.aya-bhūtah. sah. te vı̄rah. .

genitive

adjective

predicative-adjective

kartā

Figure 9: Planar dependency graph for (5)

Below is a part of a verse from Śrı̄mad-Bhagavad-
Gı̄tā (BhG) that exhibites similar phenomenon.

cañcalam hi manah. kr. s. n. a
pramāthi balavat dr. d. ham |
tasya aham nigraham manye
vāyoh. iva sudus. karam || BhG 6.34

(English: For, O Krishna, the mind is unsteady, tur-
bulent, strong and obstinate, I consider its control
to be as difficult as of the wind.)

tasya aham nigraham manye
its I control consider

karma
karma

kartā

Figure 10: Analysis of BhG 6.34

In the second line of this verse the main verb
is ‘manye’ (consider) whose kartā is ‘aham’ (I).
The karma of the verbal noun ‘nigraham’ (con-
trol) is the pronominal ‘tasya’ (its), which refers to
‘manah. ’ (mind) in the first part of the verse. Thus
the word sequence ‘tasya aham nigraham manye’
produces two crossing edges involving the relations
of kartā and karma.

Let us see one more example. This is 18th śloka
of 10th chapter.

vistaren. a ātmano yogaṁ
vibhūtiṁ ca janārdana |
bhūyah. kathaya tr. ptih. hi
śr. n. vato nāsti me’mr. tam || BhG 10.18

(English: O Janardan, tell me again elaborately
your own yoga and manifestations. For, I’m not
satisfied when I listen to your immortal words.)

tr. ptih. śr. n. vatah. asti me amr. tam
satisfaction while listening is my immortal

kartā

genitive

simultaneity

karma

Figure 11: Analysis of BhG 10.18

In this verse, again we look at the second part of
the second line in the verse. The kartā of the main
verb ‘asti’ (is) is ‘tr. ptih. ’ (satisfaction), the karma of
‘śr. n. vatah. ’ (while listening) is ‘amr. tam’ (immortal),
and there is a genitive relation between ‘me’ (my)
and ‘tr. ptih. ’ (satisfaction). We see two crossings,
one between the kartā and karma, and the other
between genitive and karma.

312

There is an important difference between the
crossing in Figures 9, 10 and 11 though all of them
are grammatically sound. In Figure 9 the relations
involved in crossings are genitive and adjective. In
Figure 10 the relations are kartā and karma, which
are the arguments of the verb, called kāraka re-
lations in Sanskrit grammar. So in one sentence,
there is a crossing between two kāraka relations. In
another, the crossing is between non-kāraka rela-
tions. As we have seen earlier, the kāraka relations
have mutual expectancies, while the non-kāraka
relations such as genitive and adjective have uni-
lateral expectancy. And in Figure 11, we see both
types of crossings. Further we notice that while the
graphs of Figure 9 and Figure 10 are well-nested,
the graph of Figure 11 is ill-nested.

Now we describe the empirical observations of
the dependency trees of BhG with special reference
to the crossings involved and the well-nestedness.

4.1 Experiment

Sanskrit is a low resource language from the point
of view of computational resources. For this exper-
iment, we needed treebanks. A treebank developed
under SHMT3 consists of simple prose sentences,
which hardly shows any crossings. There are some
efforts to develop treebanks following the Univer-
sal Dependency (UD) (Hellwig et al., 2020). Since
we aim at using the Pān. inian grammar, the UD tree-
banks were not useful for our experiment. There-
fore we decided to base our experiments on the
same treebank that was used by Kulkarni et al.
(2015). This treebank consists of verses from
Śrı̄mad-Bhagavad-Gı̄tā. It has 700 verses. Some
verses were made up of more than one sentence
while in some cases more than one verse formed
one sentence. We followed the mı̄māṁsaka’s defi-
nition of a sentence given in section 3.

There were several ślokas which consisted of
more than one sentence with an ellipsis of one or
more word. For the evaluation purpose, we consid-
ered only complete sentences. So all the sentences
with ellipsis of the verbs were not considered. For
example, the first part of the verse BhG 1.15

pāñcajanyam hr. s. ı̄keśah.
deva-dattam dhanañjayah. |

consists of two sentences,

3A project funded by Meity for the Development of Com-
putational Tools and Sanskrit-Hindi Machine Translation.

(a) pāñcajanyam
Pāñcajanya

hr. s. ı̄keśah.
Hr.s. ı̄keśa

(dadhmau)
(blew)

(b) deva-dattam
Devadatta

dhanañjayah.
Dhanañjaya

(dadhmau)
(blew)

There are two sentences, and both of them re-
quire a verb ‘dadhmau’, which is to be borrowed
from the next part. Such parts of verses which are
devoid of a verb are not considered for the evalua-
tion.

Similarly, in Sanskrit, the copula is absent. The
tagging scheme demands the presence of a verb,
and therefore, while tagging the verses, the copula
is provided. Since in the original verses the copula
is absent, we have not considered these verses/part
of these verses where such copula is provided man-
ually.

In order to decide whether the dependency graph
is well-nested or not, we need to distinguish be-
tween the relations that show governance from
those that do not show governance. All the re-
lations that have mutual expectancy show gover-
nance. Table 1 lists all the relations that have mu-
tual expectancy, and Table 2 shows all the relations
that have only unilateral expectancy.

kartā kartr.samānādhikaran. am
karma karmasamānādhikaran. am
karan. am sampradānam
apādānam adhikaran. am

Table 1: Relations with mutual expectancies

sambodhyah. sambandhah.
śas.t.hı̄sambandhah. viśes.an. am
samuccitam pratis.edham
samuccayadyotakah. nirdhāran. am
prayojanam hetuh.
samānakālah. pūrvakālah.
kriyāviśes.an. am

Table 2: Relations with unilateral expectancies

In Figure 3, the edge 1→ 3, which crosses the
edge 2 → 5, should be from Table 1. If either
1→ 3 is not from Table 1, or the two edges belong
to two disjoint trees as in Figure 5, then the depen-
dency graph is ill-nested. With the set of relations
as described in Tables 1 and 2 we classified the
dependency graphs of BhG verses. Table 3 shows
the results of this empirical study.

313

Analysed sentences 1396 100.00%
Weakly non-projective 1153 82.59%
Only Well-nested 49 3.51%
Only Ill-nested 74 5.30%
Both Ill and well nested 120 8.60%

Table 3: Analysis of BhG

5 Discussions

The majority of the sentences (around 83%) have
dependency graphs that are weakly non-projective.
The remaining 17% graphs did not have planar
graphs as they involved crossings of the depen-
dency relations. Several of the sentences had
more than one crossing. Some of these crossings
show well-nestedness while the others show ill-
nestedness. We notice that trees with only well-
nested crossings are considerably less than trees
with only ill-nested crossings. Further, there are
almost double the number of sentences that have
both ill-nested as well as well-nested crossings.
Any graph, that involves both ill-nested as well as
well-nested crossings, essentially is an ill-nested
graph. Thus we notice that almost 14% of the sen-
tences have ill-nested graphs. Thus every sixth
sentence of the corpus has a non-planar graph, in-
volving crossings between the disjoint graphs, with
the majority of them being ill-nested. In order to
understand more about these crossings, we looked
at the relations involved in them. Table 4 shows the
distribution of relations with mutual and unilateral
expectancies in crossings.

We noted down the relations involved in cross-
ings, and counted the number of instances of cross-
ings that show well-nestedness or ill-nestedness.
As expected, we noticed that, barring a few cases, at
least one relation among the two relations involved
in crossing has unilateral expectancy. Kulkarni
et al. (2015) has discussed various examples of
crossing where both the relations are with mutual
expectancy.

Relations Well-nested Ill-nested
Mutual×Mutual 3 15
Mutual×Unilateral 109 136
Unilateral×Unilateral 82 99

Table 4: Relations involved in crossings

Now we provide one example each of the cross-
ings with unilateral expectancies. The first one cor-
responds to a well-nested graph involving a cross-

ing between a kartā and a viśes. an. am. This is from
the first line of śloka 7.2.

jñānam te aham sa-vijñānam
idam vaks. yāmi a-śes. atah. |

(Eng: I will tell you this knowledge combined with
realisation in detail.)

jñānam aham idam vaks. yāmi
knowledge I this tell

adjective

karma

kartā

Figure 12: Analysis of BhG 7.2

In this tree, the two edges labelled adjective and
kartā belong to two disjoint trees, and the head
node ‘vaks. yāmi’ of the kartā relation governs
the head node ‘jñānam’ of the adjectival relation.
Hence this is a well-nested tree with a crossing be-
tween a relation of kartā having mutual expectancy
with a relation of adjective having unilateral ex-
pectancy.

Now we present another example. This is 21st

śloka from the same 7th chapter.

yah. yah. yāṁ yāṁ tanuṁ bhaktah.
śraddhayā arcitum icchati |

(Eng: Whichever form any devotee wants to wor-
ship.)

yah. tanuṁ bhaktah. arcitum icchati
that form devotee to worship wants

adjective
karma

karma

kartā

Figure 13: Analysis of BhG 7.21

In this dependency graph, we notice that there is
a crossing between karma and an adjective, and
neither of the heads governs the other, giving rise
to an ill-nested graph. This graph also shows an-
other crossing between a kartā and a karma rela-
tion, which corresponds to the well-nested graph.

Now we present two examples, where both the
relations have unilateral expectancy. The first one
is a well-nested graph which corresponds to the 4th

śloka of 18th chapter.

niścayaṁ śrun. u me tatra
tyāge bharatasattama |

314

(Eng: O the most excellent among the descendants
of Bharata, hear from me the firm conclusion re-
garding the abandonment.)

niścayam śrun. u me bharatasattama
decision hear my Bharata-descendant

karma

genitive

vocative

Figure 14: Analysis of BhG 18.4

In this graph, there is a crossing of two unilateral
relations viz. genitive and vocative. The graph is
well-nested, as the head of the genitive is governed
by the head of the vocative relation.

The example of an ill-nested graph involving
two unilateral relations is the first śloka of the 9th

chapter.

idam tu te guhyatamam
pravaks. yāmi anasūyave |
jñānam vijñānasahitam
yat jñātvā moks. yaseaśubhāt || BhG 9.1

(Eng: I shall now reveal to you the non-envious,
the greatest secret, the knowledge combined with
realisation, having known which you shall be free
from evil.)

We show the partial graph with crossing rela-
tions.

te guhya- pravaks. yāmi an- jñānam
tamam asūyave

to greatest reveal non- knowledge
you secret envious

adjective

recepient karma

adjective

Figure 15: Analysis of BhG 9.1

In this graph, we see three crossings. The first one
between the recipient and the adjective, the second
one between the karma and the adjective, and the
third one between the two adjectives. The first two
crossings correspond to the well-nested graph. But
the third one corresponds to the ill-nested one.

Finally, among the unilateral relations that con-
tribute to either well-nested or ill-nested graphs, ad-
jective, vocative, genitive and negation are promi-
nent, followed by conjunction. Among the rela-
tions having mutual expectancy, kartā, karma and
adhikaran. aṁ are more prominent.

6 Conclusion

Sanskrit, as the common wisdom goes, is a free
word order language. The Calder mobile model
of Staal which conjunctures the free movement of
the words within a phrase was found to be partially
correct. Gillon through empirical study pointed
out that there are certain cases of violation of this
model. Later Kulkarni et al, again through the em-
pirical study showed that the cases of violations
of planarity correspond to the relations exhibiting
unilateral expectancy. In this paper, we showed that
there are as many cases of well-nested crossings
as ill-nested ones. Thus not all syntactic struc-
tures of Sanskrit can be covered under the well-
nested trees. A majority of non-planar graphs are
ill-nested. In most of the cases, unilateral relations
are involved in the violation of planarity as well as
well-nestedness.

References
V. S. Apte. 1925. The Student’s Guide to Sanskrit Com-

position, 9 edition. The Standard Publishing Com-
pany, Girgaon, Bombay.

R. N. Aralikatti. 1991. A note on word order in mod-
ern spoken Sanskrit and some positive constraints.
In Hans Henrich Hock, editor, Studies in Sanskrit
Syntax, pages 13–18. Motilal Banarsidass.

Hariprasad Bhagirath, editor. 1901. Samāsacakra. Ja-
gadishwar Press, Mumbai.

Riyaz Ahmad Bhat and Dipti Misra Sharma. 2012.
Non-projective structures in Indian language tree-
banks. In Proceedings of the TLT11, pages 25–30.
Edições Colibri.

Manuel Bodirsky, Marco Kuhlmann, and Mathias
Möhl. 2005. Well-nested drawings as models of syn-
tactic structure. In Proceedings of Tenth Conference
on Formal Grammar and Ninth Meeting on Mathe-
matics of Language, pages 195–203.

Puneet Dwivedi and Easha Guha. 2017. Universal de-
pendencies of Sanskrit. International Journal of Ad-
vance Research, Ideas and Innovations in Technol-
ogy, 3(4).

Jason Eisner. 1996. Three new probabilistic models for
dependency parsing: An exploration. In 16th Inter-
national Conference on Computational Linguistics
(COLING), pages 340–345.

Haim Gaifman. 1965. Dependency systems and phrase
structure systems. Information and Control, 8:304–
337.

Brendan S. Gillon. 1996. Word order in Classical San-
skrit. Indian Linguistics, 57(1):1–35.

315

Brendan S. Gillon. 2005. Subject predicate order in
Classical Sanskrit. In Philip Scott, Claudia Casa-
dio, and Robert Seely, editors, Language and Gram-
mar: Studies in Mathematical Linguistics and Natu-
ral Language, pages 211–225. Center for the Study
of Language and Information.

Oliver Hellwig, Salvatore Scarlata, Elia Ackermann,
and Paul Widmer. 2020. The treebank of Vedic
Sanskrit. In Proceedings of the 12th Language Re-
sources and Evaluation Conference, pages 5137–
5146, Marseille, France. European Language Re-
sources Association.

Samar Husain and Shravan Vasishth. 2015. Non-
projectivity and processing constraints: Insights
from Hindi. In Proceedings of the Third In-
ternational Conference on Dependency Linguistics
(Depling 2015), pages 141–150, Uppsala, Sweden.
Uppsala University.

Atmaram Narayan Jere. 2002. Kārikāvalı̄.
Chowkamba Krishnadas Academy.

Marco Kuhlmann. 2010. Dependency Structures and
Lexicalized Grammars: An Algebraic Approach.
Springer-Verlang.

Marco Kuhlmann and Joakim Nivre. 2006. Mildly non-
projective dependency structures. In Proceedings
of the COLING/ACL 2006 Main Conference Poster
Sessions, pages 507–514. Association for Computa-
tional Linguistics.

Amba Kulkarni. 2019. Sanskrit Parsing Based on the
Theories of Śābdabodha. D K Printworld.

Amba Kulkarni, Preeti Shukla, Pavankumar Satuluri,
and Devanand Shukl. 2015. How free is ‘free’ word
order in Sanskrit? In Peter Scharf, editor, Sanskrit
Syntax, pages 269–304. Sanskrit Library.

Amba Kulkarni, Sanal Vikram, and Sriram K. 2019.
Dependency parser for Sanskrit verses. In Proceed-
ings of the 6th International Sanskrit Computational
Linguistics Symposium, pages 14–27. Association
for Computational Linguistics.

K Kunjunni Raja. 1963. Indian Theories of Meaning.
Adayar Library and Research Center, Madras.

Prashanth Mannem, Himani Chaudhry, and Akshar
Bharati. 2009. Insights into non-projectivity in
Hindi. In Proceedings of the ACL-IJCNLP 2009 Stu-
dent Research Workshop, pages 10–17. Association
for Computational Linguistics.

Peter Scharf, Anuja Ajotikar, Sampada Savardekar, and
Pawan Goyal. 2015. Distinctive features of poetic
syntax: Preliminary results. In Peter Scharf, editor,
Sanskrit Syntax, pages 305–324. Sanskrit Library.

J. Frits Staal. 1967. Word Order in Sanskrit and Uni-
versal Grammar, volume 5 of Foundations of Lan-
guage Supplementary Series. D. Reidel Publishing
Company, Dordrecht-Holland.

Himanshu Yadav, Ashwini Vaidya, and Samar Husain.
2017. Understanding constraints on non-projectivity
using novel measures. In Proceedings of the Fourth
International Conference on Dependency Linguis-
tics, pages 276–286. Linköping University Elec-
tronic Press.

316

Proceedings of the 17th International Conference on Natural Language Processing, pages 317–322
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

A Multi-modal Personality Prediction System

Chanchal Suman1, Aditya Gupta2, Sriparna Saha1, and Pushpak Bhattacharyya1

1Department of Computer Science & Engineering, Indian Institute of Technology Patna, India
2Department of Electrical Engineering, Indian Institute of Technology Patna, India

email: {1821cs11, aditya.ee17, sriparna}@iitp.ac.in, pushpakbh@gmail.com

Abstract

Automatic prediction of personality traits has
many real-life applications, e.g., in forensics,
recommender systems, personalized services
etc.. In this work, we have proposed a solution
framework for solving the problem of predict-
ing the personality traits of a user from videos.
Ambient, facial and the audio features are ex-
tracted from the video of the user. These fea-
tures are used for the final output prediction.
The visual and audio modalities are combined
in two different ways: averaging of predictions
obtained from the individual modalities, and
concatenation of features in multi-modal set-
ting. The dataset released in Chalearn-16 is
used for evaluating the performance of the sys-
tem. Experimental results illustrate that it is
possible to obtain better performance with a
hand full of images, rather than using all the
images present in the video.

1 Introduction

Our personality impacts a lot on our lives, affect-
ing our life choices, mental health, well-being, and
desires. Thus, automatic prediction of one’s person-
ality has many applications such as enhanced per-
sonal assistants, recommender system, job screen-
ing, forensics, psychological studies, etc. (Mehta
et al., 2019). The big-five personality traits (Dig-
man, 1990) are the most popular measures used in
the literature. They are Extraversion, Neuroticism,
Agreeableness, Conscientiousness, and Openness.

Most of the methods have utilized the CNN-
based architectures for extracting the features from
the images, mostly the facial features (Güçlütürk
et al., 2016),(Gürpınar et al., 2016),(Biel et al.,
2012). Mainly, researchers have used the late fu-
sion strategy (averaging the predictions from all the
modalities) for combining the results obtained from
different modalities (audio, and video) (Güçlütürk
et al., 2016, 2017; Gürpınar et al., 2016; Wei et al.,

2017; Pianesi et al., 2008; André et al., 1999).
There are very few works, which have employed
early fusion strategy for developing the multimodal
system (Yang et al., 2017; Kampman et al., 2018).

This has motivated us to develop a multimodal
system which uses early fusion for combining the
features generated from different modalities, and
using the combined feature for final prediction. We
have developed an audio-visual system, which ex-
tracts ambient features from video using ResNet
(He et al., 2016), facial features using MTCNN
(Zhang et al., 2016), and the audio features from
the VGGish CNN (Hershey et al., 2017). Finally,
those features are concatenated and then fed to the
fully connected layer followed by a sigmoid layer
for the final prediction. We have used the Chalearn-
16 dataset for evaluating the performance of our
system (Güçlütürk et al., 2016). An accuracy of
91.43% on the test data has been achieved using
our proposed system.

The main contributions of this work are i) to the
best of our knowledge, combined feature represen-
tation of images has been carried out for the first
time for personality prediction. ii) The VGGish
CNN has been used for extracting the audio fea-
tures, and then those are used for the prediction. It
has also been performed for the first time. From the
results, it can be established that only some of the
images extracted from different parts of the video
are capable for successful training and testing of
the model with good performance.

2 The Proposed Methodology

Our methodology consists of learning some fea-
tures extracted from two different modalities,
namely video and audio. They are discussed below:

2.1 Visual Modality
We have extracted two types of features from the
visual modality, i) ambient, and ii) facial. Using

317

these two features, we have developed two differ-
ent systems namely Amb-visual, and Fac-visual,
respectively. Both of the architectures consist of
three sub-parts, first is pre-processing step, second
is the CNN architecture and the third is the final
step to combine the features of the images to pre-
dict the big-five personality traits.

Figure 1: Extraction of Features from a Single Image
using Deep Feature Extractor.

2.1.1 Preprocessing
The pre-processing of the data is important for ex-
tracting and learning appropriate features. The first
step was to extract the images from the videos us-
ing FFmpeg tool in RGB color frame, and then
resizing into 224x224 pixels.

i) Extraction of ambient features: we have ex-
tracted six equally spaced images to represent the
whole video thus required RAM has decreased to
around 20 Gb.
ii) Extraction of facial features: For the facial
modality we first detect and align faces using Multi
Task CNN (MTCNN) (Zhang et al., 2016). Again
as before, only six images at equal intervals were
considered from the set of images having faces.

2.1.2 Model Architecture
Here, we have discussed the model architectures
for the Amb-visual, and the Fac-visual.

• We experimented with different CNN architec-
tures and found that ResNet (He et al., 2016)

with 101 layers worked best for extracting fea-
tures from images. The feature vectors from
last three layers are considered as the latent
features of the image. For better and robust
feature extraction instead of performing just
max-pooling, we have performed both max
and average pooling after the last convolution
layer. Just like skip connection, these two
feature vectors are concatenated to the upper
feature vector which is extracted from the final
ResNet block. This is named as deep feature
extractor and it is depicted in figure 1.

• The model architecture for extracting features
from the Fac-visual is same, as the Amb-
visual. The only difference is the usage of
MTCNN (Zhang et al., 2016) for extracting
faces before passing it into deep feature ex-
tractor.

Apart from the feature extraction part, all the
other components are same for the Amb-visual and
the Fac-visual architecture.

2.1.3 Final classifier
The representations, learnt from the deep feature
extractor module are fed to the final classification
layer for the output prediction. We experimented
in three settings, for analysing the behaviour of the
system.

M1: In the first method, all six images were
labeled with their corresponding video’s numbers.
The previously extracted features of each image are
passed to a final fully connected layer with sigmoid
as the activation function. This layer gives us the
output values between 0, and 1 for the big five
personality traits. The loss value achieved for each
of the images is added to the final loss for training.
Finally, the trait values for the video are obtained
by considering the mean values of six images.

M2: In the second method, we concatenated
the features of six images as a final feature vector,
representing the video’s visual feature. This feature
vector is then passed to the fully connected and
sigmoid layer for getting the final trait values of
the video. In this method, loss of each image is not
considered separately.

M3: For the third method, we try to use the
fact that a video is a time-series data. By using
an LSTM (Hochreiter and Schmidhuber, 1997),
we wanted to learn more better features so that
image at time ‘t’ could be represented using infor-
mation from previous time steps as well. For that,

318

we passed the extracted features into an LSTM
of appropriate hidden dimension with several lay-
ers. After that, the outputs of LSTM for different
time-steps are collected, and then concatenated for
getting the final feature vector of a video. This
feature vector is then passed to a fully connected +
sigmoid layer to extract trait values for a video.

2.2 Audio Modality

For the audio modality, the VGGish CNN (Her-
shey et al., 2017), along with below mentioned pre-
processing steps are used. The pre-processing and
architecture are explained in the following section.

2.2.1 Preprocessing
Firstly, all audios are re-sampled to 16 kHz mono.
A spectrogram is computed using magnitudes of
the Short-Time Fourier Transform with a window
size of 25 ms, a window hop of 10 ms, and a pe-
riodic Hann window. A mel spectrogram is com-
puted by mapping the above spectrogram to 64 mel
bins covering the range 125-7500 Hz. Then log of
mel spectrogram is computed with a small offset
of 0.01 to stabilize mel spectrogram values. These
features are then framed into non-overlapping ex-
amples of 0.96 second, where each example covers
64 mel bands and 96 frames of 10 ms each.

2.2.2 Model Architecture
After the pre-processing, a 2d feature array of shape
96x64 for each 1 second was obtained. Thus, for a
15 second video there are 15 such feature vectors.
This feature vector is then passed to the VGGish
CNN architecture, that has many 2d convolution
layers. This CNN outputs a 128 length embedding
for each second, that was further used to train a
classifier for getting traits. Like before, we ini-
tialised the weights of our convolution filters with
the pre-trained weights of VGGish CNN trained on
large Youtube dataset for warm start of training.

After getting audio features, for each second of
the video we have fifteen 128 length vectors, two
methods were experimented for further combining
the features for regression.

Audio-M1: In the first method, these features
are passed into few layers of LSTMs of appropriate
hidden layers and then the outputs of LSTM are
concatenated to get a final feature vector of whole
audio. Then a fully connected layer with sigmoid
activation function is applied.

Audio-M2: In the second method, instead of
using LSTMs, we simply concatenate the audio

Figure 2: The Proposed Multi-modal System

features and then apply a fully connected layer and
sigmoid. This network is called deep audio feature
extractor.

2.3 Combining Modalities

We experimented with two approaches for com-
bining the modalities. They are: 1) Average: we
simply took the average of predicted trait values of
different modalities. ii) Concat: we concatenated
the obtained features of different modalities and
then applied fully connected layer with sigmoid. It
is depicted in Figure 2.

Table 1: Performance of the Proposed Model on Vali-
dation Data

Modality Accuracy (in
%)

Audio-M1 90.29
Audio-M2 90.64
Amb-visual (M1) 91.27
Amb-visual (M2) 91.19
Amb-visual (M3) 90.65
Fac-visual (M1) 90.90
Fac-visual (M3) 90.51
Amb-visual+audio (Concat) 91.44
Amb-visual+audio (Average) 91.56
Amb-visual+Fac-
visual+audio (Average)

91.62

319

Table 2: Class-wise accuracy (in %) values of the proposed model on test data

Average Extraversion Agreeableness Conscientiousness Neuroticism Openness
Ours (Fu-
sion(average))

91.43 91.53 91.29 92.06 91.18 91.07

PersEmoN
(Zhang et al.,
2019)

91.7 92.0 91.4 92.1 91.4 91.5

NJU-LAMDA
(Wei et al.,
2017)

91.3 91.3 91.3 91.7 91.0 91.2

evolgen (Subra-
maniam et al.,
2016)

91.2 91.5 91.2 91.2 91.0 91.2

DCC(Güçlütürk
et al., 2016)

91.1 91.1 91.0 91.4 90.9 91.1

ucas (?) 91.0 91.3 90.9 91.1 90.6 91.0

3 Results and Comparison

In this section, we have discussed the results ob-
tained for our proposed approach. We have com-
pared these results with the existing works too.

3.1 Results and Discussion
The ECCV ChaLearn LAP 2016 data, is used for
experimentation, having 10, 000 videos. Out Of the
10, 000 videos, 6, 000 videos are used for training
phase and 2, 000 videos for both validation and test-
ing (Wei et al., 2017). The accuracy is used as the
performance measure, for evaluating the proposed
system.

In all the modalities, models without LSTM lay-
ers performed better than the ones with them as
shown in table 1. Validation accuracies with LSTM
are 90.65, 90.51, 90.29 for Amb-visual, Fac-visual,
and the Audio modality, respectively, whereas the
corresponding accuracies without LSTM are 91.27
, 90.90 and 90.64, respectively. In the Amb-visual,
and the Fac-visual, the highest validation accura-
cies were achieved by using average and max pool-
ing on ultimate and penultimate ResNet layers and
concatenating these features of six images (M2).
For M1 (averaging the prediction of all the six im-
ages), we achieved an accuracy of 91.19 for Amb-
visual. We didn’t evaluate the M1 for Fac-visual,
as the accuracy of M1 for Amb-visual is lesser than
M2.

Similar to the Visual modality, the method based
on LSTM layers (Audio-M1), proved disadvanta-
geous as validation accuracy with LSTM layers
is 90.29 and without LSTM (Audio-M2) is 90.64.

Table 3: Comparison with Other Works

Modality Our
Method

NJU-
LAMDA
(Wei et al.,
2017)

PersEmoN
(Zhang
et al.,
2019)

Visual 91.13 91.16 91.7
Audio 90.16 89.50 –
Video+ Au-
dio (Avg)

91.43 91.30 –

Since, audio is a time series data, LSTMs should
have increased the accuracy. But this is not ob-
served in the obtained results. It proves that LSTM
was futile and has only led to overfitting.

We have applied two different approaches for
combining the two modalities, i) Average, and ii)
Concat. By averaging the two best performing
modalities (Amb-visual, and audio), a validation
accuracy of 91.56% is attained. Concatenation of
the features generated from different modalities
(Amb-visual, audio) resulted in a validation ac-
curacy of 91.44%. After that, we calculated the
performance using averaging of predictions of all
the three modalities, and achieved an accuracy of
91.62%. Average accuracies of 91.13%, 90.16%,
and 91.43% are achieved using the best models
for video(Amb-visual), audio(Audio-M2), and the
fusion (Average), respectively on test data.

3.2 Comparison with Other Works

The best performing system on the Chalearn-16
dataset is developed by the (Zhang et al., 2019).

320

Emotion and personality, both features are fused
together in (Zhang et al., 2019), for analysing the
effects of emotion on personality prediction. The
methodology developed by (Wei et al., 2017) is the
second best performing work.

We tried two different approaches for combin-
ing the visual and the audio features, averaging
and the concatenation. The averaging of the pre-
dictions generated by three modalities has attained
an accuracy of 91.43%. The detailed class-wise
accuracy for each of the class and the compar-
ative results are shown in table 2, and 3 respec-
tively. It can be seen that, our proposed approach
(video+audio(average)) attains better performance
than the method proposed in (Wei et al., 2017). We
have achieved an accuracy of 91.43% for the visual
modality, while 91.30% is reported by (Wei et al.,
2017). This shows that, only handful of images ex-
tracted from different parts of the video are enough
for successful training and testing with good perfor-
mance. The researchers in (Wei et al., 2017), used
100 images for making the visual system, while
we have extracted only 6 images. For the audio
modality, an increment of 1.14% is attained with
respect to the existing one. But our developed
system, could not outperform the performance of
the multi-task based methodology. The reason can
be, the incorporation of emotion features in their
model.

From the obtained results, it can be concluded
that multi-modality helps as the concatenation of
features extracted from visual and audio improves
the accuracy in comparison to the single one.

4 Conclusion and Future Work

Personality prediction reveals the overall character-
istics of a user. In this work, we have proposed a
deep multi-modal system for personality prediction
given a video. It extracts features from a video, and
those are then used in the neural network setting for
the final prediction. From the obtained experimen-
tal results, we can conclude the following : i) only
handful of images from different parts of video
are enough for successful training and testing with
good performance, ii) averaging the predictions of
different modalities yields better performance than
the simple concatenation of the modalities in the
multi-modal setting.

We are planning to improve the fusion strategy
for combining the different modalities. We will
try to use emotion features and different types of

attention mechanisms like weighted attention, self-
attention etc. for combining the modalities.

Acknowledgments

Sriparna Saha would like to acknowledge the
support of SERB WOMEN IN EXCELLENCE
AWARD 2018 for conducting this research. This
research is also supported by Ministry of Electron-
ics and Information Technology, Government of
India.

References
Elisabeth André, Martin Klesen, Patrick Gebhard,

Steve Allen, and Thomas Rist. 1999. Integrating
models of personality and emotions into lifelike
characters. In International Workshop on Affective
Interactions, pages 150–165. Springer.

Joan-Isaac Biel, Lucı́a Teijeiro-Mosquera, and Daniel
Gatica-Perez. 2012. Facetube: predicting personal-
ity from facial expressions of emotion in online con-
versational video. In Proceedings of the 14th ACM
international conference on Multimodal interaction,
pages 53–56.

John M Digman. 1990. Personality structure: Emer-
gence of the five-factor model. Annual review of
psychology, 41(1):417–440.

Yağmur Güçlütürk, Umut Güçlü, Xavier Baro,
Hugo Jair Escalante, Isabelle Guyon, Sergio Es-
calera, Marcel AJ Van Gerven, and Rob Van Lier.
2017. Multimodal first impression analysis with
deep residual networks. IEEE Transactions on Af-
fective Computing, 9(3):316–329.

Yağmur Güçlütürk, Umut Güçlü, Marcel AJ van Ger-
ven, and Rob van Lier. 2016. Deep impression: Au-
diovisual deep residual networks for multimodal ap-
parent personality trait recognition. In European
Conference on Computer Vision, pages 349–358.
Springer.

Furkan Gürpınar, Heysem Kaya, and Albert Ali Salah.
2016. Combining deep facial and ambient features
for first impression estimation. In European Confer-
ence on Computer Vision, pages 372–385. Springer.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Shawn Hershey, Sourish Chaudhuri, Daniel PW Ellis,
Jort F Gemmeke, Aren Jansen, R Channing Moore,
Manoj Plakal, Devin Platt, Rif A Saurous, Bryan
Seybold, et al. 2017. Cnn architectures for large-
scale audio classification. In 2017 ieee international
conference on acoustics, speech and signal process-
ing (icassp), pages 131–135. IEEE.

321

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Onno Kampman, Elham J Barezi, Dario Bertero, and
Pascale Fung. 2018. Investigating audio, video, and
text fusion methods for end-to-end automatic person-
ality prediction. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 606–611.

Yash Mehta, Navonil Majumder, Alexander Gelbukh,
and Erik Cambria. 2019. Recent trends in deep
learning based personality detection. Artificial In-
telligence Review, pages 1–27.

Fabio Pianesi, Nadia Mana, Alessandro Cappelletti,
Bruno Lepri, and Massimo Zancanaro. 2008. Mul-
timodal recognition of personality traits in social in-
teractions. In Proceedings of the 10th international
conference on Multimodal interfaces, pages 53–60.

Arulkumar Subramaniam, Vismay Patel, Ashish
Mishra, Prashanth Balasubramanian, and Anurag
Mittal. 2016. Bi-modal first impressions recognition
using temporally ordered deep audio and stochastic
visual features. In European Conference on Com-
puter Vision, pages 337–348. Springer.

Xiu-Shen Wei, Chen-Lin Zhang, Hao Zhang, and
Jianxin Wu. 2017. Deep bimodal regression of
apparent personality traits from short video se-
quences. IEEE Transactions on Affective Comput-
ing, 9(3):303–315.

Karen Yang, S Mall, and N Glaser. 2017. Prediction
of personality first impressions with deep bimodal
lstm.

Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and
Yu Qiao. 2016. Joint face detection and alignment
using multitask cascaded convolutional networks.
IEEE Signal Processing Letters, 23(10):1499–1503.

Le Zhang, Songyou Peng, and Stefan Winkler. 2019.
Persemon: A deep network for joint analysis of ap-
parent personality, emotion and their relationship.
IEEE Transactions on Affective Computing.

322

Proceedings of the 17th International Conference on Natural Language Processing, pages 323–328
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

D-Coref: A Fast and Lightweight Coreference Resolution Model using
DistilBERT

Chanchal Suman1, Jeetu Kumar2, Sriparna Saha1, and Pushpak Bhattacharyya1

1Department of Computer Science & Engineering, Indian Institute of Technology Patna, India
email: {1821cs11, sriparna}@iitp.ac.in, pushpakbh@gmail.com

2Department of Computer Science, RKMVERI, Belur Math, Howrah, India
email: 0jkpandey@gmail.com

Abstract

Smart devices are often deployed in some
edge-devices, which require quality solutions
in limited amount of memory usage. In most
of the user-interaction based smart devices,
coreference resolution is often required. Keep-
ing this in view, we have developed a fast
and lightweight coreference resolution model
which meets the minimum memory require-
ment and converges faster. In order to generate
the embeddings for solving the task of coref-
erence resolution, DistilBERT, a light weight
BERT module is utilized. DistilBERT con-
sumes less memory (only 60% of memory
in comparison to BERT-based heavy model)
and it is suitable for deployment in edge de-
vices. DistilBERT embedding helps in 60%
faster convergence with an accuracy compro-
mise of 2.59%, and 6.49% with respect to its
base model and current state-of-the-art, respec-
tively.

1 Introduction

Edge devices require natural language processing
(NLP) for understanding users’ input1. Whenever
it comes to user interaction, coreference resolu-
tion becomes an important task for analysing user’s
input. It involves determining all referring expres-
sions that point to the same real-world entity. A
grouping of referring expressions with the same ref-
erent is called a coreference chain or cluster. The
goal of a coreference resolution system is to output
all the coreference chains of a given text (Martschat
and Strube, 2015; Ferreira Cruz et al., 2020).

Several works on coreference resolution are
available in the literature having very high accu-
racy (Lee et al., 2017, 2018; Kantor and Globerson,
2019; Joshi et al., 2019; Fei et al., 2019). These
models use ELMo (Lee et al., 2018) and BERT

1https://www.iotforall.com/iot-natural-language-
processing/

(Joshi et al., 2019) for learning the semantic space
of the input. Because of the use of such heavy
transformers with millions of parameters, these
models require a lot of memory. However, smart
devices like smartphones should be responsive,
light-weight, and energy-efficient models. This
motivates us to design a light-weighted coreference
resolution model which is suitable for the deploy-
ment in smart-devices.

We contributed in word context representation
of c2f-model (Lee et al., 2018), by forming it from
embedding generated by DistilBERT instead of
ELMo. We use c2f-model as our baseline model,
since this is used as base model in all the recent
works ((Kantor and Globerson, 2019), (Joshi et al.,
2019)). DistilBERT is a smaller, faster, cheaper,
and light-weight distilled version of BERT, which
is approx. 97% efficient in comparison to BERT.
It is 40% smaller in size, and 60% faster (Sanh
et al., 2019). The embeddings are generated from
the DistilBERT for learning the semantic space
of the sentences. After the generation of embed-
dings, they are passed to the bidirectional LSTM,
followed by span head for calculation of mention
scores. These mention scores are used for forming
the coreference chain using hierarchical clustering
as defined in (Lee et al., 2018).

The standard CoNLL-2012 (Pradhan et al., 2012)
dataset is utilized for the performance evaluation
of our proposed model. Experimental results show
that, the developed system requires only 60% mem-
ory for execution, in comparison to the BERT-
based heavy models, while remaining 97% effi-
cient, and 60% faster converging too. We have
also shown that 768 embedding dimension is suffi-
cient for word context embedding generation from
DistilBERT.

323

2 The Proposed Approach

In order to utilize the embeddings generated by
DistilBERT for extracting the coreference chains,
we have integrated the recently proposed higher-
order coreference model proposed in (Lee et al.,
2018) in our system. We refer to this work as c2f-
model.

2.1 Overview of c2f-model
For each mention span u, the model learns a dis-
tribution P (·) over possible antecedent spans v, as
shown in equation 1. The scoring function s(u,v)
between spans u and v takes gu and gv as its inputs.
It uses fixed-length span representations. The scor-
ing function consists of a concatenation of three
vectors: the LSTM states of both the span end-
points and an attention vector computed over those
span tokens. The score s(u, v) is computed by the
mention score of u (sm(u)), mention score of v
(sm(v)), the joint compatibility score (sc(u, v)) of
u and v. The mention score of a span signifies
the probability of a span to be a mention. The
joint compatibility score signifies the probability
of the two spans as corefering. The components
are computed as follows:

P (v) =
es(u,v)

∑
v′∈V e

s(u,v′)
(1)

s(u, v) = sm(u) + sm(v) + sc(u, v) (2)

sm(u) = FFNNm(gu) (3)

sc(u, v) = FFNNc(gu, gv, φ(u, v)) (4)

where FFNN(·) represents a feed forward neu-
ral network and φ(u, v) represents speaker and
meta-data features. Antecedent distribution is used
for further refinement of these generated span rep-
resentations. Finally coreference chain is formed
using the scores generated from the softmax layer.

2.2 Extraction of Embedding from
DistilBERT for word context
representation

Extraction of embeddings from ELMO is shown in
(Peters et al., 2018). We have shown the embedding
extraction from DistilBERT for word representa-
tion in Fig. 1. This extraction of word representa-
tion is performed in 4 steps, which are explained
below.

Conversion of Term-Tokens into WordPiece
tokens: DistilBERT takes token embedding and
position embeddings as input (Sanh et al., 2019).

Thus, complete sentences are formed from the
Term-Tokens, and passed to the DistilBERT to-
kenizer. DistilBERT takes WordPiece tokens gen-
erated by the tokenizer and merges the initial em-
beddings and the position embeddings as the final
input for it.

E1 E2 E3 EN

DistilBERT Tokenizer

WP1 WP2 WP3 WPN'

Position Embedding

output_layer_norm

Mapper

Word context
representation

Sentence formation

Term-Tokens

D
istilB

E
R

T

WordPiece tokens

Mapper Mapper

(None,N,768)
(None,N,768)(None,N,768)

Input Layer
Token embedding

sa_layer_norm

Trnasformer Block

output_layer_norm

Trnasformer Block

sa_layer_norm

(None, N',768)

output_layer_norm

Trnasformer Block

sa_layer_norm

(None, N', 768)

(None, N',768)

Layer 1

Layer 5

Layer 6

Figure 1: Word context representation from Distil-
BERT

Collecting outputs from DistilBERT: After,
the generation of WordPiece tokens, these are given
as input to the DistilBERT for the generation of
word embeddings. For generating the word context
representations from the ELMo, the three features
1) output of left-LSTM, 2) output of right-LSTM
and 3) final embedding have been considered in
the c2f-model. Similarly, to strengthen the learning
from word context representation we generate word
context representation from triplet of embedding
outputs. We consider the raw form of embedding

324

outputs from sa layer norm of Layer-6 and out-
put layer norm of Layer-5 and final embedding out-
put from the output layer norm of Layer-6 of Dis-
tilBERT. Word context representation means repre-
sentation of word in the input sentence. Word rep-
resentation as defined in c2f-model, are generated
by character embedding using GloVe(Pennington
et al., 2014) vector.

Mapping Embedding from WordPiece to-
kens to Term-tokens : The dimension of em-
bedding matrix generated from DistilBERT is
(None,N ′, 786). Here, N ′ is the maximum of
the number of WordPice tokens for a sample point
in the batch. Learning the coreference in context of
WordPiece token is complex to understand, and its
analysis and explanation seem unusual. So we have
mapped the output of WordPiece token to Term-
Token by averaging the corresponding WordPiece
embeddings.
Let, in a batch of size B, N be the maxi-
mum of number of Term-Tokens in a sample,
N

′
be the maximum number of WordPiece to-

kens, and i, j, k, l ∈ N. Let, WordPiece token
generated by DistilBERT tokenizer be WPT =〈
WP1,WP2,WP3, . . . ,WPN ′

〉
(when the num-

ber of tokens in WordPiece token is less than N
′
,

then post-padding is done to get it) for input Term-
Token, ET = 〈E1, E2, E3, . . . , EN 〉. Let, the
embedding output generated from DistilBERT be
EmbOut

′
, which is a matrix of order (B,N

′
, 768),

where

EmbOut
′
[i] =

[
e
′
j,k

]
1≤j≤N ′ ; 1≤k≤768

;

∀1 ≤ i ≤ B Then, we map it to the EmbOut
matrix of order (B,N, 768) i.e.,

EmbOut[i] = [ej,k]1≤j≤N ; 1≤k≤768 ;

∀1 ≤ i ≤ B where

ej,k = e
′
j,k; (5)

if WPj = Ej ×
1

l

l∑

p=1

e
′
j+p,k; (6)

&if Ψ(j, l) = True (7)

∀ 1 ≤ k ≤ 768 and the function
Ψ(j, l) returns True if the WordPiece tokens
〈WPj+1, . . . ,WPj+l〉 lead to term-token, Ej .
Similar procedure is followed to get the embed-
ding output from the rest of the two layers.

Formation of the final word context represen-
tation: The output from Layer-6, sa layer norm

of Layer-6, and output of Layer 5 are sep-
arately passed to mapper and mapped out-
put m1,m2, and,m3 are collected. Finally,
m1,m2, and,m3 are concatenated for generation
of the word context representation. This map-
ping also reduces the second dimension of word
context representation from N ′ to N . Thus, the
order of word context representation becomes
(None,N, 2304), where N is the maximum num-
ber of tokens in a sample in the batch; this reduction
makes the model to work with less space too.

2.3 Overview of the proposed system

The word and character embeddings are generated
via DistilBERT and Glove, respectively. The word
embedding generation through DistilBERT is dis-
cussed in the subsection 2.2. Character embed-
dings are generated through Glove similar to the
c2f-model. The flow of our model after embed-
ding generation is same as that of the c2f-model.
The embeddings are fed to bidirectional LSTM to
learn encoded representations for the words. The
encoded features are further passed ahead to form
the span head and span representation with span
head feature. These span representations are then
used for calculating the coreference score. Mention
score and antecedant score are used for calculating
the final coreference score. The formula for these
calculations is shown in the Equation 1. For deter-
mining the final probability distribution between
different spans, softmax is applied. At last, hier-
archical clustering is used to form the coreference
chain using the generated probability distribution.

3 Dataset used and experimental set-up

CoNLL-2012 shared task corpus is a standard coref-
erence resolution corpus (Pradhan et al., 2012). We
have used the English-based corpus for evaluating
the performance of our proposed approach.

Our experimental setup is almost similar to that
of c2f-model and we have modified some parts of
their code to generate word context representation
from DistilBERT embeddings, which are:
1) The ELMo embeddings are replaced by the Dis-
tilBERT embeddings which are lighter and faster.

2) We have experimented with word context rep-
resentation, generated from DistilBERT. The two
different experimental setups are discussed below:
i) D-Coref-Small: In our proposed D-coref model,
we have extracted the embeddings from the three
layers of DistilBERT for generating the word con-

325

text representation. The order of generated em-
bedding is (None,N, 768) and the order of word
context representation is (None,N, 2304).

ii) D-Coref-Large: For higher dimensional word
context representation, we have extracted the em-
bedding outputs from layer-4 of DistilBERT for
raw embedding representation in addition with
embeddings of D-coref-Small. Thus, the order
of word context representation for this setup is
(None,N, 3072) similar to c2f-model.

Table 1: Comparison with previous works

MUC B3 CEAF Avg F1
(Lee et al., 2017) 75.8 65.0 60.8 67.2
(Lee et al., 2018) 80.4 70.8 67.6 73.0
(Joshi et al., 2019) 83.5 75.3 71.9 76.9
D-coref-Large 78.15 67.94 64.76 70.28
D-coref-Small 78.27 68.09 64.87 70.41

4 Results and Analysis

In this section, we have discussed the performance
of our model on the standard CoNLL-2012 dataset,
along with different features of the model.

4.1 Performance Evaluation

We have reported precision, recall and F1-scores
of the B3, MUC, and,CEAF metrics, and average
F1 score (main evaluation metric) of all these three
metrics as per the previous papers (Pradhan et al.,
2012). The results obtained from our proposed ap-
proach is tabulated in table 1, and the detailed com-
parison is shown in table 2. Our baseline is the c2f-
model with ELMo input features, which achieves
an average F1 of 73.0%. We have achieved an aver-
age F1 of 70.41% for D-Coref-Small, and 70.28%
for D-Coref-Large. Our experiments show that get-
ting word context representation in the dimension
of (None,N, 2304) is sufficient. After observing
the performance and the size of the model, we con-
sider the D-Coref-small as our final model. The
performance of D-Coref-small is 6.49% less than
the current state-of-the-art (Joshi et al., 2019) and
2.59% less than the c2f-model. This performance
matches with the claim of 3% less language un-
derstanding capability of the DistilBERT model2.
We have a loss of approx 6% in performance, but
this is the inherent nature of DistilBERT. At the

2https://medium.com/huggingface/distilbert-
8cf3380435b5

same time, our model has become faster and light-
weight due to the usage of the faster and lighter
DistilBERT.

0 40000 80000 120000 160000 200000 240000 280000 320000 360000 400000
Epoch

0

10

20

30

40

50

60

70

Av
ea

ge
 F

1

Epoch vs Average F1 on Conll Data

HOC_ELMo
D-Coref-Large
D-Coref-Small

Figure 2: Epoch versus Average F1 curve

0 40000 80000 120000 160000 200000 240000 280000 320000 360000 400000
Epoch

10

20

30

40

50

60

70

Lo
ss

Epoch vs Loss
HOC_ELMo
D-Coref-Large
D-Coref-Small

Figure 3: Epoch versus Loss curve

0 40000 80000 120000 160000 200000 240000 280000
Epoch

20

30

40

50

60

Lo
ss

Epoch vs Loss
HOC_ELMo
D-Coref-Large
D-Coref-Small

Figure 4: Epoch versus Average loss graph

140000 150000 160000 170000 180000 190000 200000 210000 220000 230000 240000 250000 260000
Epoch

14

16

18

20

22

Lo
ss

Epoch vs Loss
HOC_ELMo
D-Coref-Large
D-Coref-Small

Figure 5: Epoch versus Average Loss sub graph

The detailed comparison table, with all the per-
formance metrics are shown in Table 2. The epoch
vs loss and epoch vs average F1 curves are shown
in Figures 2, 3, 4, and 5.

326

Table 2: Comparison with previous works

MUC B3 CEAF
P R F1 P R F1 P R F1 Avg

F1
(Martschat and
Strube, 2015)

76.7 68.1 72.2 66.1 54.2 59.6 59.5 52.3 55.7 62.5

(Clark and Man-
ning, 2015)

76.1 69.4 72.6 65.6 56.0 60.4 59.4 53.0 56.0 63.0

(Wiseman et al.,
2015)

76.2 69.3 72.6 66.2 55.8 60.5 59.4 54.9 57.1 63.4

(Wiseman et al.,
2016)

77.5 69.8 73.4 66.8 57.0 61.5 62.1 53.9 57.7 64.2

(Clark and Man-
ning, 2016)

79.2 70.4 74.6 69.9 58.0 63.4 63.5 55.5 59.2 65.7

(Lee et al., 2017) 78.4 73.4 75.8 68.6 61.8 65.0 62.7 59.0 60.8 67.2
(Lee et al., 2018) 81.4 79.5 80.4 72.2 69.5 70.8 68.2 67.1 67.6 73.0
(Joshi et al., 2019) 84.7 82.4 83.5 76.5 74.0 75.3 74.1 69.8 71.9 76.9
D-coref-Large 80.45 75.97 78.15 71.32 64.86 67.94 66.59 63.03 64.76 70.28
D-coref-Small 80.85 75.86 78.27 71.91 64.65 68.09 62.69 67.2 64.87 70.41

4.2 Characteristics df the Proposed Model

Our proposed model is fast and light-weight. Here,
we have discussed these two properties in detail.

Fast: From the epoch vs loss graph (fig. 3), we
observed that model does not show any improve-
ment after 240K. But after examining the average
F1 plot (fig. 2), it is evident that the model has
converged at 200K and there is no improvement
in average F1 after 200K, while the c2f-model had
converged at 400K epochs. In this way, the de-
veloped model is 60% faster, this behaviour also
matches with the claim of faster learning capability
of the DistilBERT (Sanh et al., 2019).

Light-weight: DistilBERT is a very light-
weight model, with 66 millions of parameters,
while the transformer ELMo has 465 millions of
parameters (Sanh et al., 2019). Thus it can meet
the memory requirements of edge devices. The
requirement of fewer parameters for DistilBERT is
the main motivation of this work. At the same time,
the reduced word context representation dimension
of D-coref-small has also lowered the model size,
because the entire learning dimension depends on
word context representation as it flows throughout
the model.

In the view of these advantages, it is evident that
our model is suitable for small devices with some
compromise in performance. The size of the Distil-
BERT is reduced by 40% in comparison to BERT
model, while it retains 97% of the language under-

standing capabilities of BERT and is 60% faster
(Sanh et al., 2019). Thus, the usage of DistilBERT
embeddings makes our model faster and lighter.

5 Conclusion and Future Work

We have devised a fast and light-weight coreference
resolution model using DistilBERT. In order to gen-
erate a faster and light-weight model, the accuracy
gets compromised. Word context representation in
reasonable lower dimension can work like represen-
tation in higher dimension with proper tuning. Our
developed system requires only 60% memory for
execution, in comparison to the BERT-based heavy
models, while remaining 97% efficient too. Thus,
it is suitable for edge devices. In future we will try
to come up with a model having better performance
with same or lesser space requirement.

Acknowledgments

Dr. Sriparna Saha gratefully acknowledges
the Young Faculty Research Fellowship (YFRF)
Award, supported by Visvesvaraya Ph.D. Scheme
for Electronics and IT, Ministry of Electronics and
Information Technology (MeitY), Government of
India, being implemented by Digital India Corpo-
ration (formerly Media Lab Asia) for carrying out
this research.

327

References
Kevin Clark and Christopher D Manning. 2015. Entity-

centric coreference resolution with model stacking.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1405–1415.

Kevin Clark and Christopher D Manning. 2016. Deep
reinforcement learning for mention-ranking corefer-
ence models. arXiv preprint arXiv:1609.08667.

Hongliang Fei, Xu Li, Dingcheng Li, and Ping Li. 2019.
End-to-end deep reinforcement learning based coref-
erence resolution. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 660–665.

André Ferreira Cruz, Gil Rocha, and Henrique
Lopes Cardoso. 2020. Coreference resolution: To-
ward end-to-end and cross-lingual systems. Infor-
mation, 11(2):74.

Mandar Joshi, Omer Levy, Daniel S Weld, and Luke
Zettlemoyer. 2019. Bert for coreference reso-
lution: Baselines and analysis. arXiv preprint
arXiv:1908.09091.

Ben Kantor and Amir Globerson. 2019. Coreference
resolution with entity equalization. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 673–677.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference resolu-
tion. arXiv preprint arXiv:1707.07045.

Kenton Lee, Luheng He, and Luke Zettlemoyer. 2018.
Higher-order coreference resolution with coarse-to-
fine inference. arXiv preprint arXiv:1804.05392.

Sebastian Martschat and Michael Strube. 2015. La-
tent structures for coreference resolution. Transac-
tions of the Association for Computational Linguis-
tics, 3:405–418.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. arXiv preprint arXiv:1802.05365.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. Conll-
2012 shared task: Modeling multilingual unre-
stricted coreference in ontonotes. In Joint Confer-
ence on EMNLP and CoNLL-Shared Task, pages 1–
40. Association for Computational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Sam Wiseman, Alexander M Rush, and Stuart M
Shieber. 2016. Learning global features for corefer-
ence resolution. arXiv preprint arXiv:1604.03035.

Sam Joshua Wiseman, Alexander Matthew Rush, Stu-
art Merrill Shieber, and Jason Weston. 2015. Learn-
ing anaphoricity and antecedent ranking features for
coreference resolution. In Proceedings of the 53rd
Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics.

328

Proceedings of the 17th International Conference on Natural Language Processing, pages 329–333
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Semantic Slot Prediction on low corpus data using finite user defined list

Bharatram Natarajan, Simma Dharani, Chirag Singh, Anish Nediyanchath and Sreoshi Sengupta
research.samsung.com

{bharatram.n, simma.d, c.singh, anish.n, s.sengupta}@samsung.com

Abstract

Semantic slot prediction is one of the impor-
tant task for natural language understanding
(NLU). They depend on the quality and quan-
tity of the human crafted training data, which
affects model generalization. With the advent
of voice assistants exposing AI platforms to
third party developers, training data quality
and quantity matters for any machine learn-
ing algorithm to learn and generalize properly.
AI platforms provides provision to add cus-
tom external plist defined by the developers
for the training data. Hence we are exploring
dataset, called LowCorpusSlotData, contain-
ing low corpus training data with larger num-
ber of slots and significant test data. We also
use external plist for the above dataset to aid
in slot identification. We experimented using
state of the art architectures like Bi-directional
Encoder Representations from Transformers
(BERT) with variants and Bi-directional En-
coder with Custom Decoder. To address the
low corpus problem, we propose a pipeline ap-
proach where we extract candidate slot infor-
mation using the external plist extractor mod-
ule and feed as input along with utterance.

1 Introduction

In recent market, many voice assistants like Sam-
sung Bixby, Amazon Alexa are providing AI plat-
forms for developers outside to develop their cus-
tom applications. In these platforms, developers
add the data for their custom made applications
which is being used by the voice assistant for the
training its NLU components. The main responsi-
bility of NLU is to understand the user utterance
and to determine the domain, intent and slots. Do-
main Prediction extracts the domain in which the
utterance belongs to i.e., the application that will
execute the user intention. Intent Detector is to
extract the user intention or the action that we will
execute inside the application. Slot Filler is to ex-

tract the semantic slots or objects of interest on
which we execute the action. Example is name en-
tity finding like name of person, location and date
time. The data, developed by the developers, might
be small for training slot-detection task when com-
pared to intent detection or domain prediction task.
Therefore, the current scope of this paper is limited
solving the Slot Filler task. To explain Slot Filler
task with an example, consider the utterance ”Is the
Barbeque Nation closed at this time?”. Slot Filler
task is to identify ”Barbeque Nation” as Business-
Name and ”Closed” as OpenHourDescriptor from
the utterance.

Lots of work is going on the field of slot predic-
tion as independent task. Shin et al. (2018) pro-
poses the architecture based on encoder-decoder
attention model with aligned input where Bi-GRU
as encoder and GRU decoder which learns jointly
both slot filling and delexicalized sentence gener-
ation. Saha et al. (2018) proposes the variants of
LSTM and GRU integrated with the CRF layer at
end for the task of slot filling. Mesnil et al. (2014)
recommends the usage of RNN for the slot predic-
tion. Jaech et al. (2016) performs an experiment
using a multi-task model with open vocabulary em-
beddings increases the generalizability by which
the data required for the training the slot-filling
is minimalised. Huang et al. (2015) proposes a
various LSTM-CRF models for sentence tagging.
Kurata et al. (2016) proposes the encoder-labeler
LSTM which performs slot filling conditioned on
the encoded sentence-level information which was
generated by LSTM. Shi et al. (2016) recommends
a recurrent support vector machine, which is a com-
bination of recurrent neural network, and a struc-
tured support vector machine for the slot tagging.
Liu et al. (2020) proposes a cross-domain slot fill-
ing using Bi-LSTM for handling the limitation of
data and unseen slot types. Zhang et al. (2018)
proposes a capsule based neural network model,

329

which accomplishes slot filling and intent detec-
tion via a dynamic routing-by-agreement schema.
Firdaus et al. (2019) recommends a multi-task hi-
erarchical approach using the CNN, RNN to get
the contextual information and uses CRF for model
label dependency. All the above approaches suffers
from the lack of intent information to enhance slot
task.

To circumvent the above limitation, exploration
on slot prediction as joint task with intent gained
momentum. Wang et al. (2020) proposes a new
architecture for joint intent detection and slot fill-
ing based on pre-trained BERT (Chen et al., 2019),
added the self-attention and slot gate with CRF
which improvement in slot filling. Gangadhara-
iah and Narayanaswamy (2019) proposes attention
information (calculating the attention of current
encoder with respect to previous encoders), in ad-
dition to encoder during each decoder step for pre-
dicting joint intent and slot.

Inspired by performance of the above state of
the art architectures in slot prediction work, we are
exploring architectures namely BERT (Chen et al.,
2019) and Encoder with Custom Decoder (Gan-
gadharaiah and Narayanaswamy, 2019) on open
source dataset with external list information.

We organize rest of the paper as follows. Sec-
tion 2 describes the Proposed Approach. Section 3
describes the experimental setup including dataset,
metrics used followed by results. Finally, we con-
clude and suggest future work and extensions.

2 Proposed Approach

2.1 Pre-Processor
All the external plist information are maintained in
seperate files. Each file contains phrases asssoci-
ated to that plist. For example ”distanceunit” file
contains phrases like ”kilometers”, ”km”, ”miles”
and so on. These plists are generally extra infor-
mation that the developer has defined to aid in slot
identification for low corpus training data. We
load all the plist information and store it in dictio-
nary with key as phrase and value as list of plist(s)
containing the phrase. Next, we gather all the sub-
phrases from the given utterance and search in dic-
tionary to find any matches. Then we filter the
matches based on the following procedures

• We use ibo format to tag plist for the entire
utterance.For example, consider the utterance
”show me pizza stores nearby”. The corres-
posnding tags will be ”o o b-businesscategory

i-businesscategory o” if the business category
contains ”pizza stores”.

• Filter the matches based on longest match for
same plist. For example if the phrase ”Bar-
beque Nation” is matched by BusinessName
as ”Barbeque” and ”Barbeque Nation”, then
we choose ”Barbeque Nation” only as final
match for BusinessName and tag it in ibo for-
mat.

• Keep the matches of all plist when sub-
phrases within the phrase are matched. For
example, consider the phrase ”punjabi thali”.
”punjabi thali” is present in ”BusinessName”
and ”punjabi” in ”cuisinestyle”.We keep
both the plist as candidate plist in IBO
format as ”b-businessname b-cuisinestyle i-
businessname”.

• If more than one plist matches the same
phrase, then we concatenate them by ” ”.
For example if the phrase ”Barbeque Nation”
matches ”BusinessName” and ”BusinessCate-
gory”, then we concatenate the plist as ”Busi-
nessName BusinessCatory” in IBO format.

The above procedure is followed to get better candi-
date plist result for the utterance as this information
influences slot prediction for each word in the ut-
terance. Finally, we use this external plist sequence
information in the model as explained in the next
sections.

2.2 BERT Model

Figure 1: BERT Architecture with external plist se-
quence information and word sequence

330

Figure 1 explains BERT model architecture.
BERT model is a multi-layer bi-directional Trans-
former encoder. The input to the model contains ex-
ternal plist sequence information or external slot se-
quence information, in addition to sentence. Since
the plist can be unknown word to the vocabulary
used for pre-trained BERT model, we added the
list of unique plist used to the vocab list. The out-
put of BERT provides learnt embeddings for both
the word and its respective plist. To get the final
embeddings for each word in sentence, we added a
custom layer, which adds the embeddings of word
and its plist. We pass these final embeddings to
softmax layer to get the slots. We use pre-trained
BERT model for the proposed experiment for the
said method.

2.3 Bi-Directional Encoder with Custom
Decoder

Gangadharaiah and Narayanaswamy (2019) pro-
posed novel architecture using encoder and decoder
model. Encoder module is made of Bi-directional
LSTM encoder and Decoder module is made of
LSTM module with attention information of input
encoder during decoding stage at each step. We
pass the output through dense layer. We have imple-
mented the code from scratch based on the author
description of the paper. During decoder imple-
mentation, we use attention information of encoder
as additional input along with each encoder hidden
information as input and calculate its importance
using the modified equation as shown in Equation
6.

ft = σg(Wf ∗ xt + Uf ∗ ht−1 + Vf ∗ at + bf)
(1)

it = σg(Wi ∗ xt + Ui ∗ ht−1 + Vi ∗ at + bi)
(2)

ot = σg(Wo ∗ xt + Uo ∗ ht−1 + Vo ∗ at + bo)
(3)

et = σg(Wc ∗ xt + Uc ∗ ht−1 + Vc ∗ at + bc)
(4)

ct = ft ∗ ct−1 + it ∗ et (5)

ht = ot ∗ σc(ct) (6)

Where at represent attention information of hidden
encoder ht at time t and xt represent input hidden
encoder information at time t. We modified the
input to the model to take both utterance and ex-
ternal plist sequence information. We converted
utterance, containing list of words, to list of word

indices based on dictionary (built by taking unique
words from training data, sort the unique words
and adding “unkword” in the end of sorted dictio-
nary). If word is not present in dictionary, we as-
sign “unkword” index. To maintain uniform length
while training we pad sentence to max length. We
also construct weight matrix by assigning 300 di-
mensional vector to each row index, representing
word in sorted dictionary. We obtained this 300 di-
mensional vector using glove embedding. If word
is not in glove embedding, we assign “unkword”
embedding which is randomly initialized 300 di-
mensional vector. We pass through Embedding
module with utterance matrix and weight matrix to
get 3-dimensional word embedding matrix.

We converted external plist sequence infor-
mation as external slot embedding where each
plist is assigned randomly initialized vector pdim
(plist dimension). As each word can have more
than one plist assigned, we create matrix of plist
embedding vector for each word. Hence, matrix
for the external plist sequence information will be
4-dimensional (batch size, max sequence words,
distinct plist count, plist dimension). We resize
to 3D flattening the features of plist embedding
from (distinct plist count, plist dimension) to (dis-
tinct plist count * plist dimension). We then con-
catenate word embedding matrix with external slot
embedding matrix and pass as input to Encoder
Module as shown in Figure 2.

Figure 2: Bi-directional Encoder with Custom Decoder.
Here we concatenate the word-embedding matrix with
external slot embedding matrix and we send the com-
bined embedding to Encoder module.

331

3 Experiments

Data Train Test Slot
Business Search 301 1001 38

Table 1: BusinessSearch Data details.

We evaluated above models in BusinessSearch1

Data as shown in Table 1. “BusinessSearch” data
deals with details, search of Business names like
dominos, reliance store and Business categories
like grocery, gym with the help of external plist. It
contains 301 training data and 1001 test data. It
contains plist files like name, category for external
use by the models.

3.1 Training Details
We share training details for BERT and Bi-
directional encoder with Custom Decoder in below
sections.

3.2 BERT
We used pre-trained 12 layer un-cased BERT model
as initial start point for training model. We added
plist names into vocab so that pre-processor does
not tokenize the pist info and use it as it is. We use
“Tensorflow” platform with optimizer as “Adam”,
loss as “categorical crossentropy”, batch size as 64
and learning rate as 0.001.

3.3 Bi-directional Encoder with Custom
Decoder

We use 300 dimension Glove Embedding vector
for each word to construct training matrix of word
index to vector. We experimented pdim with 16,
32, and 64 randomly initialized vector for each
plist. We use LSTM hidden units as 128 in En-
coder and Decoder (Custom LSTM with Attention
information) hidden dimension as 128. Attention
information does not change the hidden dimension
information. Dense layer hidden dimension is dis-
tinct slots size with “Softmax” activation. We use
“Keras” platform with optimizer as “Adam”, loss
as “categorical crossentropy”, batch size as 64 and
learning rate as 0.001.

4 Results and Analysis

Table 2 shows the comparison of the different ar-
chitectures on “BusinessSearch” data with external
plist information. From the table, we are able to

1https://github.com/MultiIntentData/LowCorpusSlotData

Architecture Sentence Level
Accuracy

Bi-LSTM Encoder with De-
coder and 16 external slot em-
bedding

84.79

Bi-LSTM Encoder with De-
coder and 32 external slot em-
bedding

86.83

Bi-LSTM Encoder with De-
coder and 64 external slot em-
bedding

90.49

BERT with external slot se-
quence as 2nd sequence

77

Table 2: Comparison of state of the art models.

infer that Bi-LSTM Encoder with Custom Decoder
is able to beat BERT model where we feed exter-
nal plist information as second sequence. This is
attributed to the fact that concatenation of plist fea-
tures along with word embedding is able to perform
better than BERT model where we feed external
plist information as second sequence. In addition,
when we represent plist embedding dimension with
64 we are able to get better accuracy than 16 and
32. This shows that Bi-directional LSTM is able
to differentiate better between different slots when
plist representation is higher. In addition, we under-
stand the importance of role of external plist as its
absence lead to poor generalization of the model.

5 Conclusion

This work demonstrated the use of external slot
information along with sentence. We showed the
performance of DNN models on low corpus data
with external plist and showed there is an improve-
ment of 13.49%, by Bi-directional Encoder with
custom Decoder when compared to state of the art
BERT model. We believe the pipeline approach
to such user-developed dataset will aid in better
model generalization for semantic slot prediction.
Future scope of the paper includes exploration of
non-sequential models for sequence labelling task.
Also we are planning to extend the work to predict
domain, intent along with slot prediction.

References

Qian Chen, Zhu Zhuo, and Wen Wang. 2019. Bert
for joint intent classification and slot filling. arXiv
preprint arXiv:1902.10909.

332

Mauajama Firdaus, Ankit Kumar, Asif Ekbal, and
Pushpak Bhattacharyya. 2019. A multi-task hierar-
chical approach for intent detection and slot filling.
Knowledge-Based Systems, 183:104846.

Rashmi Gangadharaiah and Balakrishnan
Narayanaswamy. 2019. Joint multiple intent
detection and slot labeling for goal-oriented dialog.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 564–569.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991.

Aaron Jaech, Larry Heck, and Mari Ostendorf. 2016.
Domain adaptation of recurrent neural networks for
natural language understanding. arXiv preprint
arXiv:1604.00117.

Gakuto Kurata, Bing Xiang, Bowen Zhou, and Mo Yu.
2016. Leveraging sentence-level information with
encoder lstm for semantic slot filling. arXiv preprint
arXiv:1601.01530.

Zihan Liu, Genta Indra Winata, Peng Xu, and Pas-
cale Fung. 2020. Coach: A coarse-to-fine ap-
proach for cross-domain slot filling. arXiv preprint
arXiv:2004.11727.

Grégoire Mesnil, Yann Dauphin, Kaisheng Yao,
Yoshua Bengio, Li Deng, Dilek Hakkani-Tur, Xi-
aodong He, Larry Heck, Gokhan Tur, Dong Yu, et al.
2014. Using recurrent neural networks for slot fill-
ing in spoken language understanding. IEEE/ACM
Transactions on Audio, Speech, and Language Pro-
cessing, 23(3):530–539.

Tulika Saha, Sriparna Saha, and Pushpak Bhat-
tacharyya. 2018. Exploring deep learning archi-
tectures coupled with crf based prediction for slot-
filling. In International Conference on Neural Infor-
mation Processing, pages 214–225. Springer.

Yangyang Shi, Kaisheng Yao, Hu Chen, Dong Yu, Yi-
Cheng Pan, and Mei-Yuh Hwang. 2016. Recurrent
support vector machines for slot tagging in spoken
language understanding. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 393–399.

Youhyun Shin, Kang Min Yoo, and Sang-goo Lee.
2018. Slot filling with delexicalized sentence gen-
eration. In INTERSPEECH, pages 2082–2086.

Congrui Wang, Zhen Huang, and Minghao Hu. 2020.
Sasgbc: Improving sequence labeling performance
for joint learning of slot filling and intent detection.
In Proceedings of 2020 the 6th International Con-
ference on Computing and Data Engineering, pages
29–33.

Chenwei Zhang, Yaliang Li, Nan Du, Wei Fan, and
Philip S Yu. 2018. Joint slot filling and intent de-
tection via capsule neural networks. arXiv preprint
arXiv:1812.09471.

333

Proceedings of the 17th International Conference on Natural Language Processing, pages 334–340
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Leveraging Latent Representations of Speech for Indian Language
Identification

Samarjit Karmakar ∗
Microsoft IDC, Hyderabad

Telangana, India
karmakar.samarjit@gmail.com

P. Radha Krishna
Department of CSE

National Institute of Technology, Warangal
Telangana, India

prkrishna@nitw.ac.in

Abstract

Identification of the language spoken from
speech utterances is an interesting task be-
cause of the diversity associated with differ-
ent languages and human voices. Indian lan-
guages have diverse origins and identifying
them from speech utterances would help sev-
eral language recognition, translation and rela-
tionship mining tasks. The current approaches
for tackling the problem of languages identi-
fication in the Indian context heavily use fea-
ture engineering and classical speech process-
ing techniques. This is a bottleneck for lan-
guage identification systems, as we require to
exploit necessary features in speech, required
for machine identification, which are learnt by
a probabilistic framework, rather than hand-
crafted feature engineering. In this paper, we
tackle the problem of language identification
using latent representations learnt from speech
using Variational Autoencoders (VAEs) and
leverage the representations learnt to train se-
quence models. Our framework attains an ac-
curacy of 89% in the identification of 8 well
known Indian languages (namely Tamil, Tel-
ugu, Punjabi, Marathi, Gujarati, Hindi, Kan-
nada and Bengali) from the CMU/IIITH Indic
Speech Database. The presented approach can
be applied to several scenarios for speech pro-
cessing by employing representation learning
and leveraging them for sequence models.

1 Introduction

Language identification refers to the task of iden-
tifying the language being spoken when given a
speech utterance. Several intelligent agents rely
heavily on language identification systems for sub-
sequent speech recognition and processing tasks.
This problem is particularly interesting and impor-
tant in the Indian context, given the diverse nature

∗This work was a part of the authors’ undergraduate thesis
project at Dept of CSE, NIT Warangal.

of Indian languages. Several Indian languages suf-
fer regional bias and each language has its own
dialect as one travels within each state (region) of
the country. In this scenario, language identifica-
tion would be a challenging task for traditional
language identification systems which heavily rely
on feature engineering from speech.

Several of the current Indian language identifi-
cation systems rely on handcrafted features, which
end up serving as a bottleneck to such systems.
Such systems would greatly benefit by learning
necessary features in speech utterances using a
probabilistic framework and leveraging these rep-
resentations for training deep sequence models. A
few deep neural network based models have also
been proposed. The authors in (Lei et al., 2014)
perform posterior extraction using convolutional
neural networks (CNNs), and an i-vector based
system for subsequent language recognition. The
authors in (MounikaK. et al., 2016) use an end-to-
end deep neural network with attention mechanism
for Indian language identification.

We exploit the representation learnt by a
VAE (Kingma and Welling, 2013) trained on
speech segments to train several sequence mod-
els widely used for natural language process-
ing. These models use distributed word-
representations (Mikolov et al., 2013) which model
the words in a continuous vector space. We use the
latent feature representations learnt by a VAE in
the stochastic low dimensional latent representation
space in a manner similar to how distributed word
representations, obtained by pre-training large cor-
puses in an unsupervised manner, are used in natu-
ral language processing to train sequence models.

In this paper, we present a framework for Indian
language identification by pre-training a probabilis-
tic framework for representation learning and lever-
aging these representation for training sequence
models for classification.

334

2 Related Work

Language identification from speech has been
deeply studied by various research communities.
Prosodic, phoenetic and phonotactic feature based
approaches for identifying language is studied
in (Tong et al., 2006) and (Liang Wang et al.,
2006). Many such classical feature engineering
based methods require a lot of domain knowledge.
With the rise of deep learning and neural networks,
automatic feature and representation learning has
greatly outperformed all such methods.

Language identification using Deep Convo-
lutional Recurrent Neural Networks is studied
in (Bartz et al., 2017). They use non-overlapping
segments of Mel spectrograms of speech which are
passed through a Convolutional Neural Network
and then the features maps are passed through a
Long Short Term Memory (LSTM). The final hid-
den state of the LSTM is used for classification.
The CNN captures the spatial features, whereas the
LSTM captures the temporal features.

For long speech utterances, Recurrent Neu-
ral Networks, can capture the temporal aspect
of speech utterances and this was considered
in (Gonzalez-Dominguez et al., 2014). The authors
in (Sarthak et al., 2019) give an attention based 1D-
CNN for the task of language identification directly
from raw audio. This attention greatly enhances the
performance of neural network based approaches.

Indian language identification using deep learn-
ing based models have been studied in (Leena et al.,
2005), (MounikaK. et al., 2016), (Thirumuru et al.,
2018) and (Bakshi and Kopparapu, 2017). Deep
neural network based systems take in the speech
utterances at each frame, classification performed
frame-wise, and this may be considered as a draw-
back. A deep neural network with attention mecha-
nism was considered in (MounikaK. et al., 2016).
This architecture applies attention to specific parts
of the input sequence, whilst memorizing impor-
tant features in long temporal sequences. A 39-
dimensional MFCC is considered by the authors,
each for 5 second chunks of the input sequence,
which are passed through a regular DNN to com-
pute hidden layer representations. An attention
mechanism is applied over this to memorize the
temporal aspect and summarize the features in the
whole speech utterance, giving a single context
vector and this vector is subsequently passed to a
classifier. Attention based Residual-Time Delay
Neural Network (RES-TDNN) is studied in (Man-

dava and Vuppala, 2019), which further improves
over trying to capture the long range temporal de-
pendencies.

3 Proposed Framework

Our goal is to learn latent representations from
speech and use these representations to train se-
quence models for classification. We use Vari-
ational Autoencoders (VAEs) for representation
learning on small segments of Mel spectrograms of
speech utterances (40 Mel-scale filter banks). The
Mel spectrogram is obtained by taking the Fourier
transform of the signal, followed by mapping the
powers of the obtained spectrum onto the Mel scale.
The Mel-frequency scale resembles the resolution
of the human auditory system. The segmentation is
performed along the time axis. The model is trained
in a similar manner adopted in (Hsu et al., 2017).
After pre-training the VAE, the encoder’s latent
distribution is able to encode Mel spectrograms
of speech segments into a latent representations
space. We use a sequence of such latent repre-
sentation for each segmented Mel spectrogram of
speech utterance as input to sequence models. The
VAE captures important representational features
for each segment of the speech utterance and the se-
quence model captures the temporal aspect of each
speech utterance. The unsupervised representation
learning parameters are optimized in a different
step from when the supervised sequence learning
parameters are optimized.

3.1 Variational Autoencoder
A Variational Autoencoder (VAE) comprises of
two neural networks, the encoder qθ(z|x) and the
decoder pφ(x|z). The encoder, parameterized by
θ, takes in the input observation (x) and encodes
it into a representation (z) sampled stochastically
from the distribution of µ and σ (Gaussian para-
metric layers of the encoder). The decoder, param-
eterized by φ, takes in the representation (z) and
decodes it back into the input observation (x). The
loss function (Lvae) minimizes a joint objective of
two losses: reconstruction loss and KL divergence
loss.

Lvae = −Eqθ(z|x)(pφ(x|z)) +KL(qθ(z|x)||p(z))
(1)

Here, p(z) is the prior distribution (multivariate
standard Normal).

We use similar hyper-parameters as used in (Hsu
et al., 2017). The encoder contains 3 convolutional

335

Figure 1: A view of the VAE architecture with the language identifier.

layers, followed by a fully connected layer and
two Gaussian parametric layer (one for mean and
another for log variance). The decoder contains
an initial fully connected layer which takes in z,
followed by another fully connected layer and 3
transpose-convolutional layers.

Figure 1 shows a view of the VAE architecture
along with the language identifier (successor to the
VAE pre-training phase).

3.2 Sequence Models

Sequence models capture the temporal aspect of
the speech utterance from the given sequence of
representation vectors.

For each segment of the Mel spectrogram of
speech utterance, the VAE encoder produces a vec-
tor in Rn, where n is the dimension of the represen-
tation space. We pass the sequence of these vectors
for each segmented speech utterance to sequence
models for classification. The input to the sequence
models are a sequence representation vectors of
size 128 units, i.e the dimension of the representa-
tion space of the VAE. We compute the maximum
length of the sequences produced on segmentation
of each speech utterance, and apply zero-padding
vectors to each sequence to produce uniform length
sequences.

The sequence models considered in this work
are illustrated in the next sections. All the models
are trained separately on the same representation
vectors obtained from the pre-trained VAE encoder.

3.2.1 Long Short Term Memory (LSTM)
Networks and Bi-directional LSTMs

Long Short Term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997) networks are sequence models
which learn temporal characteristics and contextual
information from sequences.

LSTMs have a single shortcoming, they make
use of solely the previous context. Bidirectional
LSTMs (Bi-LSTMs) make use of both the previ-
ous context as well as future context by iterating
through the sequence in both directions to com-
pute the hidden state vectors. We pass the forward
and backward sequence through the LSTM assign-
ing different weights and biases for each direction.
This is used to compute two separate sets of acti-
vations for the sequence in forward and backward
directions.

3.2.2 Bi-directional LSTM with
Self-Attention

The sequence of representation vectors is passed
through a bi-directional LSTM (bi-LSTM) (Schus-
ter and Paliwal, 1997) with a hidden state of 100
memory units. A self-attention mechanism is
adopted which gives attention to specific parts of
the input sequence, giving a attention weight ma-
trix of the input sequence. This mechanism is sim-
ilar to the attention layer in (Cheng et al., 2016).
The mechanism takes in the hidden states of the
bi-LSTM at each time step. The attention weights
are calculated for 30 sequence vectors, each giv-
ing attention to some specific part of the input se-
quence. The attention weights are applied to the
output of the bi-LSTM, resulting in a matrix of hid-
den states giving attention to specific parts of the
sequence. This is then flattened and passed through
subsequent fully connected neural network layers
to produce the output class logits.

3.2.3 Bi-directional LSTM with Soft-Aligned
Attention

We apply a similar attention mechanism as that
adopted in the encoder of (Bahdanau et al., 2014).
We pass the sequence of representation vectors
through a bi-LSTM with a hidden state of 100

336

memory units similar to the previous model. The
difference lies in the attention mechanism adopted.
We calculate a soft-alignment score between each
of the hidden states of the bi-LSTM at each time
step and the last hidden state. This gives the soft-
aligned attention weights, which are applied to the
output of the bi-LSTM at each time step to pro-
duce a single final hidden state vector. This is then
passed through subsequent fully connected neural
network layers to produce the output class logits.

3.2.4 Recurrent Convolutional Neural
Networks

We apply a similar architecture as that adopted
in (Lai et al., 2015). We pass the sequence of repre-
sentation vectors through a bi-LSTM with a hidden
state of 100 memory units similar to the previous
model. The hidden state at each time step is con-
catenated to the corresponding input representa-
tion. This is passed through a fully connected layer
which maps the concatenated vector back to the
hidden state size. The architecture takes care of the
right context and left context as it is a bi-LSTM,
which takes care of information and representation
flow in the forward and reverse direction of the
speech utterance. We perform max-pooling across
all the sequences and pass the output through sub-
sequent fully connected neural network layers to
produce the output class logits.

3.2.5 Transformer

We use the encoder of the Transformer architec-
ture similar to that adopted in (Vaswani et al.,
2017). We do not apply the positional encodings
and masking mechanisms. The sequence of repre-
sentation vectors are directly passed through two
encoder layers, each of which which comprise of
self attention and position-wise feed-forward lay-
ers. The hidden dimensions of the position-wise
feed-forward layers are 100 units. The set of hyper-
parameters adopted similar to (Vaswani et al., 2017)
are (N = 2, dmodel = 128, dq = dk = dv = 32,
pdropout = 0.3). The output of the encoder is flat-
tened and passed through subsequent fully con-
nected neural network layers to produce the output
class logits.

An illustration for training and language identifi-
cation (testing) of the VAE and Sequence Model is
given in Algorithm 1 and Algorithm 2.

Algorithm 1 VAE-Seq Language Identification
Training
Input: DatasetD, VAE parameters (φ, θ), Sequence Model parameters (ξ)
Output: Optimized parameters φ, θ and ξ
1: Initialize parameters φ, θ and ξ
2: repeat
3: Sample mini-batch M = {xi}i=1,2,...|M| of audio spectrograms

fromD by segmenting spectrogram of audio clips
4: Forward pass mini-batchM through VAE
5: Update parameters φ and θ using ∇φ,θLvae(φ, θ,M)

6: until convergence of φ and θ
7: repeat
8: Sample mini-batchM = {xi, yi}i=1,2,...|M| fromD where xi is

a sequence of segmented spectrograms and yi is label for i’th sample
9: Forward pass each sample in xi through VAE encoder parameterized

by θ to convert {xi, yi}i=1,2,...|M| to {vi, yi}i=1,2,...|M| where
each vi is a sequence of representation vectors for xi

10: Forward pass each vi through Sequence Model parameterized by ξ
to give predicted labels {ŷi}i=1,2,...|M|

11: Update parameters ξ using
∇ξLseq(ξ, {ŷi}i=1,2,...|M|, {yi}i=1,2,...|M|)

12: until convergence of ξ
13: return φ, θ and ξ

Algorithm 2 VAE-Seq Language Identification
Input: Speech clipx, Optimized VAE parameters (φ, θ), Optimized Sequence

Model parameters (ξ)
Output: Language label y
1: Forward pass the segmented spectrogram of x through the VAE encoder

having optimized parameters θ to obtain a sequence of representation vec-
tors v

2: Forward pass v through the Sequence Model having optimized parameters
ξ to obtain the language label y

3: return y

4 Experimental Results

We pre-train the VAE on segmented speech
utterances from the CMU/IIITH Indic Speech
Database (cmu) (Prahallad et al., 2012). The
database contains raw speech utterances in 8 lan-
guages, namely Bengali, Gujarati, Hindi, Kannada,
Marathi, Punjabi, Tamil and Telugu. The raw audio
is converted to a Mel spectrogram (with 40 Mel
filter banks and FFT window of size 1024 units).
The Mel spectrogram is then segmented along the
time axis, with an overlapping window of 4 units,
producing a sequence of spectrograms, each of di-
mensions (40 × 20). The VAE is then trained to
learn representations for these small segments (ut-
terances) in an unsupervised manner.

Similar pre-processing is applied on each speech
utterance, prior to training the sequence models, to
create a sequence of spectrograms, each of dimen-
sions (40× 20), which are then passed through the
pre-trained VAE encoder to produce a sequence of
representation vectors, each of size 128 units.

The sequence models are trained on the above
pre-processed speech data. We use cross-entropy
between the output logits and the labels as the
loss metric, which is minimized using Adam opti-
mizer (Kingma and Ba, 2014), with learning rate
of 10−4, β1 of 0.999, β2 of 0.99 and weight decay

337

Table 1: Comparison of models

Model Accuracy
GMM-HMM (3 languages) (Shikhamoni Nath) 86.1%

GMM + spec-pros feat (8 languages) (Vempada et al., 2013) 58.45%
DNN (8 languages) (Vuddagiri et al., 2018) 83.17%

DNN-WA (8 languages) (Vuddagiri et al., 2018) 86.10%
VAE + Bi-LSTM (1 layer) with Self-Attention 88.24%
VAE + Bi-LSTM (2 layers) with Self-Attention 89.25%
VAE + Bi-LSTM with Soft-Aligned Attention 87.56%

VAE + RCNN 86.72%
VAE + Transformer 86.22%

of 10−5.
The results obtained on the testing set are shown

in Table 1 compared with GMM-HMM based ap-
proach (Shikhamoni Nath), GMM along with spec-
tral and prosodic features (Vempada et al., 2013),
Deep Neural Network based approach (Vuddagiri
et al., 2018) and DNN with Attention (Vuddagiri
et al., 2018). In the table, the results are mapped
to the 8 languages under consideration. The con-
fusion matrices obtained for each sequence model
are shown in Figure 2 (Appendix). We clearly see
that deep learning based approaches outperform
feature engineering and classical approaches. Our
approach shows a performance gain in terms of
accuracy compared to previous deep learning ap-
proaches as well.

5 Conclusion

In this paper, we have introduced a new framework
for Indian language identification using VAE rep-
resentation learning and state-of-the-art sequence
models to capture the temporal characteristics of
speech. The framework performs well on identifi-
cation of 8 well known languages. The framework
also helps improve language identification in the
future as sequence models in natural language pro-
cessing become better capturing long range depen-
dencies and other temporal aspects of sequences. It
can be applied in several other speech processing
scenarios as well where the task requires represen-
tation learning from speech utterances and subse-
quent classification using a sequence model. We
see VAEs are powerful probabilistic models which
can learn useful representation from speech utter-
ances and these representations can be utilized in
several downstream tasks.

References
CMU Indic speech synthesis databases. http://
festvox.org/cmu_indic/.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Aarti Bakshi and Sunil Kumar Kopparapu. 2017. Spo-
ken indian language classification using artificial
neural network — an experimental study. pages
424–430.

Christian Bartz, Tom Herold, Haojin Yang, and
Christoph Meinel. 2017. Language identification
using deep convolutional recurrent neural networks.
ArXiv, abs/1708.04811.

Jianpeng Cheng, Li Dong, and Mirella Lapata. 2016.
Long short-term memory-networks for machine
reading. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing,
pages 551–561, Austin, Texas. Association for Com-
putational Linguistics.

Javier Gonzalez-Dominguez, I. Lopez-Moreno, H. Sak,
J. Gonzalez-Rodriguez, and Pedro Moreno. 2014.
Automatic language identification using long short-
term memory recurrent neural networks. Pro-
ceedings of the Annual Conference of the Interna-
tional Speech Communication Association, INTER-
SPEECH, pages 2155–2159.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Comput.,
9(8):1735–1780.

Wei-Ning Hsu, Yu Zhang, and James Glass. 2017.
Learning latent representations for speech gener-
ation and transformation. In Interspeech, pages
1273–1277.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

338

Diederik P. Kingma and Max Welling. 2013. Auto-
encoding variational bayes. CoRR, abs/1312.6114.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao.
2015. Recurrent convolutional neural networks for
text classification. In Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence,
AAAI’15, pages 2267–2273. AAAI Press.

Metso Leena, K. Srinivasa Rao, and Bayya Yegna-
narayana. 2005. Neural network classifiers for lan-
guage identification using phonotactic and prosodic
features. Proceedings of 2005 International Confer-
ence on Intelligent Sensing and Information Process-
ing, 2005., pages 404–408.

Yun Lei, Luciana Ferrer, Aaron Lawson, Mitchell
McLaren, and Nicolas Scheffer. 2014. Application
of convolutional neural networks to language identi-
fication in noisy conditions. In Odyssey.

Liang Wang, E. Ambikairajah, and E. H. C. Choi.
2006. Multi-lingual phoneme recognition and lan-
guage identification using phonotactic information.
In 18th International Conference on Pattern Recog-
nition (ICPR’06), volume 4, pages 245–248.

L. V. D. Maaten and Geoffrey E. Hinton. 2008. Visual-
izing data using t-sne. Journal of Machine Learning
Research, 9:2579–2605.

Tirusha Mandava and Anil Kumar Vuppala. 2019. At-
tention based residual-time delay neural network for
indian language identification. 2019 Twelfth Inter-
national Conference on Contemporary Computing
(IC3), pages 1–5.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. In Proceedings of the 26th International Con-
ference on Neural Information Processing Systems -
Volume 2, NIPS’13, pages 3111–3119, USA. Curran
Associates Inc.

V. MounikaK., Sivanand Achanta, R. LakshmiH.,
Suryakanth V. Gangashetty, and Anil Kumar Vup-
pala. 2016. An investigation of deep neural network
architectures for language recognition in indian lan-
guages. In INTERSPEECH.

K. Prahallad, Naresh Kumar Elluru, Venkatesh Keri,
S. Rajendran, and A. Black. 2012. The iiit-h indic
speech databases. In INTERSPEECH.

Sarthak, Shikhar Shukla, and Govind Mittal. 2019.
Spoken language identification using convnets. In
European Conference on Ambient Intelligence.

M. Schuster and K.K. Paliwal. 1997. Bidirectional
recurrent neural networks. Trans. Sig. Proc.,
45(11):2673–2681.

Priyankoo Sarmah Samudravijaya K Shikhamoni Nath,
Joyshree Chakraborty. Machine identification of
spoken indian languages.

Ramakrishna Thirumuru, Ravikumar Vuddagiri, Kr-
ishna Gurugubelli, and Anil Kumar Vuppala. 2018.
Significance of accuracy in vowel region detection
for robust language identification. 2018 5th Inter-
national Conference on Signal Processing and Inte-
grated Networks (SPIN), pages 826–830.

Rong Tong, Bin Ma, Donglai Zhu, Haizhou Li, and
Eng Chng. 2006. Integrating acoustic, prosodic and
phonotactic features for spoken language identifica-
tion. volume 1, pages I – I.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Ramu Vempada, Sudhamay Maity, and K. Rao. 2013.
Identification of indian languages using multi-level
spectral and prosodic features. International Jour-
nal of Speech Technology, 16.

Ravi Kumar Vuddagiri, Krishna Gurugubelli, Priyam
Jain, Hari Krishna Vydana, and Anil Kumar Vup-
pala. 2018. IIITH-ILSC Speech Database for Indain
Language Identification . In Proc. The 6th Intl.
Workshop on Spoken Language Technologies for
Under-Resourced Languages, pages 56–60.

A Appendices

A.1 Qualitative Analysis
The T-SNE (Maaten and Hinton, 2008) embedding
space of the representation in the last hidden layer
assigned by each sequence model are shown in Fig-
ure 3. The visualizations give important deductions
regarding the origins of each language considered.

In each T-SNE embedding space plot, we ob-
serve that Bengali and Hindi clusters appear close
to each other, as Bengali and Hindi are indeed sim-
ilar languages. Similar is the case with Marathi
and Gujarati clusters, geographically being neigh-
bouring states in India. The clusters of the South
Indian languages of Tamil, Telugu and Kannada,
geographically being neighbouring states, must ap-
pear near each other which prevails in most of
the embedding space plots. The Punjabi cluster
appears near the clusters of the South Indian lan-
guages of Tamil, Telugu and Kannada, an error
which prevails in all the embedding space plots.
There is clear distinction between the South In-
dian languages (believed to have Dravidian roots)
and the North Indian languages (believed to have
Indo-Aryan roots) in each embedding space, an
important experimental finding.

339

(a) Bi-LSTM with Self Attention (1 layer) (b) Bi-LSTM with Self Attention (2 layers) (c) Bi-LSTM with Soft Aligned Attention

(d) RCNN (e) Transformer

Figure 2: Confusion matrices for each sequence model on test data. The corresponding labels are 0 for Bengali, 1
for Gujarati, 2 for Hindi, 3 for Kannada, 4 for Marathi, 5 for Punjabi, 6 for Tamil and 7 for Telugu.

(a) Bi-LSTM with Self Attention (1 layer) (b) Bi-LSTM with Self Attention (2 layers) (c) Bi-LSTM with Soft Aligned Attention

(d) RCNN (e) Transformer

Figure 3: T-SNE embedding space of representations in the last hidden layer assigned by each sequence model on
test data.

340

Proceedings of the 17th International Conference on Natural Language Processing, pages 341–348
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

`

Abstract

Acoustically, English lexical stress is

multidimensional and involving

manipulation of duration, intensity,

fundamental frequency (F0) and vowel

quality. The current study investigates the

acquisition of English lexical stress by L1

Bengali speakers at the phonological level

in terms of the properties of acoustic cues.

For this purpose, this study compares 20

L1 Bengali speakers' use of acoustic

correlates for the production of English

lexical stress in context sentence and

neutral frame sentence. The result of this

study showed that L1 Bengali speakers

were not able to achieve neutral frame

sentence like control over duration,

intensity, F0 and to a limited extent vowel

quality in context sentence. As a result,

unlike neutral frame sentence, L1 Bengali

speakers were not sensitive to English

lexical stress contrast in context sentence.

This analysis reveals that, the difference

between the neutral frame and context

sentences in terms of L1 Bengali speakers’

realization of phonology of English lexical

stress contrast was probably due to the

influence of Bengali phonology of lexical

stress placement (restricted to the initial

syllable of a word) on L1 Bengali

speakers’ English speech.

1 Introduction

Stress is one of the most important

suprasegmental features in speech prosody. In

linguistics, stress is the relative emphasis that may

be given to certain syllables in a word, or to

certain words in a phrase or sentence. English is a

stress-accent language (Beckman, 1986) and

English lexical stress is contrastive in nature and

related to part-of-speech (Campbell and

Beckman, 1997). At phonetic level, English

lexical stress is acoustically related to

combination of fundamental frequency (F0),

duration, intensity and vowel quality (Lieberman,

1960; Sluijter and Heuven, 1996). At

phonological level, the location of English

stressed syllable depends on factors such as

syllable structure and lexical class. If a syllable

has a long vowel, it is likely to receive primary

stress, and in case of English disyllabic words, the

location of stress on first or second syllable led

the word to be identified as a noun or a verb

respectively (Archibald, 2014; Major, 2001). As

English continues to grow in importance as a

language for international communication

throughout the world, it is necessary for L1

Bengali speakers to acquire The English language

properly. From the theory of second language

acquisition, it is suggested that proper acquisition

involves in correct production of one of the most

important suprasegmental features that is lexical

stress (Weinreich, 1979; Wode, 1978). Unlike

English, word stress placement in Bengali is

restricted to the initial syllable of a word (Hayes

and Lahiri, 1991) and is not contrastive in nature

(Chatterji, 1921). Bengali lexical stress is

expressed by a combination of pitch, duration,

and intensity; but stress does not affect vowel

quality in Bengali (Chatterji, 1921; Emeneau,

1956). Although F0, intensity, duration serve as

cues to lexical stress in Bengali, the stress in a

word is dominantly realized by a low rising pitch

pattern, where the F0 movement consists of a low

F0 valley followed by a rise (Hayes and Lahiri,

1991), and there is very little use of intensity to

identify stress in Bengali (Khan, 2008).

There are fundamental differences in stress

properties between English and Bengali languages

at phonetic and phonological levels. At phonetic

level, unlike English, vowel quality does not serve

as the acoustic cue of Bengali lexical stress. Saha

and Mandal (2015) previously showed that L1

Bengali speakers used the acoustic cues of vowel

duration, intensity and F0 in English like manner.

Moreover, L1 Bengali speakers produced English

like vowel quality in certain unstressed syllables,

 Acoustic Analysis of Native (L1) Bengali Speakers’ Phonological Realization of

English Lexical Stress Contrast

 Shambhu Nath Saha Shyamal Kr. Das Mandal
 Department of Information Technology Centre for Educational Technology

 Narula Institute of Technology Indian Institute of Technology

Shyamal Kr. Das Mandal

 Kolkata, India Kharagpur, India
 shambhunath.saha@nit.ac.in sdasmandal@cet.iitkgp.ernet.in

341

`

but in other cases, there were significant

differences in vowel quality across groups. As a

result, Bengali speakers produced significantly

less English like stress patterns. This was due to

interference from L1 to L2 (nonnative) at the

phonetic level. At phonological level, Bengali

differs from English in that Bengali is bound

stressed language, but the occurrence of the

strongest stress at the beginning of a word is not a

phenomenon appearing very commonly in

English. This leads to major problems with

acquiring correct stress placement habits for L1

Bengali speakers in their English speech.

The current study concentrates on the

acquisition of phonology of English lexical stress

placement by L1 Bengali speakers. The objective

of this study is to investigate the realization of the

phonology of English lexical stress by L1 Bengali

speakers who were fluent in English. For this

purpose, examine the differences between the

uses of acoustic correlates of English lexical stress

by L1 Bengali speakers under the conditions,

where the position of stress to be placed in the

target words in context sentence was unknown

and the position of stress to be placed in the target

words in neutral frame sentence was known to L1

Bengali speakers.

2 Method

2.1 Speakers

In this study, 20 L1 speakers (8 male, 12 female)

of Standard Colloquial Bengali (SCB) were

participated. L1 Bengali speakers were in the age

group between 20 to 35 years. They were all

originally from Kolkata in West Bengal and had

either completed undergraduate degree studies or

were continuing their postgraduate degree studies.

Moreover, the L1 Bengali speakers had studied

English as a second language for a minimum of

ten years and were fluent in English.

2.2 Materials and Procedure

Seven pairs of disyllabic words given in Table 1

were selected following the methodology of

Beckman (1986) and Fry (1955). Each word pair

consisted of a noun and a verb that had identical

spelling forms and differed only regarding stress

placement. The words were randomly presented

and were pronounced three times each by L1

Bengali speakers at their normal speech rate in the

neutral frame sentence ‘I said test word this time’.

The stressed syllable of each target word in

neutral frame sentence was marked on the reading

text for speakers.

Noun
IPA

Notation
Verb

IPA

Notation

`contract `kɑ:ntrækt con`tract kən`trækt

`desert `dezɚt de`sert dI`zɚt

`object `abʤekt ob`ject əb`ʤekt

`permit `pɝmIt per`mit pɚ`mIt

`rebel `rebəl re`bel rI`bel

`record `rekərd re`cord rI`kɔ:rd

`subject `sʌbʤekt sub`ject səb`ʤekt

Table 1: Disyllabic words with contrasting stress

positions.

Furthermore, each disyllabic target word was

placed in context sentences which were shown in

Table 2.

Table 2: Disyllabic words in context sentences with

contrasting stress positions.

But stressed syllable of each target word in

context sentence was not marked; i.e., speakers

were not informed about the proper location of

stress in the target words. The target words were

randomly presented and were pronounced three

times each by L1 Bengali speakers at their normal

speech rate in the context sentences (Fry, 1958).

The speech was recorded by using AESOP’s

(Visceglia et al., 2009) recording toolkit with

Target

Word

Noun/

Verb
Context Sentence

contract noun
Mr. Smith has finally agreed

to sign the new contract.

contract verb
Will steel contract when it is

cooled?

desert noun They got lost in the desert.

desert verb Will he desert his team?

object noun
What is the object on the

table?

object verb
They won’t object to your

decision.

permit noun
In order to park here, you

need a permit.

permit verb
Would you permit her

request?

rebel noun The rebel army did this.

rebel verb
They rebelled at this

unwelcome suggestion.

record noun
Can I get a copy of my

health record?

record verb
She recorded all songs her

daughter sang yesterday.

subject noun
What is the subject of this

sentence?

subject verb
Must you subject me to this

boring twaddle?

342

`

AESOP's specified recording platform. For the

fluency of reading, the speakers were instructed to

read out the text several times before recording

and read the material aloud. The speech was

digitized at a sampling rate 16 kHz with an

accuracy of 16 bits/sample.

2.3 Measurements

Using Praat acoustic analysis software (Boersma

and Weenink, 2004), stressed and unstressed

vowels of each test word were examined

acoustically for duration; the average, peak and

lowest F0; average and peak intensity. The

intensity measure was calculated as the mean of

multiple intensity values extracted and smoothed

over the number of time points. F0 measures were

measured as the average value over entire vowel,

where the pitch range for female speakers was set

to 100-500 Hz and 75-300 Hz for male speakers.

F1 and F2 of all vowels were measured at the

middle point of their steady state and these

computed formant frequencies were then

averaged across the each entire vowel. The

statistical analysis was done by SPSS, where two

way mixed factorial analysis of variance

(ANOVA) was performed with sentence type

(neutral frame or context) as between subjects

variable and stress position (1st syllable or 2nd

syllable) as the within subjects variable for the

originally measured values of each acoustic

variable. All post-hoc tests (LSD) were performed

with critical p value of 0.05.

3 Results and Discussions

3.1 Duration

In this study, durations of first syllable's vowel

(V1) and second syllable's vowel (V2) of each test

word in the neutral frame and context sentences

were measured (in ms), and the results are shown

in Table 3 and Table 4 and Figure 1 and

Figure 2. From these results, it is observed that

stressed vowels were longer than unstressed

vowels in neutral frame sentence; but in the case

of context sentence, L1 Bengali speakers

produced stressed vowel and its unstressed

counterpart with almost equal duration. Results of

the analysis of vowel duration showed that there

were significant main effect of sentence type [for

V1: F(1,38) = 21.34, p < 0.001; for

V2: F(1,38) = 33.31, p < 0.001], significant main

effect of stress position [for V1: F(1,38) = 238.82,

p < 0.001; for V2 : F(1,38) = 228.27, p < 0.001],

as well as significant interaction between sentence

type and stress position [for V1: F(1,38) = 165.49,

p < 0.001; for V2 : F(1,38) = 157.98, p < 0.001].

This result indicates that there was a significant

difference in the effect of stress on vowel duration

between neutral frame and context sentences.

Table 3: Average duration of V1 (ms) in differing

stress locations.

Table 4: Average duration of V2 (ms) in differing

stress locations.

Figure 1: Average duration of V1 (ms) in differing

stress locations of neutral frame and context sentences

by L1 Bengali speakers.

Figure 2: Average duration of V2 (ms) in differing

stress locations of neutral frame and context sentences

by L1 Bengali speakers.

Neutral Frame

Sentence
Context Sentence

1st

syllable

stressed

2nd

syllable

stressed

1st

syllable

stressed

2nd

syllable

stressed

92.71 71.31 68.81 66.86

Neutral Frame

Sentence
Context Sentence

1st

syllable

stressed

2nd

syllable

stressed

1st

syllable

stressed

2nd

syllable

stressed

74.18 99.42 64.63 66.95

343

`

The interaction effect and post-hoc test (based

on sentence type) showed that there was

significant difference between duration of stressed

vowel and its unstressed counterpart for neutral

frame sentence [V1: p = 0.000000000087,

p < 0.05; V2: p = 0.00000000019, p < 0.05]; that

means stressed V1 or stressed V2 was longer than

unstressed V1 or unstressed V2 respectively. But

in case of context sentence, there was not

statistically significant difference between

duration of stressed vowel and its unstressed

counterpart [V1: p= 0.075, p > 0.05; V2: p = 0.08,

p > 0.05]; this indicates that L1 Bengali speakers

produced stressed vowel and its unstressed

version of target words in context sentence with

almost equal duration unlike neutral frame

sentence. This was due to the influence of Bengali

phonology, where the first syllable of a word is

always stressed; as a result, L1 Bengali speakers'

tendency was to put stress on the first syllable of

each disyllabic target word in context sentence

regardless of English lexical stress contrast.

3.2 Intensity

In this study, the peak and average intensity of all

vowels in the disyllabic target words in the neutral

frame and context sentences were measured (in

dB). The ratio between V1 and V2 vowels within

the same word was obtained, and the results are

shown in Table 5 and Table 6 and Figure 3 and

Figure 4.

Table 5: Average intensity ratio of V1/V2 (%) in

differing stress locations.

Table 6: Peak intensity ratio of V1/V2 (%) in

differing stress locations.

From these results, it is observed that stressed

vowels were longer than unstressed vowels in

neutral frame sentence; but in the case of context

sentence, L1 Bengali speakers produced stressed

vowel and its unstressed counterpart with almost

equal duration.

Figure 3: Average intensity ratio of V1/V2 (%) in

differing stress locations of neutral frame and context

sentences by L1 Bengali speakers.

Figure 4: Peak intensity ratio of V1/V2 (%) in

differing stress locations of neutral frame and context

sentences by L1 Bengali speakers.

Results of the analysis of vowel duration

showed that there were significant main effect of

sentence type [for V1: F(1,38) = 21.34, p < 0.001;

for V2: F(1,38) = 33.31,p < 0.001], significant

main effect of stress position [for V1:

F(1,38) = 238.82, p < 0.001; for V2 :

F(1,38) = 228.27, p < 0.001], as well as

significant interaction between sentence type and

stress position [for V1: F(1,38) = 165.49,

p < 0.001; for V2 : F(1,38) = 157.98, p < 0.001].

This result indicates that there was a significant

difference in the effect of stress on vowel duration

between neutral frame and context sentences. The

interaction effect and post-hoc test (based on

sentence type) showed that there was significant

difference between duration of stressed vowel and

its unstressed counterpart for neutral frame

sentence [V1: p = 0.000000000087, p < 0.05;

V2: p = 0.00000000019, p < 0.05]; that means

Neutral Frame

Sentence
Context Sentence

1st

syllable

stressed

2nd

syllable

stressed

1st

syllable

stressed

2nd

syllable

stressed

105.05 94.62 105.03 103.25

Neutral Frame

Sentence
Context Sentence

1st

syllable

stressed

2nd

syllable

stressed

1st

syllable

stressed

2nd

syllable

stressed

104.98 94.56 105.23 103.44

344

`

stressed V1 or stressed V2 was longer than

unstressed V1 or unstressed V2 respectively. But

in case of context sentence, there was not

statistically significant difference between

duration of stressed vowel and its unstressed

counterpart [V1: p = 0.075, p > 0.05;

V2: p = 0.08, p > 0.05]; this result indicates that

L1 Bengali speakers produced stressed vowel and

its unstressed version of target words in context

sentence with almost equal duration unlike neutral

frame sentence. This was due to the influence of

Bengali phonology, where the first syllable of a

word is always stressed; as a result, L1 Bengali

speakers' tendency was to put stress on the first

syllable of each disyllabic target word in context

sentence regardless of English lexical stress

contrast.

3.3 Fundamental Frequency (F0)

The average F0 of all vowels, peak F0 of stressed

vowels and lowest F0 of unstressed vowels in

target words were measured (in Hz) for both

types of sentences. The ratio between stressed

and unstressed vowels within the same disyllabic

word for average F0 and peak and lowest F0 was

obtained, and the results are shown in Table 7

and Table 8 and Figure 5 and Figure 6. From

these results, it is observed that V1/V2 ratios

were over 100% for average F0 and peak/lowest

F0 when V1 or V2 was stressed for both sentence

types. This result suggests that when vowels

were stressed, F0s were increased for both

sentence types. Results of the analysis of average

and peak/lowest F0 ratios showed significant

main effect of sentence type [for average F0

ratio: F(1,38) = 41.84, p < 0.001; for peak

F0/lowest F0 ratio: F(1, 38) = 83.42, p < 0.001],

significant main effect of stress position [for

average F0 ratio: F(1,38) = 43.98, p < 0.001; for

peak F0/lowest F0 ratio: F(1,38) = 51.01,

p < 0.001] and significant interaction between

sentence type and stress position [for average F0

ratio: F(1,38) = 30.93, p < 0.001; for peak

F0/lowest F0 ratio: F(1,38) = 21.34, p < 0.001].

This result implies that there was a significant

difference in the effect of stress position on F0 of

vowels in disyllabic target words between the

neutral frame and context sentences for L1

Bengali speakers. The interaction effect and

post-hoc test (based on sentence type) showed

that there was significant difference between

average F0 ratio of V1/V2 [p = 0.00000000018,

p < 0.05] as well as the ratio between peak and

lowest F0s [p = 0.00000000044, p < 0.05] in

differing stress locations for neutral frame

sentence. This result indicates that, for neutral

frame sentence, the average F0 ratio of V1/V2

and peak and the lowest F0 ratio of V1/V2 were

significantly higher when V1 was stressed

compared to V2 was stressed. But there was not

statistically significant difference between

average F0 ratio of V1/V2 [p = 0.45, p > 0.05] as

well as the ratio between peak and lowest F0s

[p = 0.083, p > 0.05] in differing stress locations

for context sentence. This result implies that

V1/V2 ratio was almost equal in differing stress

locations for average F0 ratio as well as peak and

lowest F0 ratio for context sentence, unlike

neutral frame sentence.

Table 7: Average F0 ratio of V1/V2 (%) in differing

stress locations.

 Table 8: Peak & lowest F0 ratio of V1/V2 (%) in

differing stress locations.

That means the increase in F0 of V1 was

significantly higher than that of V2 in the same

disyllabic target word of context sentence in

differing stress locations. From this result, it is

revealed that, due to the interference of Bengali

phonology, V1 was always stressed instead of V2

of the same disyllabic target word in context

sentence by L1 Bengali speakers regardless of

recognizing English lexical stress contrast.

Figure 5: Average F0 ratio of V1/V2 (%) in differing

stress locations of neutral frame and context sentences

by L1 Bengali speakers.

Neutral Frame

Sentence
Context Sentence

1st

syllable

stressed

2nd

syllable

stressed

1st

syllable

stressed

2nd

syllable

stressed

117.4 109.65 105.6 104.92

Neutral Frame

Sentence
Context Sentence

1st

syllable

stressed

2nd

syllable

stressed

1st

syllable

stressed

2nd

syllable

stressed

122.1 112.22 106.57 104.46

345

`

Figure 6: Peak and lowest F0 ratio of V1/V2 (%) in

differing stress locations of neutral frame and context

sentences by L1 Bengali speakers.

3.4 Vowel Quality

Vowel quality is defined in terms of first (F1) and

second (F2) formant frequencies (Kul, 2010). In

this study, formant spacing was used to quantify

the property of vowel quality, where two

measures are derived from the center frequencies

of F1 and F2 (Blomgren et al., 1998; Amir and

Amir, 2007). The compact-diffuse (C-D),

calculated as the difference between F1 and F2

(F2-F1), is correlated with the phonetic property

of tongue height. The grave-acute (G-A) feature,

calculated as the arithmetic mean of F1 and F2

[(F1+F2)/2], is correlated with the phonetic

dimension of the tongue advancement. For each

syllable in each word, separate ANOVAs were

performed for both C-D and G-A variables with

two factors – sentence type (between subjects

variable) and stress position (within-subjects

variable). Results of post-hoc test (LSD) at level

p < 0.05 are shown in Table 9, where S refers to

stressed syllables, U to unstressed syllables, NF to

production of neutral frame sentence and C to

production of context sentence by L1 Bengali

speakers. NF < C (NF > C) indicates that Bengali

speakers’ productions of a given syllable in

neutral frame sentence showed smaller (higher)

mean values of a given acoustic feature than did

context sentence.

Similarly, S < U (S > U) indicates smaller

(higher) mean values of a given acoustic feature

for stressed syllable compared to that of

unstressed syllable for the corresponding type of

sentence. From the result of analysis (shown in

Table 9), it is observed that Bengali speakers did

not show statistically significant difference in

their production of most of the stressed as well as

unstressed syllables between the neutral frame

and context sentences. Only exceptions were for

the syllables -tract (contract), -ject (object), -mit

(permit) and –re (record), in which the stressed or

unstressed or both versions did show the

significant difference between the neutral frame

and context sentences in terms of C-D or G-A or

both features. Overall five general patterns were

found from this analysis:

Type 1. Correct non-reduction: L1 Bengali

speakers did not reduce the vowel in the

following unstressed syllables of both neutral

frame and context sentences (no significant

differences were found for either C-D or G-A):

de- (desert), ob-(object), -cord (record).

Type 2. Lack of reduction: Unlike neutral

frame sentence, there was not found a significant

change in either C-D or G-A features from

stressed to unstressed versions of the following

syllables of context sentence: con- (contract),

-mit (permit), re- (rebel).

Type 3. Unexpected reduction: Unlike neutral

frame sentence, L1 Bengali speakers

significantly reduced unstressed vowel (in terms

of either C-D or G-A or both) in the following

syllables of context sentence: per- (permit),

re- (record).

Type 4. Incorrect reduction: In these syllables

of both neutral frame and context sentences,

there were significant differences between

stressed and unstressed vowels, but the

unstressed vowel of context sentence was in each

case significantly different (in terms of either

C-D or G-A, or both)from its neutral frame

counterpart. These syllables include: -tract

(contract), -ject (object).

Type 5. Correct reduction: Syllables in which

both neutral frame and context sentences show

the significant difference between stressed and

unstressed vowels. Moreover, there was not

statistically significant difference between

unstressed vowels of the neutral frame and

context sentences (in terms of either C-D or G-A

or both). These syllables include: -sert (desert),

-bel (rebel), sub- (subject), -ject (subject).

Based on these comparisons, it reveals that L1

Bengali speakers showed lots of similarity

between the neutral frame and context sentences

regarding stressed and to a limited extent

unstressed vowel productions.

346

`

Syllable Syllable Syllable

 Stressed / Unstressed Neutral Frame Sentence/Context Sentence

 Neutral Frame Sentence Context Sentence Stressed Unstressed

 C-D G-A C-D G-A C-D G-A C-D G-A

 con- S < U

 -tract S < U S > U S > U NF < C NF < C

 de-

 -sert S < U S < U S < U

 ob-

 -ject S < U S > U NF > C

 per- S < U

 -mit S > U NF > C

 re- S < U

 -bel S > U S > U

 re- S < U S < U NF > C NF > C

 -cord

 sub- S < U S < U S > U

 -ject S > U S > U

Table 9: Results of pair wise comparisons between formant measures for stressed and unstressed vowels by

syllable.

For most syllables, stressed vowels did not

show a significant difference between the neutral

frame and context sentences (Table 9, fifth and

sixth columns); the exceptions were -tract

(contract), -mit (permit), and re- (record). This

means that, for the majority of vowels used in the

stressed syllable, L1 Bengali speakers employed

approximately the similar quality and category of

vowels in both neutral frame and context

sentences. Furthermore, there was not statistically

significant difference in unstressed vowels of

most syllables between the neutral frame and

context sentences (Table 9, seventh and eighth

columns), with the exceptions of –tract (contract)

and –ject (object). This observation indicates that

L1 Bengali speakers produced similar degree and

quality of reduced vowels in most of the syllables

of both neutral frame and context sentences.

4 Conclusions

From the results of this study, it appears that L1

Bengali speakers showed a substantial difference

in use of the acoustic correlates of vowel duration,

intensity, and F0 of English lexical stress between

the neutral frame and context sentences. But, L1

Bengali speakers did not show the significant

difference in vowel quality of stressed syllable

between the neutral frame and context sentences

and L1 Bengali speakers reduced vowel in the

unstressed syllable with a similar degree and

quality in both types of sentences. This acoustic

analysis reveals that L1 Bengali speakers were not

able to achieve neutral frame sentence like control

over duration, intensity, F0 and to some extent

quality of stressed and unstressed vowels in

context sentence. This difference between both

types of sentences was probably due to the

interference from Bengali phonology of lexical

stress placement on L2 English, where L1 Bengali

speakers' tendency was to put stress on the first

syllable of each disyllabic target word in context

sentence without recognizing its lexical stress

contrast. Hence, results of this acoustic analysis

suggest that, although L1 Bengali speakers were

able to produce lexical stress contrast in neutral

frame sentence in an English-like manner, they

were not sensitive to English lexical stress

contrast in context sentence.

References

Mary. E. Beckman. 1986. Stress and non-stress

accent, volume 7.Walter de Gruyter.

Nick Campbell and Mary. E. Beckman. 1997. Stress,

prominence, and spectral tilt. In Proceedings of

ESCA Workshop on Intonation: Theory, Models

and Applications, pages 67–70.

Philip Lieberman. 1960. Some acoustic correlates of

word stress in American English. The Journal of

the Acoustical Society of America, 32(4): 451-454.

Agaath. M. Sluijter and Vincent. J. Van Heuven.1996.

Spectral balance as an acoustic correlate of

linguistic stress. The Journal of the Acoustical

society of America, 100(4): 2471-2485.

Syllable

347

`

John. Ed. Archibald. 2014. Phonological acquisition

and phonological theory. Psychology Press.

Roy. C. Major. 2001. Foreign accent: The ontogeny

and phylogeny of second language phonology.

Routledge.

Uriel Weinreich.1979. Languages in contact:

Findings and problems. Walter de Gruyter.

Henning Wode. 1978. The beginnings of non-school

room L2 phonological acquisition. IRAL-

International Review of Applied Linguistics in

Language Teaching, 16(1-4):109-126.

Bruce Hayes and Aditi Lahiri. 1991. Bengali

intonational phonology. Natural Language &

Linguistic Theory, 9(1): 47-96.

Suniti. K. Chatterji. 1921. Bengali Phonetics. Bulletin

of the School of Oriental and African Studies,

2:1-25.

Murray. B. Emeneau.1956. India as a linguistic area.

Language, 32(1): 3-16.

Sameer. U.D. Khan. 2008. Intonational Phonology

and Focus Prosody in Bengali (PhD Thesis).

University of California, Los Angeles.

Shambhu. N. Saha and Shyamal. K. Das. Mandal.

2015. Study of Acoustic Correlates of English

Lexical Stress Produced by Native (L1) Bengali

Speakers Compared to Native (L1) English

Speakers. In Proceedings of Annual Conference of

the International Speech Communication

Association, pages 815-819.

Dennis. B. Fry. 1955. Duration and intensity as

physical correlates of linguistic stress. The Journal

of the Acoustical Society of America,

27(4):765-768.

Dennis. B. Fry. 1958. Experiments in the perception

of stress. Language and speech, l (2):126-152.

Tanya Visceglia, Chiu-yu Tseng, Mariko Kondo,

Helen Meng, and Yoshinori Sagisaka.2009.

Phonetic aspects of content design in AESOP

(Asian English Speech cOrpus Project). In

Oriental COCOSDA International Conference on

Speech Database and Assessments, pages 60-65.

Paul Boersma and David Weenink. 2004.

http://www.fon.hum.uva.nl/praat/.

Małgorzata Kul. 2010. Towards a gradual scale of

vowel reduction: a pilot study. Poznan Studies in

Contemporary Linguistics, 46(4): 429-456.

Michael Blomgren, Michael Robb, and Yang Chen.

1998. A note on vowel centralization in stuttering

and nonstuttering individuals. Journal of Speech,

Language, and Hearing Research,

41(5): 1042-1051.

Noam Amir and Ofer Amir. 2007. Novel measures for

vowel reduction. In Proceedings of the 16th

International Congress of Phonetic Sciences,

pages 849-852.

348

Proceedings of the 17th International Conference on Natural Language Processing, pages 349–354
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Towards Performance Improvement in Indian Sign Language Recognition

Kinjal Mistree
Computer Engineering

Department
Uka Tarsadia University

Bardoli
kinjal.mistree

@utu.ac.in

Devendra Thakor
Computer Engineering

Department
Uka Tarsadia University

Bardoli
devendra.thakor

@utu.ac.in

Brijesh Bhatt
Computer Engineering

Department
Dharmsinh Desai University

Nadiad
brij.ce@ddu.ac.in

Abstract

Sign language is a complete natural language
used by deaf and dumb people. It has its
own grammar and it differs with spoken lan-
guage to a great extent. Since people with-
out hearing and speech impairment lack the
knowledge of the sign language, the deaf
and dumb people find it difficult to commu-
nicate with them. The conception of system
that would be able to translate the sign lan-
guage into text would facilitate understanding
of sign language without human interpreter.
This paper describes a systematic approach
that takes Indian Sign Language (ISL) video
as input and converts it into text using frame
sequence generator and image augmentation
techniques. By incorporating these two con-
cepts, we have increased dataset size and re-
duced overfitting. It is demonstrated that us-
ing simple image manipulation techniques and
batch of shifted frames of videos, performance
of sign language recognition can be signifi-
cantly improved. Approach described in this
paper achieves 99.57% accuracy on the dy-
namic gesture dataset of ISL.

1 Introduction

According to (Durkin and Conti-Ramsden, 2010),
sign language can be considered as a collection of
gestures, movements, postures, and facial expres-
sions corresponding to letters and words in spoken
languages. Comparing sign language with spoken
language, main difference exists on modality. Deaf
and dumb people use sign language as means of
communication to express their thoughts and emo-
tions. Each country has its own sign language with
high degree of grammatical variations. Indian sign
language is largely dominated by object features,
and is different than other sign languages.

Trained sign language interpreters are needed
during medical and legal appointments, educational
and training sessions, to provide interpreting ser-
vices. Over the past few years, there has been an

increasing demand for human interpreters. But
in India, approximately 300 certified human inter-
preters are available (vid). Given a shortage of
interpreting services, a system can be designed that
offers flexible alternative when human interpreters
are not available.

Sign language recognition is an approach that
converts input sign gesture(s) into text or speech.
Sign language recognition is a very challenging
task since this task involves interpretation between
visual and linguistic information. Deep neural net-
works (DNN) perform remarkably well for image
recognition task (Shorten and Khoshgoftaar, 2019).
But these networks are heavily reliant on big data,
otherwise they lead to overfitting. Overfitting refers
to the phenomenon when a network learns a func-
tion with very high variance such as to perfectly
model the training data (Shorten and Khoshgof-
taar, 2019). Strategies to avoid overfitting and
to increase generalization performance of DNNs
are dropout, batch normalization, transfer learning,
one-shot learning and pretraining. In contrast to
these techniques, data augmentation approaches
problem of overfitting and generalization from the
root of the problem, the training dataset. We have
adopted this concept on input videos for ISL recog-
nition to make dataset inflated.

In order to increase dataset size, we have created
sequence of frames in batches systematically. We
have proposed this approach to generate more in-
stances for ISL recognition task in order to achieve
better model performance. In particular, we have
addressed the issue of one research question: how
to use DNN with very small amount of input videos
in order to incorporate both left-handed and right-
handed signs without hurting recognition perfor-
mance of ISL sentences.

The rest of the paper is organized as follows: In
Section 2 we have discussed work related to Indian
sign language recognition. Section 3 explains steps
of our proposed approach in details. Section 4

349

shows dataset description and experimental results
along with analysis. Section 5 provides concluding
remarks and directions for future work.

2 Related Work

There are two approaches for sign language recog-
nition: 1) Device based approach and 2) Vision
based approach. Device based approach hinders
the natural movement of hands. Also, signer has to
wear gloves that are connected through computer
through cables. So device based approaches appear
to be complex, costly and difficult to deploy. Con-
sidering limitations of device based approach, we
have discussed related work with respect to vision
based approach in ISL recognition.

(Rekha et al., 2011) proposed an approach that
recognized 66 ISL dynamic samples of ISL alpha-
bets. These gestures were classified using Dynamic
Time Warping and approach achieved 77.2% accu-
racy. (Tripathi and Nandi, 2015) presented an ap-
proach for recognizing ISL sentences in ISL with
91% accuracy with Hidden Markov Model. Au-
thors recorded single handed and double handed dy-
namic samples from 10 sentences. Recognition rate
of 90.17% was achieved by (Kishore et al., 2016)
for 580 samples. Though these samples were not
recorded according to ISL grammar, this approach
worked for manual components of ISL. (Kumar
et al., 2016) used front camera of the mobile phone
for collecting dynamic signs. The authors achieved
90% accuracy by extracting hand and head contour
energies from the collected dynamic signs.

Issues like hand segmentation from upper half
of the body image, boundary changes depending
on hand shape of various signers are solved by
(Baranwal and Nandi, 2016) with 85% accuracy.
Authors have used Otsu thresholding method for
segmentation, Mel Sec Frequency Cepstral Coef-
ficients (MFCC) for feature extraction of 8 dy-
namic samples. 92% accuracy was achieved by
(Baranwal et al., 2017) using concept of possi-
bility theory on 20 different videos of continu-
ous gestures. These videos were captured in dif-
ferent backgrounds like black, red, multiple ob-
jects with black full sleeves dress. (Wazalwar and
Shrawankar, 2017) used pseudo 2-dimensional Hid-
den Markov Model (P2DHMM) for feature extrac-
tion, which was proven better than simple Hidden
Markov Model. For converting recognized signs
in English text, LALR parser was used and 90%
accuracy was achieved. (Muthu Mariappan and Go-

mathi, 2019) proposed an approach that extracted
head and hand contour energies using front cam-
era of the mobile for collecting signs.Approach
presented by (Sahoo and Ravulakollu, 2014) used
skin color segmentation and artificial neural net-
work (ANN). This approach worked for specific
signer as ANN was trained by taking face and hand
features of specific signer.

As far as reserach in ISL is concerned, after
nearly 35 years of research, ISL is still in infancy
when compared to other international sign lan-
guages. All the approaches described here work
under controlled laboratory setting and use feature
extraction techniques. This motivated us to work
for ISL recognition by doing generalized settings
in very limited amount of input data without de-
creasing accuracy of ISL recognition.

3 Method

The details of the dataset are described in the Sec-
tion 4. In this section we describe the steps of the
approach we followed to convert ISL video into
text. Figure 1 shows the general framework of our
approach.

3.1 Video to frame conversion

Each ISL input video is converted in RGB frames.
Videos were originally captured at 30 fps, so ac-
cordingly frames are generated for each video of
different length.

3.2 Horizontal flipping

Signer is either left-handed or right-handed. On the
batch of frames, horizonal flipping is performed
in order to incorporate both left-handed and right-
handed signs.

3.3 Frame sequence generator with data
augmentation

To identify main frames, one possibility is that we
pick N distributed frames from the entire video.
But this works only with fixed length of video as
we may lose important information from frames.
To address this issue, we have created a video gen-
erator that provides decomposed frames for the en-
tire video in sequential form to get more sequences
from one video file. For each 30 FPS video we
have used this video generator to select 5 frames
per second. We have decided to select every 6th

frame based on analysis of histogram difference
in frames. For each individual video, frames are

350

Figure 1: General framework of frame sequence generator based approach

selected in batches in order to get a set of shifted
frames, such as first batch has frames 1, 7, 13, 19,
25 in sequence; second batch has frames 2, 8, 14,
20, 26 in sequence and so on.

This custom generator supports image aug-
mentation techniques. On the resultant im-
ages after frame sequence generator, geometric
transformations- zooming, rotation, vertical shift-
ing, horizontal shifting; and photometric trans-
formations, augmentation on brightness are per-
formed.

(Perez and Wang, 2017) have discussed how
to produce promising ways to increase the accu-
racy of classification tasks using data augmentation.
We have decided to work with augmentation tech-
niques based on two aspects: various video record-
ing conditions and hardware dependency. For end-
to-end ISL recognition, the environment in which
signers perform signs under lighting and camera
settings may be different. Signers may use differ-
ent hardware devices such as camera, smartphone,
tablets, computer with different resolutions and
view. These variances are addressed by training the
deep learning model with randomly selected aug-
mentation types within range of parameters. We
have shown that training the recognizer with in-
flated data with randomness in augmentation gives
remarkable improvement in accuracy. Image aug-
mentation types and parameters were randomly
selected with frame sequence generator.

3.4 Training with MbileNetV2 + RNN

Image augmentation increases the size of the
dataset which is originally very small but the data
similarity is still very high. Transfer learning works
well with limited and similar data samples by trans-
ferring knowledge from models pretrained on large
datasets. Among the popular pretrained models,
we have used MobileNetV2 as it is light-weight,
low-latency deep neural network best suited with

restricted resources in mobile and embedded vision
applications (Sandler et al., 2018). We have empir-
ically changed the configuration of the top layers
of the MobileNetV2 model in order to get the best
recognition accuracy. Based on this, top 9 layers
of the model are selected for retraining with the
augmented frame sequence. This is injected in one
time-distributed layer at the end to have the one-
dimensional shape compatible with LSTM layer.
Finally, dense layer is added to get the prediction
of ISL word.

4 Experimental Results and Analysis

In this section, we present the details of the dataset
and the experimental results with analysis.

4.1 Dataset

(Nandy et al., 2010) created repository of static and
dynamic hand gestures of 21 specific kind of ISL
words under various light illumination conditions.
Out of 21 classes, 11 classes corresponds to dy-
namic hand gestures and 10 classes corresponds to
static hand gestures. The dataset was created in July
2009 at the Robotics and AI Lab, IIIT-Allahabad,
having frame resolution of 320 * 240 pixels. Statis-
tics of training, validation and testing samples used
in work are shown in Table 1.

4.2 Results and analysis

Training and testing data used by us was prepared
under various light illumination conditions but with
identical camera settings. As discussed in previ-
ous section, we have chosen parameter range in
order to incorporate randomness in sample gener-
ation. We have excluded horizontal flipping from
this set of augmentation techniques because we al-
ready inflated dataset in order to incorporate both
left-handed as well as right-handed signs. Table 2
shows type of augmentation techniques and param-
eter range used for our experiments.

351

Parameters Values
No. of classes (ISL words) 10
Training samples 79
Validation samples 15
Testing samples 27
Training samples after horizontal flipping 158
Validation samples after horizontal flipping 30
Testing samples after horizontal flipping 54
No. of training sequences after using frame sequence generator 12692
No. of validation sequences after using frame sequence generator 2443
No. of testing sequences after using frame sequence generator 4082

Table 1: Image sequences after using frame sequence generator with data augmentation

Figure 2: Sample frames 5, 11, 17, 23 and 29 for sign ’below’ as per selection by frame sequence generator. This
frame set is result of frame sequence generator + image augmentation techniques.

Figure 3: Another set of frames 2, 8, 14, 20 and 26 for sign ’below’ as result of frame sequence generator + image
augmentation techniques.

Figure 4: Sample frames 3, 9, 15, 21 and 27 for sign ’below’ as per selection by frame sequence generator. This
frame set is result of horizonal flipping + frame sequence generator + image augmentation techniques.

Augmentation Type Parameter Range
Zooming [0.7, 1]
Rotation [0, 15]
Vertical shifting [0, 0.3]
Horizontal shifting [0, 0.3]
Brightness [0.2, 1.0]
Shear angle [0, 0.3]

Table 2: Augmentation techniques and range of param-
eters used for each ISL input video

Figure 2, 3 and 4 shows various frame sequences
generated by video generator for sign ’below’, us-
ing frame sequence generator.

By following the steps explained in the previ-
ous section, an experiment was conducted on ISL
dynamic gesture dataset for 10 categories of ISL
words. Table 3 shows model performance on ISL
dynamic gesture dataset using MobilNetV2 + RNN,
by keeping top 6, 9 and 12 layers trainable, while
keeping other layers of model frozen. We have
achieved recognition accuracy as 99.57% when
keeping last 9 layers trainable, which outperforms
the overall accuracy reported by (Nandy et al.,
2010).

Figure 5 and Figure 6 shows plot of accuracy and

352

MobileNetV2+RNN Trainable layers = 6 Trainable layers = 9 Trainable layers = 12
Training accuracy 98.33% 99.41% 93.12%
Validation accuracy 98.67% 100% 93.85%
Testing accuracy 93.91% 99.57% 94.15%
Training loss 0.2134 0.0313 0.3874
Validation loss 0.0976 0.0010 0.2916
Testing loss 0.0841 0.0016 0.0287

Table 3: Model performance on ISL dynamic gesture dataset

loss, by keeping last 9 and layers as trainable. We
have trained model for 40 epochs and used early
stopping on validation loss, so the training gets
stopped when there is no significant improvement
in accuracy after 3 continuous epochs.

Figure 5: Training and validation accuracy by keeping
last 9 layers trainable using MobileNetV2+RNN

Figure 6: Training and validation loss by keeping last
9 layers trainable using MobileNetV2+RNN

Approach Accuracy
(Nandy et al., 2010) 81.94%
Our method 99.57%

Table 4: Accuracy of proposed approach on ISL dy-
namic gesture dataset

Table 4 shows comparison of recognition result
in terms of accuracy, for approach presented by

(Nandy et al., 2010) and our approach. In previ-
ous work, results for 11 ISL words are presented.
We have excluded result of class ’Yes’ as dataset
provided by authors has not sufficient samples for
sign ’Yes’. Also, we have used less number of
training, validation and testing samples in order to
evidently prove the effect of our proposed approach
in classification.

5 Conclusion and Future work

It becomes a challenging task when we want to
achieve more accuracy with less number of sam-
ples in generalized environment. Deep learning
gives promising results than other traditional algo-
rithms in computer vision task as they learn fea-
tures from gestures, but they require huge dataset.
To overcome the problem of overfitting generated
by deep learning models on less amount of data, im-
age augmentation can be used before training data.
Image augmentation also increases accuracy of test
data. In this work, we have empirically proven
that simple image manipulation techniques and pre-
trained model with frame sequence generator cre-
ates great impact on the accuracy on ISL recog-
nition than using very limited amount of data in
training. We have proposed an approach that uses
pretrained model MobileNetV2 to learn features
from augmented frame sequences of ISL gestures
using batch of shifted frames to provide decayed
sequences for the same gesture.

We are working on extending our work from
lexical level analysis to machine translation to gen-
erate ISL sentences. We are also in the process
of creating new dataset of ISL sentences using the
dictionary launched by Indian Sign Language Re-
search and Training Centre (ISLRTC). In future,
we will compare results of MobileNetV2 model
with other pretrained models on our dataset.

353

References
www.islrtc.nic.in/history-0. Accessed April

28, 2019.

Neha Baranwal and G. Nandi. 2016. An efficient ges-
ture based humanoid learning using wavelet descrip-
tor and mfcc techniques. International Journal of
Machine Learning and Cybernetics, 8.

Neha Baranwal, Avinash Singh, and G. Nandi. 2017.
Development of a framework for humanrobot inter-
actions with indian sign language using possibility
theory. International Journal of Social Robotics, 9.

Kevin Durkin and Gina Conti-Ramsden. 2010. Young
people with specific language impairment: A re-
view of social and emotional functioning in ado-
lescence. Child Language Teaching & Therapy -
CHILD LANG TEACH THER, 26:105–121.

P.V.V. Kishore, M.V.D. Prasad, D. Anil Kumar, and
A Sastry. 2016. Optical flow hand tracking and ac-
tive contour hand shape features for continuous sign
language recognition with artificial neural networks.

D. A. Kumar, P. V. V. Kishore, A. S. C. S. Sastry, and
P. R. G. Swamy. 2016. Selfie continuous sign lan-
guage recognition using neural network. In 2016
IEEE Annual India Conference (INDICON), pages
1–6.

H. Muthu Mariappan and V. Gomathi. 2019. Real-time
recognition of indian sign language. In 2019 Inter-
national Conference on Computational Intelligence
in Data Science (ICCIDS), pages 1–6.

Anup Nandy, Jay Prasad, Soumik Mondal, Pavan
Chakraborty, and G. Nandi. 2010. Recognition of
isolated indian sign language gesture in real time.
volume 70, pages 102–107.

Luis Perez and Jason Wang. 2017. The effectiveness of
data augmentation in image classification using deep
learning.

J. Rekha, J. Bhattacharya, and S. Majumder. 2011.
Shape, texture and local movement hand gesture fea-
tures for indian sign language recognition. In 3rd
International Conference on Trendz in Information
Sciences Computing (TISC2011), pages 30–35.

Ashok Sahoo and Kiran Ravulakollu. 2014. Indian
sign language recognition using skin colour detec-
tion. International Journal of Applied Engineering
Research, 9:7347–7360.

Mark Sandler, Andrew Howard, Menglong Zhu, An-
drey Zhmoginov, and Liang-Chieh Chen. 2018. Mo-
bilenetv2: Inverted residuals and linear bottlenecks.

Connor Shorten and Taghi M. Khoshgoftaar. 2019. A
survey on image data augmentation for deep learn-
ing. Journal of Big Data, 6:1–48.

Kumud Tripathi and Neha Nandi. 2015. Continuous in-
dian sign language gesture recognition and sentence
formation. Procedia Computer Science, 54:523–
531.

Sampada Wazalwar and Urmila Shrawankar. 2017. In-
terpretation of sign language into english using nlp
techniques. Journal of Information and Optimiza-
tion Sciences, 38:895–910.

354

Proceedings of the 17th International Conference on Natural Language Processing, pages 355–361
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Question and Answer Pair Generation for Telugu
Short Stories

Meghana Bommadi, Shreya Terupally, Radhika Mamidi
Language Technologies Research Centre

International Institute of Information Technology Hyderabad, India
meghana.bommadi@research.iiit.ac.in , shreya.reddy@students.iiit.ac.in,

radhika.mamidi@iiit.ac.in

Abstract

Question Answer pair generation is a task that
has been worked upon by multiple researchers
in many languages. It has been a topic of
interest due to its extensive uses in different
fields like self assessment, academics, busi
ness website FAQs etc. Many experiments
were conducted on Question Answering pair
generation in English, concentrating on basic
Whquestions with a rulebased approach. We
have built the first hybrid machine learning
and rulebased solution in Telugu which is ef
ficient for short stories or short passages in
children’s books. Our work covers the funda
mental question forms with the question types:
adjective, yes/no, adverb, verb, when, where,
whose, quotative, and quantitative(how many/
how much). We constructed rules for question
generation using POS tags and UD tags along
with linguistic information of the surrounding
context of the word.

1 Introduction

Question and Answer pair generation is an open
problem in linguistics which deals with Natural
Language Understanding (NLU) and Natural Lan
guage Generation (NLG). NLU and NLG are com
monly used in interactive NLP applications such
as AIbased dialogue systems/voice assistants like
SIRI, Google Assistant, Alexa, and similar other
personal assistants. Numerous methods are intro
duced for the Q&A pair generation problem. For a
lowresourced language like Telugu, AIbased so
lutions can be nonviable. There are hardly any
datasets available for the system to produce sig
nificant accuracy. A completely rulebased sys
tem might leave out principle parts of the abstract.
There is a chance that all the questions cannot
be captured inclusively by completely handwritten
rules. Hence, we wanted to introduce a mixed rule
based and AIbased solution to this problem.
We attempted to produce questions, concentrat

ing on the key points of a text that are generally

asked in assessment tests. Questions posed to an
individual challenge their knowledge and under
standing of specific topics, so we formed questions
in each sentence in as many ways as possible. We
based this paper on children’s stories, so the ques
tions we wanted to produce aim to be simpler and
more objective.

Based on the observation of the data chosen and
after analyzing all the possible cases, we devel
oped a set of rules for each part of speech that could
be formed into a question word in Telugu. Wemax
imized the possible number of questions in each
sentence with all the keywords.

2 Related Work

Previously, Holy Lovenia et al.[2018] experi
mented on Q&A pair Generation(Holy Lovenia
and Gunawan, 2018) in English where they suc
ceeded in forming “What”, “Who”, and “Where”
questions. Rami Reddy et al.[2006] worked on
Dialogue based Question Answering System in
Telugu for Railway inquiries(Rami Reddy, 2006),
which majorly concentrated on Answer Genera
tion for a given Query. Shudipta Sharma et al.
worked on implementing automatic Q&A pair gen
eration for English and Bengali texts(Sharma and
Hossen, 2018) using NLP tasks like verb decom
position, subject auxiliary inversion for a ques
tion tag. Telugu dependency parsing using differ
ent statistical parsers (SeshuKumari and Rajesh
waraRao, 2017) explored dfferent statistical depen
dency parsers for parsing Telugu and analysed the
performanced of each parser. We explored other1
Q&A state of art systems from different authors
that suita our approach.

1(Xu J and R., 2004),(Anne R. Diekema,
2004),(Bert Green, 1961),(Hai and KOSSEIM, 2007)

355

3 Summarization

Since Telugu is a low resource language, we used
statistical and unsupervised methods for this task2.
Summarization also ensures the portability of our
system to other similar low resource languages.
We have used a Telugu stories dataset taken

from a website called “kathalu wordpress”.3 This
dataset was chosen because of the variety in the
themes of the stories, wide vocabulary and sen
tences of varying lengths. For summarization, we
did the basic data preprocessing (spaces, special
characters, etc.) in addition to rootword extrac
tion using Shiva Reddy’s POS tagger4.
We implemented two types of existing summa

rization techniques:
1. Word Frequencybased summarization
2. TextRank based frequency

3.1 Word Frequencybased Summarization
WFBS (Word Frequencybased Summariza
tion)(Shashikanth and Sanghavi, 2019) is calcu
lated using the word frequency in the passage.
This process is based on the idea that the keywords
or the main words will frequently appear in the
text, and those words with lower frequency have
a high probability of being less related to the story.

All the sentences that carry major information
are produced successfully by this method because
the keywords are used repeatedly in children’s sto
ries, subsequently causing the highest frequency.

A ratio is used to get a desirable number of sen
tences in summary (for example: k% of the sen
tences). If the first highest frequent word is present
k out of 100 sentences, we ratio the word selection
to 1:n (where n is the total number of words). This
ratio, when dynamically changed, performed bet
ter than the fixed ratio of word selection.
Steps followed in WFBS are:
1. Sentences are extracted from the input file
2. Words are preprocessed and tokenized
3. Stop words are removed
4. Frequency of each word is calculated
5. The ratio of words that occur in highest to

lowest frequency order is calculated
For testing the meticulousness of the user, as a

future task, we can use:
2(Allahyari and Seyedamin Pouriyeh, 2017)
3https://kathalu.wordpress.com/
4http://sivareddy.in/downloads

1. The least frequent sentences
2. NE (Named Entities) and CN (Common

Nouns) to form questions tags (a next level task)

3.2 TextRank based Frequency

TextRank5 is a graphbased ranking model that pri
oritizes each element based on the values in the
graph. This process is done in following steps:
1. A graph is constructed using each sentence as

a node
2. Similarity between two nodes is marked as

the edge weight between nodes
3. Each sentence is ranked based on the similar

ity with the whole text
4. The pagerank algorithm is run until conver

gence
5. The sentences with Top N ranking as sum

marized text is given as the output
The TextRank algorithm is a graph based method
that updates the sentence score WS iteratively
using the following equation(1).

Where d = damping factor (0.85), wij is the
similarity measure between ith and jth sentences.
This method has the advantage of using the
similarity between the two sentences to rank them
instead of highfrequency words. Two kinds of
similarity measures used:
Commonwords: Ameasure of similarity based

on the number of common words in two sentences
after removing stop words. We used root word
extraction of the common words for better results
since Telugu is a fusional and agglutinative lan
guage and have repeated words with a different suf
fix each time.
Best Match 25 : A measure of the similarity

between two passages, based on term frequencies
in the passage.
The results observed by this method capture the

crucial information of the story, but lesser readabil
ity and fluency are observed. Within the similarity
measures, BM25 has shown slightly better results
since the BM25 algorithm ranks based on the im
portance of particular words (inverse document fre
quency IDF) instead of just using the frequency
of words.

5(Mihalcea and Tarau, 2004)

356

4 Answer Phrase Selection

Candidate answers are words/phrases that depict
some vital information in a sentence. Adjectives,
adverbs, and the subject of a sentence are some ex
amples of such candidates.
The answer selection module utilizes two main

NLP components POS Tagging (Parts Of Speech)
and UD parsing (Universal Dependency), along
with languagespecific rules to determine the an
swer words in an input sentence.

4.1 POS Tagging
We followed the state of art method called “Cross
Language POS Taggers”(Reddy and Sharoff,
2011) an implementation of a TnTbased Telugu
POS Tagger 6 to parse our data.
The tagger learns morphological analysis and

POS tags at the same time, and outputs the lemma
(root word), POS tag, suffix, gender, number and
case marker for each word.
The model was pretrained on a Telugu corpus

containing approximately 3.5 million tokens and
had an evaluation accuracy of 90.73% for the main
POS Tag.

4.2 UD Tagging
A BiLSTM model using Keras is structured and
trained using Telugu UD tags dataset “UD_Telugu
MTG”. 7
The BiLSTM model outputs the UD Tags for

each word in a sentence using Keras. We consid
ered the subject, which is marked “subj” by UD
tagger, as a selected answer phrase for a sentence
based on a condition that it marked root and punc
tuation correctly.
This model gave 85% accurate results, includ

ing the PAD tags, which might not be an adequate
result, but based on the conditions and given that
the tags “subj” is labeled in a sentence scarcely, the
results have been considered to be acceptable.

4.3 Rules
The outputs of the POS Tagging and UD Pars
ing modules are used as crucial markers in our
languagespecific rules. In addition to conditions
based on word surroundings, these tags select one
or more answer phrases in each sentence.

6https://bitbucket.org/sivareddyg/
telugu-part-of-speech-tagger/src/master/

7https://github.com/
UniversalDependencies/UD_Telugu-MTG, (Se
shuKumari and RajeshwaraRao, 2017)

We classify the rules into different categories,
typically based on their usage and interrogative
forms.

1. Quantifiers, Adjectives, Adverbs: Words
with the QC, RB, and JJ POS tag, respectively.
For words with JJ tags, the word and corre
sponding determiners (if present) are selected
as the answer candidate.

2. Possession based: Words with PRP and
NN tags that have suffixes as "టి","యొకక్",
"కి" and "కు" (“ti”,“yokka”,“ki” and “ku”).
The suffix "టి" (“ti”) is used for words
like "అతని", "వాళళ్", "కంటి", "విదాయ్రుధ్ ల"
(“athani”his, “valla”their’s, “kanti”eyes’,
“vidyarthula”students’)

3. TimePlace based : Noun words with a
"లొ" (“lo”) suffix, along with other words
present in custom list of timerelated words
("మారిన్ంగ్","ఇయర్")(“morning”,“year”)
come under this category.

4. Direct and Reported Speech: The word
"అని" is generally used to denote direct speech
in Telugu. Phrases before the word "అని",
along with phrases in quotation marks, are
chosen as answer phrases.

5. Verbs: Telugu follows the SOV(Subject Ob
ject Verb) structure for most of its sentences.
If the last word has a “V” POS tag, we se
lected the verb and adjacent adverbs as an an
swer candidate.

6. Subject: We use the UD tags to determine
the subject of a sentence. As an additional
check, we only select the candidate subjects
in those sentences whose last word is tagged
as the root verb, and the subject is a noun.

5 Question Formation

Questions are formed according to the chosen
phrases chosen previously, and the question words
are replaced using further conditions if required.

1. Quantifiers, Adjectives, Adverbs: The
words that are marked JJ POS are replaced
with "ఎటువంటి" (“etuvanti” what kind of) RB
POS tagged that are followed by verbs with
"గ" (“ga”) suffix are replaced by "ఎలా" (“ela”
how) and the QC tagged words that are not

357

articles ("ఒక" (“oka” one/once)) were cho
sen and changed based on the following word.
If the quantifier is followed by "శాతం", "మంది"
,"వరకు" (“shatham”,“mandi”,“varaku”) then
the word is replaced with "ఎంత" (“entha”how
much), if the quantifier has a suffix it is added
to the question word. For example: "1700కు"
- "ఎంతకు" (enthaku) and the rest of the quan
tifiers are replaced with "ఎనిన్" (“enni”how
many).

2. Possession based: The Nouns and Pronouns
that satisfied the rules are replacedwith "ఎవరి"
(“evari”whose) and the dative cases are
replaced with "ఎవరికి" (“evariki”to whom).
This could be an exception for nonanimus
nouns and pronouns. In the children’s stories,
most of the nouns are personified, so there
were fewer errors than we presumed.

3. TimePlace based : We made a list of words
that are used to convey time. If the lemma of
the word matches the word in the dictionary,
then we marked it as “time” and is replaced
with "ఎ డు" (“eppudu”when) or else it is
marked as a place and replaced with "ఎకక్డ"
(“ekkada”where).

4. Direct and Reported Speech : The whole
speech phrase or the phrase that is quoted is re
placed with "ఏమని" (“emani”) in the sentence.

5. Verbs : The verb is replaced with "ఏమిచేసూత్"
(“emi chesthu”doing what) + <suffix>”. The
appropriate suffix is chosen from the informa
tion lost in the lemmatized word.
Additionally, verb tags were used to form po
lar questions. The interrogative form of a sen
tence in Telugu can be constructed by adding
intonation to the verb, so we added "ఆ" (“aa”)
vowel at the end of the verb to make it a yes
or no question. The answer phrase to this
questionwould be "అవును" (“avunu”yes), fol
lowed by the original phrase.

6. Subject : Based on the suffix of the verb the
subject is replaced with "ఏది", "ఏవి" or "దేని",
"వేటికి" (meaning what, which simultaneously)
or "ఎవరు" (“evaru”who) and the root suffix
is changed accordingly for "ఎవరు" (“evaru”
who).

Question Word Occurrences Errors
ఎలా (ela) 64 2
ఎనిన్ (enni) 76 5

ఎంతకు (enthaku) 4 0
ఎంత (entha) 3 0
ఎవరి (evari) 187 0
ఎవరికి (evariki) 1 0
ఏమి (emi) 69 3
దేని (deni) 45 10
ఎవరు (evaru) 20 0
ఎ డు(eppudu) 7 0
ఎకక్డ (ekkada) 21 5

ఏమిచేసూత్ (emi chesthu) 148 2
ఏమని (emani) 10 0

ఆ (aa) 148 0
ఎటువంటి (elanti) 103 6
వేటికి (vetiki) 10 1

Table 1: Question Types.

6 Results

We obtained results that resemble commonly used
questions covering nine Parts of Speech. The ques
tions generated by this system are successful and
are most similar to questions we see in textbooks.
In most cases, it has given legible results that re
semble humanmade questions, with few excep
tions for complex sentences. Out of 916 questions
formed, only 34 were either completely erroneous
or illegible, the rest of them were both grammati
cally correct and significant for the context of the
story.
Table 1 lists the number of times each question

word occurred and the number of times it appeared
wrong in the experiment with five short stories.

6.1 Error Analysis

Errors are equally influenced by the word tags, the
context of the word, and the word’s position in a
sentence.
Errors in “ela” (’how’) questions are often

caused due to spaces between the words and
suffixes in the data set we chose.

“enni” (quantifier based) questions are built
from diverse quantifiers (for example: time, age,
number of people these quantifiers are often
written as sandhi with the word, which causes the
POS tagger to give ambiguous tags) and numerous
ways of writing quantifiers in Telugu. Few quan

358

tifier question word errors occurred due to wrong
POS tagging of crosscoded words (words that are
actually in English but written in Telugu script).
In Telugu, two numbers are used together when
representing nonspecific quantities between the
two numbers (x y means from x to y), for example,
“rendu(two) moodu(three) nimishalu(minutes)”
meaning two to three minutes. This kind of
representation makes the system assume there are
two quantifies, and the sentence is eligible for two
questions based on the same.

“deni” (subjectbased) questions have errors
because of ambiguous suffixes and inaccuracies
in UD tagging. The lack of human identifica
tion in the system made human subjects also
replaceable with “denini” instead of “evarini”.
Another error was due to subjects that are names
with end syllables similar to common suffixes
(which are included as word context in the rule
formation). This kind of names were split and
formed incorrect question words. The rest of the
errors are due to wrong POS tags, crosscodes,
and initials/abbreviations.

“emi” (’what’) question forms also have similar
POS tags and crosscodes issues. Few of these
errors occurred due to punctuation marks between
the same sentence breaking it up into multiple
sentences.

“etuvanti” (’whatkindof’) question forms run
into issues where there is personification. General
questions based on adjectives for humans are
based on a person’s subtle qualities; however, in a
few cases, the adjective that was chosen is inapt to
be formed into a question (less similar to human
made question). The question that was formed
still is grammatically correct in both human and
nonhuman subjects.

“ekkada” (where) based question forms show er
rors when an abstract word is used as a place, for
example “In thoughts”, “In that age”. Certain
quantitative words in Telugu can be appended with
lo to convey meanings like “in youth”, “in hun
dreds”. They tend to pass the rules in question
generation. Our list of timerelated words is not
exhaustive, so a few timerelated words are also
tagged under “ekkada” (place) because of the same
suffix.

Most of the tags are errorfree except for a few
ambiguous errors since the rules select answer
phrases precisely or do not consider it.
Some of the examples of the questions that are

produced by the system are listed below in Table2
in the appendix.
The results could be improved to make the ques

tion formation precise by increasing the number of
rules by observing further data.
The anaphora resolution is a limitation in this

system; thus, most of the inappropriation in the
answer section was caused due to this.
For example:
Q: ఎవరిచదువంతాసిటీలో ,దరాజ్ గా ... సాగింది?
Q: Whose studies got completed in the city luxuri
ously?
A: నీచదువంతాసిటీలో ,దరాజ్ గా ... సాగింది .
A: Your studies got completed in the city luxuri
ously.
In this case the question is aptly formed but the

answer is slightly illformed.
There were few errors due to the POS tagger we

used. It marked wrong POS tags for cross coded
text becuase of the cross coding and the script
differences.

7 Conclusions

We have built a mixed rulebased and AIbased
question and answer generating system with
96.28% accuracy.We used two methods for
summarization and two similarity measures. We
constructed observationalbased rules for the data
set in a particular domain. There is a chance of
varying results if we test this system for data in
a different domain, but it gives accuracies above
95% for any data in the domain we chose.

We tested question generation in the news article
domain, which gave grammatically correct ques
tions. The error rate may increase if we use com
plex words and phrases that need tags beyond the
proposed set of rules.
We plan to extend our work to be able to include:
1.Anaphora Resolution
2.Extending to other domains
3.Cover more types of questions
4.Increase the accuracy of identifying subject for
UD tags

359

References

Mehdi Allahyari and Saeid Safaei Elizabeth D. Trippe
Juan B. Gutierrez Krys Kochut Seyedamin Pouriyeh,
Mehdi Assefi. 2017. Text summarization techniques:
A brief survey.

Elizabeth D. Liddy Anne R. Diekema, Ozgur Yilmazel.
2004. Evaluation of restricted domain question
answering systems. Proceedings of the Conference
on Question Answering in Restricted Domains.

Carol Chomsky Kenneth Laughery Bert Green, Al
ice Wolf. 1961. An automatic questionanswerer.

DOANNGUYEN Hai and Leila KOSSEIM. 2007.
The problem of precision in restricteddomain
questionanswering. some proposed methods of im
provement.

Felix Limanta Holy Lovenia and Agus Gunawan. 2018.
Automatic questionanswer pairs generation from
text.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring
ing order into text. Proceedings of the 2004 Con
ference on Empirical Methods in Natural Language
Processing.

Sivaji Bandyopadhyay Rami Reddy, Nandi Reddy.
2006. Dialogue based question answering system in
telugu. Proceedings of the Workshop on Multilin
gual Question Answering MLQA ‘06.

Siva Reddy and Serge Sharoff. 2011. Cross language
pos taggers for indian languages.

B.Venkata SeshuKumari and Ramisetty Rajesh
waraRao. 2017. Telugu dependency parsing using
different statistical parsers. Journal of King Saud
University Computer and Information Sciences,
29(1):134–140.

Shudipta Sharma andMuhammadKamal Hossen. 2018.
Automatic question and answer generation from ben
gali and english texts. Computer Science and
Telecommunications 2018, Volume54, Issue2.

Sana Shashikanth and Sriram Sanghavi. 2019. Text
summarization techniques survey on telugu and for
eign languages. International Journal of Research
in Engineering, Science and Management, Volume
2, Issue1.

Licuanan A Xu J and Weischedel R. 2004. Evaluation
of an extractionbased approach to answering defini
tional questions. page 418–424.

A Appendix

Q: ఎటువంటిమోటతోవంగడం కషట్ ంగావుంది?
A: అంతపెదద్ మోటతోవంగడం కషట్ ంగావుంది

Q: చెపుుప్ ,బటుల్ ,గాులు,పళుళ్ ,గినెన్లుబజారులోఎలాకొని
,ఊళోళ్ఇంటింటికివెళిల్ అముమ్కునేవాడు?
A: చె లు , బటట్ లు , గాజులు , పళుళ్ , గినెన్లు బజారులో
చవకగాకొని ,ఊళోళ్ఇంటింటికివెళిల్ అముమ్కునేవాడు

Q: సామానల్ నీన్మోట కటిట్ , గాడిద మీద వేసి , బజారునుంచి
ఊళోళ్ ,ఊళోల్ నుంచితిరిగిఎవరిఇంటికితిపేప్వాడు?
A: సామానల్ నీన్మోట కటిట్ , గాడిద మీద వేసి , బజారునుంచి
ఊళోళ్ ,ఊళోల్ నుంచితిరిగిఅతనిఇంటికితిపేప్వాడు

Q: అమాయకపిచుకఎకక్డకి, ఎందుకుఅనిఅడగకుండా,ఆ
కాకులనుగుడిడ్ గానమిమ్ఏమిచేసింది?
A: అమాయకపిచుకఎకక్డకి, ఎందుకుఅనిఅడగకుండా,ఆ
కాకులనుగుడిడ్ గానమిమ్వాటితోవెళిళ్ంది.

Q: పిచుకమాటనమమ్లేదుకదా ,దానివైపుఅసహయ్ంగాచూసి
మరోఎనిన్దెబబ్లువేసారు?
A: పిచుకమాటనమమ్లేదుకదా ,దానివైపుఅసహయ్ంగాచూసి
మరోరెండుదెబబ్లువేసారు

Q: ఆకాకులతోపిచుకకిసేన్హంఅయియ్ందా?
A: అవును,ఆకాకులతోపిచుకకిసేన్హంఅయియ్ంది.

Q: ఒకానొక డుఎకక్డఒకఅమాయకపుపిచుకవుండేది?
A:ఒకానొక డుఒకఊరిలోఒకఅమాయకపుపిచుకవుండేది.

Q: ఏమనిపిచుకపార్ ధేయపడింది?
A:బాబోయ్! బాబోయ్! నా తపేప్మీ లేదు, నేను
అమాయకురాలిని, నేనేమీచేయలేదు, ననున్వదిలేయండి! అని
పిచుకపార్ ధేయపడింది.

Table 2: Sample questions generated by the
system

360

List of words related to time:
'అ డు', 'రోజు' , 'కాలం', 'సాయంకాలం', 'ఉదయం',
'మధాయ్హన్ం', 'రాతిర్ ', 'పగలు', 'నెల', 'వారం', 'సంవతస్రం',
'సూరాయ్సత్మయం', 'శుభోదయం', 'దినం', 'సమయం',
'వర త్మానం' , 'పూరవ్ం', 'భవిషయ్తుత్', 'సోమవారం',
'మంగళవారం', 'బుధవారం', 'గురువారం', 'శుకర్ వారం',
'శనివారం', 'ఆదివారం', 'మాసం'

Translations Then, day, time period,
evening, morning, afternoon, night, morn
ing(synonym), month, week, year, sunset,
sunrise, day(synonym), time, present, past, fu
ture, Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Sunday, month(synonym).

This set comprises of the timerelated words that
have a high chance of being used in a storybook.

Table 3: Time Related word list

Q:What kind of sack was hard to carry?
A:That much of a heavy sack was hard to carry.

Q:In the market how was he buying sandals,
clothes, bangles, fruits, utensils and sold them in
the village?
A:In the market how was buying sandals, clothes,
bangles, fruits, utensils for cheap rates and sold
them in the village.

Q:Packing all the things, putting them on the
donkey, from market to village, from village to
whose house was he taking them?
A:Packing all the things, putting them on the
donkey, from market to village, from village to
his own house was he taking them.

Q:How did the innocent sparrow believed the
crows without even asking why and where?
A:The innocent sparrow believed the crows
blindly without even asking why and where.

Q:Instead of believing the sparrow, looking at it
with disgust how many times did they beat it?
A:Instead of believing the sparrow, looking at it
with disgust they beat it 2 times.

Q:Did the sparrow made friends with the crows?
A:Yes, the sparrow made friends with the crows.

Q:Once upon a time where was the innocent
sparrow living?
A:Once upon a time the innocent sparrow was
living in a village.

Q:What did the sparrow say pleadingly?
A:The sparrow said ”No! no! i didn’t any mistake,
I’m innocent, I did nothing, Please leave me”
pleadingly.

Table 4: Translations of the results in Table 2

361

Proceedings of the 17th International Conference on Natural Language Processing, pages 362–367
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Detection of Similar Languages and Dialects
Using Deep Supervised Autoencoders

Shantipriya Parida1, Esaú Villatoro-Tello1,2, Sajit Kumar3,
Maël Fabien1,4, and Petr Motlicek1

1Idiap Research Institute, Martigny, Switzerland.
{firstname.lastname}@idiap.ch

2Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Mexico City, Mexico.
evillatoro@correo.cua.uam.mx

3Great Learning, Bangalore, India.
kumar.sajit.sk@gmail.com

4Ecole Polytechnique Fédérale de Lausanne, Switzerland
mael.fabien@epfl.ch

Abstract
Language detection is considered a difficult
task especially for similar languages, varieties,
and dialects. With the growing number of on-
line content in different languages, the need
for reliable and robust language detection tools
also increased. In this work, we use super-
vised autoencoders with a bayesian optimizer
for language detection and highlight its effi-
ciency in detecting similar languages with di-
alect variance in comparison to other state-of-
the-art techniques. We evaluated our approach
on multiple datasets (Ling10, Discriminating
between Similar Language (DSL), and Indo-
Aryan Language Identification (ILI)). Ob-
tained results demonstrate that SAE is highly
effective in detecting languages, up to a 100%
accuracy in the Ling10. Similarly, we obtain
a competitive performance in identifying simi-
lar languages, and dialects, 92%, and 85% for
DSL and ILI datasets respectively.

1 Introduction

Internet content is growing exponentially over time,
and as a direct consequence, more languages and
dialects need to be processed, as they serve as key
components in various Natural Language Process-
ing (NLP) tasks (Kocmi and Bojar, 2017).

Language detection is the task of determining
the language for a given text. Although language
detection has significantly improved over the past
years, challenges remain. Detecting similar lan-
guages, detecting languages when multiple lan-
guage contents exist in a single document, and
detecting language in short texts are still active
research areas (Balazevic et al., 2016; Lui et al.,
2014; Williams and Dagli, 2017). Discriminate
between very close languages or dialects, for exam-
ple, German dialect identification, Indo-Aryan lan-
guage identification, is considered a difficult task

(Parida et al., 2020; Jauhiainen et al., 2019a). Al-
though dialect identification is commonly based on
the distributions of letters or letter n-grams, these
approaches might face serious difficulties when try-
ing to distinguish related dialects that have similar
phoneme and grapheme inventories (Scherrer and
Rambow, 2010). In a multilingual country like In-
dia, there exist many languages and many of them
have multiple dialects (Chittaragi and Koolagudi,
2019). For example, in the case of the Odia lan-
guage, although the written text is the same, there
exist many dialects (e.g. Baleswari, Ganjami, Sam-
balpuri, Desiya. etc.) (Swain et al., 2016). More-
over, the automatic identification of dialect in low
resource languages suffers from the lack of large
training datasets or pre-trained language models.

Most of the previous research on language iden-
tification has focused on using traditional machine
learning approaches like Naive Bayes, Support Vec-
tor Machine (SVM), in combination with word
n-grams, graph-based n-grams, prediction partial
matching (PPM) or linear interpolation with post-
independent weight optimization and majority vot-
ing for combining multiple classifiers (Jauhiainen
et al., 2019b). However, more recently, deep learn-
ing techniques have shown substantial results in
many NLP tasks including language detection (Oro
et al., 2018; Villatoro-Tello et al., 2020a,b). For
many deep learning tasks, semi-supervised autoen-
coders have proven to build reliable representations
with few annotated data (Ranzato and Szummer,
2008; Rasmus et al., 2015). To the best of our
knowledge, autoencoders (AE) have never been
applied for similar language detection. In this pa-
per, we explore the use of supervised autoencoders
(SAE), hence leveraging labels in the latent space,
for language detection.

362

2 Proposed Method

The overall architecture of the proposed method
is shown in Figure 1. The following subsections
briefly describe the main components of our ap-
proach.

2.1 Supervised Autoencoder

An AE is a neural network that learns a low-
dimensional representation (encoding) of input data
and then learns to reconstruct the original input
from the learned representation. This type of archi-
tecture is mainly used for dimensionality reduction
or feature extraction (Zhu and Zhang, 2019), in an
unsupervised fashion. By learning to reconstruct
the input, the AE extracts underlying abstract at-
tributes that facilitate accurate prediction of the
input.

A supervised autoencoder (SAE) is an AE with
the addition of a supervised loss on the representa-
tion layer. For the case of a single hidden layer, a
supervised loss is added to the output layer and for
a deeper AE, the innermost layer has a supervised
loss added to the bottleneck layer that is usually
transferred to the supervised layer after training the
AE.

In supervised learning, the goal is to learn a
function for a vector of inputs x ∈ Rd to predict
a vector of targets y ∈ Rm. Consider SAE with
a single hidden layer of size k, and the weights
for the first layer are F ∈ Rk×d. The function is
trained on a finite batch of independent and identi-
cally distributed (i.i.d.) data, (x1,y1), ..., (xt,yt),
with the goal of a more accurate prediction on
new samples generated from the same distribution.
The weight for the output layer consists of weights
Wp ∈ Rm×k to predict y and Wr ∈ Rd×k to re-
construct x. Let Lp be the supervised loss and Lr

be the loss for the reconstruction error. In the case
of regression, both losses might be represented by
a squared error, resulting in the objective:

1

t

t∑

i=1

[
Lp(WpFxi,yi) + Lr(WrFxi,xi)

]
=

1

2t

t∑

i=1

[
||WpFxi − yi||22 + ||WrFxi − xi||22

]

(1)

The addition of supervised loss to the AE loss
function acts as regularizer and results (as shown

in equation 1) in the learning of the better repre-
sentation for the desired task (Le et al., 2018). In
summary, an SAE represents a neural network that
jointly predicts targets and inputs.

2.2 Bayesian Optimizer

In the case of SAE, there are many hyperparame-
ters related to model construction and optimization.
AE training and performance often benefit from
hyperparameter tuning to avoid over and under-
fitting.

Bayesian optimization (BO) is a state-of-the-
art hyperparameter optimization algorithm that
reached competitive performances on several opti-
mizations benchmarks (Snoek et al., 2012; Bergstra
and Bengio, 2012). BO is a technique based on
Bayes theorem to direct a search for a global op-
timization problem that is efficient and effective.
It works by building a probabilistic model of the
objective function, called the surrogate function,
that is then searched efficiently with an acquisition
function before candidate samples are chosen for
evaluation on the real objective function.

2.3 Textual Features

Character n-grams are fed as an input to the SAE.
In comparison to word n-grams, which only capture
the identity of a word and its possible neighbors,
character n-grams are additionally capable of de-
tecting the morphological makeup of a word (Wei
et al., 2009; Kulmizev et al., 2017). The extracted
n-gram features are input to the deep SAE as shown
in the Figure 1. The deep SAE contains multiple
hidden layers. Hyperparameters were optimized
using BO.

3 Experimental Setup and Datasets

3.1 Hyperparameters

To verify the robustness of our proposed model, we
have used datasets that are either short, contain sim-
ilar dialects, or cover multiple languages, and long
texts. The range of values for the hyperparameters
search space is shown in Table 1. During training,
BO chooses the best hyperparameters from this
range. The overall configuration of the SAE model
is shown in Table 2.

3.2 Datasets

A summary table of the number of texts per dataset
is presented in Table 3. We also provide a brief
description of each dataset.

363

Figure 1: Proposed model architecture. The extracted features of the text are input to the supervised autoencoder.
The target “y” are included. The classification output are the language id for the classified languages.

Hyper Parameter Range
number of layer 1-5
learning rate 10−5 − 10−2

weight decay 10−6 − 10−3

activation functions ‘relu’, ‘sigma’

Table 1: Search space hyper parameter range.

Parameter DSL Ling10 ILI
n gram range 1-3 1-3 1-3
number of target 14 10 5
embedding dimension 300 300 300
supervision ‘clf’ ‘clf’ ‘clf’
converge threshold 0.00001 0.00001 0.00001
number of epochs 300 500 500

Table 2: SAE model configurations for the dataset.

Dataset Training Development Test
DSL 252,000 28,000 14,000
Ling10 140,000 - 50,000
ILI 70,351 10,329 9,692

Table 3: Dataset Statistics.

DSL Dataset: The data obtained from the
“Discriminating between Similar Language (DSL)
Shared Task 2015” contains 13 different languages
belonging to 6 language groups, namely South
Eastern Slavic (Bulgarian and Macedonian), South
Western Slavic (Bosnian, Croatian and Serbian),
West-Slavic (Czech and Slovak), Ibero-Romance
Spanish (Peninsular Spanish and Argentinian
Spanish), Ibero-Romance Portuguese (Brazilian
Portuguese and European Portuguese), and
Austronesian (Indonesian and Malay). The

DSL corpus collection 1 have different versions
based on different language groups, representing
a benchmark dataset for evaluating language
identification systems (Tan et al., 2014a). We used
the DSLCCv2.0 2 to perform our experiments
(Tan et al., 2014b). In this version, the training set
contains 18,000 sentences for each language and
the development set contain 2,000 sentences in
each language.

Ling10 Dataset: The Ling10 dataset 3 contains
190,000 sentences categorized into 10 languages
(English, French, Portuguese, Chinese Mandarin,
Russian, Hebrew, Polish, Japanese, Italian, Dutch)
mainly used for language detection and bench-
marking natural language processing (NLP) algo-
rithms. It has three variants and we have considered
“Ling10-train large” in our experiments.

ILI Dataset: The Indo-Aryan Language Identi-
fication (ILI) dataset used for the fifth workshop
on NLP for similar languages, varieties and di-
alects (VarDial) at COLING 2018 4 (Zampieri
et al., 2018b). This task was aimed at identifying
5 closely-related languages of the Indo-Aryan lan-
guage family – Hindi (also known as Khari Boli),
Braj Bhasha, Awadhi, Bhojpuri, and Magahi. Con-
sidering Indian geographical location and states,

1http://ttg.uni-saarland.de/resources/
DSLCC/

2https://github.com/Simdiva/DSL-Task/
tree/master/data/DSLCC-v2.0

3https://github.com/johnolafenwa/
Ling10

4https://github.com/kmi-linguistics/
vardial2018

364

Figure 2: Confusion matrix for the DSL test dataset.

these languages form part of a continuum start-
ing from Western Uttar Pradesh (Hindi and Braj
Bhasha) to Eastern Uttar Pradesh (Awadhi and Bho-
jpuri) and the neighboring Eastern state of Bihar
(Bhojpuri and Magahi).

4 Results and Discussion

Figure 3: Confusion matrix for Ling10 test dataset.

The SAE model performance for the used dataset
is shown in Table 4. Since we are interested in
potential confusion between languages, we plot the
confusion matrices for the DSL (Figure 2), Ling10
(Figure 3), and for the ILI (Figure 4) datasets.

Observe that for the case of Ling10 (dissimilar

Figure 4: Confusion matrix for ILI test dataset.

language families) the SAE approach performs al-
most perfect (few confusions between Dutch and
Portuguese and Dutch and French) reaching an ac-
curacy of 100%. On the contrary, for DSL and ILI
datasets, we can notice more errors. For example,
in DSL, there are many mistakes between Spanish,
Portuguese, and South Western Slavic families re-
spectively, nevertheless, our SAE gets an accuracy
of 92%. Similarly, observe the complexity of the
task in the ILI dataset, where the obtained accuracy
was of 85%.

As a comparison point, the best-reported result
for the DSL dataset is based on a classifier ensem-
ble approach (using 8 SVM classifiers); each one

365

trained on a single feature type and reached an accu-
racy of 95.54 % in the test partition during the DSL
2015 shared task using the DSLv2.0 dataset (Mal-
masi and Dras, 2015; Zampieri et al., 2015). For
the case of the ILI dataset, the best score reported
during the Second VarDial Evaluation Campaign
was of 95% F1-macro (Zampieri et al., 2018a). The
winning approach is based on adaptive language
models based on character n-grams from 1 to 6
(Jauhiainen et al., 2018). Contrary to these ap-
proaches, the proposed SAE represents a much
less complex and competitive alternative, obtaining
good performance results.

Accuracy
Model Dataset Validation Test
SAE (char-3gram) Ling10 - 100 %
SAE (char-3gram) DSL 92% 92%
SAE (char-3gram) ILI 94% 85%

Table 4: Overall performance of the proposed ap-
proach.

4.1 Discussion

SAE is less computationally expensive than other
deep-learning architectures, while it generalizes
well to a wide variety of languages and dialects.
The proposed model is extendable by creating a
host of features such as character n-gram, word n-
gram, word counts, etc, and then passing it through
AE to choose the best features. As future work, we
are planning to i) verify our model (SAE + BO)
with other language detection data sets ii) try to
create a dialect detection dataset for other Indian
languages and apply SAE for classifying the di-
alects.

5 Conclusion

In this paper, we introduced SAE with BO for lan-
guage detection using N-grams at the character
level and illustrated its performance on the discrim-
ination of very close languages or dialects on sev-
eral well-known corpora. We also presented some
advantages of the proposed approach, and discuss
some of the future directions for SAE-based lan-
guage detection. 5

Acknowledgments

This work was supported by the European Union’s
Horizon 2020 research and innovation program

5SAE code is available here

under grant agreement No. 833635 (project ROX-
ANNE: Real-time network, text, and speaker ana-
lytics for combating organized crime, 2019-2022).
The second author, Esaú Villatoro-Tello, was sup-
ported partially by Idiap Research Institute, SNI-
CONACyT, CONACyT project grant CB-2015-01-
258588, and UAM-C Mexico during the elabora-
tion of this work.

References
Ivana Balazevic, Mikio Braun, and Klaus-Robert

Müller. 2016. Language detection for short
text messages in social media. arXiv preprint
arXiv:1608.08515.

James Bergstra and Yoshua Bengio. 2012. Random
search for hyper-parameter optimization. Journal of
machine learning research, 13(Feb):281–305.

Nagaratna B Chittaragi and Shashidhar G Koolagudi.
2019. Automatic dialect identification system for
kannada language using single and ensemble svm
algorithms. Language Resources and Evaluation,
pages 1–33.

Tommi Jauhiainen, Heidi Jauhiainen, and Krister
Lindén. 2018. Iterative language model adapta-
tion for Indo-Aryan language identification. In Pro-
ceedings of the Fifth Workshop on NLP for Similar
Languages, Varieties and Dialects (VarDial 2018),
pages 66–75, Santa Fe, New Mexico, USA. Associ-
ation for Computational Linguistics.

Tommi Jauhiainen, Krister Lindén, and Heidi Jauhi-
ainen. 2019a. Language model adaptation for lan-
guage and dialect identification of text. Natural Lan-
guage Engineering, 25(5):561–583.

Tommi Sakari Jauhiainen, Marco Lui, Marcos
Zampieri, Timothy Baldwin, and Krister Lindén.
2019b. Automatic language identification in texts:
A survey. Journal of Artificial Intelligence Research,
65:675–782.

Tom Kocmi and Ondřej Bojar. 2017. Lanidenn: Multi-
lingual language identification on character window.
In Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Volume 1, Long Papers, pages 927–936.

Artur Kulmizev, Bo Blankers, Johannes Bjerva, Malv-
ina Nissim, Gertjan van Noord, Barbara Plank, and
Martijn Wieling. 2017. The power of character n-
grams in native language identification. In Proceed-
ings of the 12th Workshop on Innovative Use of NLP
for Building Educational Applications, pages 382–
389.

Lei Le, Andrew Patterson, and Martha White. 2018.
Supervised autoencoders: Improving generalization
performance with unsupervised regularizers. In Ad-
vances in Neural Information Processing Systems,
pages 107–117.

366

Marco Lui, Jey Han Lau, and Timothy Baldwin. 2014.
Automatic detection and language identification of
multilingual documents. Transactions of the Associ-
ation for Computational Linguistics, 2:27–40.

Shervin Malmasi and Mark Dras. 2015. Language
identification using classifier ensembles. In Pro-
ceedings of the joint workshop on language technol-
ogy for closely related languages, varieties and di-
alects, pages 35–43.

Ermelinda Oro, Massimo Ruffolo, and Mostafa
Sheikhalishahi. 2018. Language identification of
similar languages using recurrent neural networks.
In ICAART.

Shantipriya Parida, Esaú VILLATORO-TELLO, Sajit
Kumar, Petr Motlicek, and Qingran Zhan. 2020.
Idiap submission to swiss-german language detec-
tion shared task. In Proceedings of the 5th Swiss
Text Analytics Conference (SwissText) & 16th Con-
ference on Natural Language Processing (KON-
VENS), CONF. CEUR Workshop Proceedings.

Marc’Aurelio Ranzato and Martin Szummer. 2008.
Semi-supervised learning of compact document rep-
resentations with deep networks. In Proceedings of
the 25th international conference on Machine learn-
ing, pages 792–799.

Antti Rasmus, Mathias Berglund, Mikko Honkala,
Harri Valpola, and Tapani Raiko. 2015. Semi-
supervised learning with ladder networks. In Ad-
vances in neural information processing systems,
pages 3546–3554.

Yves Scherrer and Owen Rambow. 2010. Natural
language processing for the swiss german dialect
area. In Semantic Approaches in Natural Language
Processing-Proceedings of the Conference on Natu-
ral Language Processing 2010 (KONVENS), pages
93–102. Universaar.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams.
2012. Practical bayesian optimization of machine
learning algorithms. In Advances in neural informa-
tion processing systems, pages 2951–2959.

Monorama Swain, Aurobinda Routray, P Kabisatpathy,
and Jogendra N Kundu. 2016. Study of prosodic fea-
ture extraction for multidialectal odia speech emo-
tion recognition. In 2016 IEEE Region 10 Confer-
ence (TENCON), pages 1644–1649. IEEE.

Liling Tan, Marcos Zampieri, Nikola Ljubešic, and
Jörg Tiedemann. 2014a. Merging comparable data
sources for the discrimination of similar languages:
The dsl corpus collection. In Proceedings of the 7th
Workshop on Building and Using Comparable Cor-
pora (BUCC), pages 11–15.

Liling Tan, Marcos Zampieri, Nikola Ljubešic, and
Jörg Tiedemann. 2014b. Merging comparable data
sources for the discrimination of similar languages:
The dsl corpus collection. In Proceedings of the 7th
Workshop on Building and Using Comparable Cor-
pora (BUCC), pages 11–15, Reykjavik, Iceland.

Esaú Villatoro-Tello, Shantipriya Parida, Sajit Kumar,
Petr Motlicek, and Qingran Zhan. 2020a. Idiap &
uam participation at germeval 2020: Classification
and regression of cognitive and motivational style
from text. In Proceedings of the GermEval 2020
Task 1 Workshop in conjunction with the 5th Swiss-
Text & 16th KONVENS Joint Conference, pages 11–
16.

Esaú Villatoro-Tello, Gabriela Ramı́rez-de-la Rosa,
Sajit Kumar, Shantipriya Parida, and Petr Motlicek.
2020b. Idiap and uam participation at mex-a3t eval-
uation campaign. In Notebook Papers of 2nd SEPLN
Workshop on Iberian Languages Evaluation Forum
(IberLEF), Malaga, Spain.

Zhihua Wei, Duoqian Miao, Jean-Hugues Chauchat,
Rui Zhao, and Wen Li. 2009. N-grams based fea-
ture selection and text representation for chinese text
classification. International Journal of Computa-
tional Intelligence Systems, 2(4):365–374.

Jennifer Williams and Charlie Dagli. 2017. Twitter
language identification of similar languages and di-
alects without ground truth. In Proceedings of the
Fourth Workshop on NLP for Similar Languages, Va-
rieties and Dialects (VarDial), pages 73–83.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Ahmed Ali, Suwon Shon, James Glass, Yves Scher-
rer, Tanja Samardžić, Nikola Ljubešić, Jörg Tiede-
mann, Chris van der Lee, Stefan Grondelaers,
Nelleke Oostdijk, Dirk Speelman, Antal van den
Bosch, Ritesh Kumar, Bornini Lahiri, and Mayank
Jain. 2018a. Language identification and mor-
phosyntactic tagging: The second VarDial evalua-
tion campaign. In Proceedings of the Fifth Work-
shop on NLP for Similar Languages, Varieties and
Dialects (VarDial 2018), pages 1–17, Santa Fe, New
Mexico, USA. Association for Computational Lin-
guistics.

Marcos Zampieri, Preslav Nakov, Nikola Ljubešić,
Jörg Tiedemann, Shervin Malmasi, and Ahmed Ali,
editors. 2018b. Proceedings of the Fifth Workshop
on NLP for Similar Languages, Varieties and Di-
alects (VarDial 2018). Association for Computa-
tional Linguistics, Santa Fe, New Mexico, USA.

Marcos Zampieri, Liling Tan, Nikola Ljubešić, Jörg
Tiedemann, and Preslav Nakov. 2015. Overview of
the dsl shared task 2015. In Proceedings of the Joint
Workshop on Language Technology for Closely Re-
lated Languages, Varieties and Dialects, pages 1–9.

Qiuyu Zhu and Ruixin Zhang. 2019. A classifica-
tion supervised auto-encoder based on predefined
evenly-distributed class centroids. arXiv preprint
arXiv:1902.00220.

367

Proceedings of the 17th International Conference on Natural Language Processing, pages 368–372
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Weak Supervision using Linguistic Knowledge for Information Extraction

Sachin Pawar1, Girish K. Palshikar1, Ankita Jain1, Jyoti Bhat1 and Simi Johnson2

1TCS Research, Tata Consultancy Services, Pune, India.
2Delivery Governance, Risk & Security, Tata Consultancy Services, Chennai, India.

{sachin7.p,gk.palshikar,ankita7.j,jyoti.bhat1,simi.johnson}@tcs.com

Abstract

In this paper, we propose to use linguistic
knowledge to automatically augment a small
manually annotated corpus to obtain a large
annotated corpus for training Information Ex-
traction models. We propose a powerful pat-
terns specification language for specifying lin-
guistic rules for entity extraction. We define an
Enriched Text Format (ETF) to represent rich
linguistic information about a text in the form
of XML-like tags. The patterns in our patterns
specification language are then matched on the
ETF text rather than raw text to extract various
entity mentions. We demonstrate how an en-
tity extraction system can be quickly built for
a domain-specific entity type for which there
are no readily available annotated datasets.

1 Introduction

Much knowledge in an organization resides in text
documents of various types. Effectively using the
information and knowledge hidden in enterprise
document repositories is a challenge. Information
Extraction (IE) is a well-explored language pro-
cessing technology for extracting specific kinds of
information (e.g., generic or domain-specific en-
tities, relations among entities and events) from
documents and presenting it in a structured for-
mat (Palshikar, 2012; Pawar et al., 2017; Li et al.,
2020). This structured information can then be ef-
fectively searched, disseminated, reused or mined
using data mining techniques to discover valuable
knowledge. IE plays a critical role in several ap-
plications such as resumes processing, competitor
intelligence from news, patent analysis, and insur-
ance claim management.

IE is posed as a classification task in machine
learning, where the training data consists of labeled
mentions of a given entity (or relation, or event)
type in sentences. Creating a sufficient quantity

of such training data is time-consuming and error-
prone. Hence, there has been research in distant
supervision methods for automating the process of
creating training data, often using other knowledge
sources such as DBPedia. In this paper, we map
each sentence in the given corpus to an enriched
text format (ETF) by adding syntactic and semantic
information to raw text. We then propose an en-
riched regular expression language to write linguis-
tic knowledge (rules) to extract mentions of entities
and relations from the ETF representation of the
sentences. Unlike tools like Snorkel (Ratner et al.,
2017) or more complex tree regex languages, our
pattern language is simpler, more efficient and has
novel features to allow linguistic patterns that use
context from multiple sentences. We demonstrate
the use of linguistic knowledge to automatically
create training data and show that the new training
data improves accuracy of IE classification models.
We demonstrate this methodology on a completely
novel application that extracts risk factors from
audit reports of software projects.

2 Linguistic Rules

We express linguistic rules in the form of regular
expression patterns which are applied on an ETF
text in which rich linguistic information is embed-
ded in the form of XML-like tags.

2.1 Enriched Text Format
We use spaCy (Honnibal and Montani, 2017) for
processing any input text and the ETF text is
generated as follows: (see examples in Table 1)
• <SENT> and </SENT> tags are added to mark
beginning and end of each sentence.
• Each token identified by the word tokenizer is
then encapsulated by its corresponding part-of-
speech tag. E.g., <NN>connection </NN>.
• Each generic named entity identified by spaCy
NER is encapsulated by the identified named entity

368

type. E.g., <ORG>Indian Army</ORG>.
• Dependency children of each verb are identified
which are related to the verb with key dependency
relations such as nsubj (nominal subject), dobj
(direct object), and nsubjpass (passive nominal
subject). The entire dependency subtree rooted at
such children are encapsulated by the tags of the
form <DepRel VERB>. E.g., <dobj arrested>· · ·
</dobj arrested>

• For each preposition, the tags of the
form <prep PREP PARENT> are added to en-
capsulate the entire prepositional phrase
modifying a noun or verb parent. E.g.,
<prep of terrorists>· · ·</prep of terrorists>

• Complete dependency subtree rooted at each
noun and verb is encapsulated using the tags of the
form <DNP NOUN> and <DNP VERB>, respectively.
E.g., <DNP terrorists> and <DVP arrested>

• If a noun or a verb is negated (i.e., having a child
with dependency relation neg such as no, not,
never), then the complete dependency subtree
rooted at that noun or verb is encapsulated using
the tags of the form <NEG NOUN> and <NEG VERB>.
• In addition, we add tags in the ETF text which
indicate presence in gazetteers of multiple types.

2.2 Patterns Specification Language

We have designed a simple patterns specification
language for writing linguistic rules for extracting
entity mentions. Each pattern has the following
important attributes:
• Pattern ID: An unique integer identifier.
• Pattern properties: Specify whether the pattern
is case-sensitive, whether it is to be applied on the
ETF text or plain text, and whether it is to be ap-
plied sentence-by-sentence or on the entire text.
•MainRegex: A valid regular expression pattern
containing at least one named group1. Entity types
to be extracted are used as named groups. This
pattern is applied against the input text iteratively.
If the pattern is matched successfully, then for each
named group in the pattern, the text matched for
that particular group is extracted as an entity men-
tion of the corresponding entity type.
•OuterRegex (optional): If specified, OuterRegex
is a valid regular expression with a named group
with name select. MainRegex (defined above) gets
matched only on the part of the input text selected
by the select group of the OuterRegex. If Out-
erRegex not specified, then the MainRegex gets

1docs.python.org/3/howto/regex.html

matched on the entire input text.
Table 1 shows an example of a linguistic pattern

which extracts entity mentions of type Criminal from
news articles. This pattern tries to extract names of
the criminals by identifying person names within
the direct object phrase of the verbs arrested or
detained (see the illustration in Table 1).
Facilities in the patterns specification language for
more powerful and effective patterns:
• Embedded variables can be used in a linguis-
tic pattern (MainRegex or OuterRegex), using the
syntax <<< V AR >>> where V AR is defined sep-
arately as a regular expression. Such variables are
expanded automatically within the pattern to get
the final regular expression pattern.
• Embedded entity types can be used in a linguis-
tic pattern (MainRegex or OuterRegex, using the
syntax [[[ENTITY TYPE]]]) where these are replaced
with actual entity mentions of that entity type ex-
tracted in the same text by earlier patterns (i.e.,
patterns with lower PatternID).

3 Linguistic Rules for Weak Supervision

For extracting entity mentions, sequence labelling
techniques such as Conditional Random Fields
(CRF) and Long Short-term Memory (LSTM) net-
works are widely used. These supervised tech-
niques need a significant number of annotated sen-
tences for training to achieve desirable extraction
accuracy. For any domain-specific entity type, cre-
ating a dataset of such annotated sentences involves
significant time, manual efforts and cost.

We propose to augment a small training dataset
(L) for such entity extraction task with unlabelled
data (U) where labels are automatically obtained
using linguistic patterns. A large number of addi-
tional sentences can be labelled in this way without
any extra time and cost. Although, some manual
efforts and expertise are needed for designing the
linguistic patterns, the efforts are significantly less
as compared to manually annotating a large corpus.
The patterns are designed in such a way that each
pattern is a high-precision pattern. We observed
that a sequence labelling model trained using L∪U
achieves better entity extraction performance as
compared to a model trained using only L. Also
the supervised sequence labelling model does not
learn to imitate the linguistic rules exactly because:
Different feature views: The linguistic rules and a
supervised sequence labelling model use two differ-
ent feature views, similar to Co-training. Although

369

Text: Indian Army arrested two terrorists of Al-Badr terror outfit namely Zahid Sheikh and Shareefudin

Ahanger in connection with the murder of Danish Manzoor.

ETF: <nsubj arrested><DVP arrested><DNP army><ORG><NNP>Indian </NNP><NNP>Army </NNP></ORG></DNP army></nsubj arrested>

<VBD>arrested </VBD><dobj arrested><DNP terrorists><CARDINAL><CD>two </CD></CARDINAL><NNS>terrorists

</NNS><prep of terrorists><IN>of </IN><pobj of><DNP outfit><CARDINAL><NNP>Al-Badr </NNP></CARDINAL><NN>terror

</NN><NN>outfit </NN><RB>namely </RB><appos outfit><DNP sheikh><PERSON><NNP>Zahid </NNP><NNP>Sheikh

</NNP></PERSON><CC>and </CC><DNP ahanger><PERSON><NNP>Shareefudin </NNP><NNP>Ahanger

</NNP></PERSON></DNP ahanger></DNP sheikh></DNP outfit></DNP terrorists></appos outfit></pobj of></prep of terrorists>

</dobj arrested><prep in arrested><IN>in </IN><pobj in><DNP connection><NN>connection

</NN><prep with connection><IN>with </IN><pobj with><DNP murder><DT>the </DT><NN>murder </NN><prep of murder>

<IN>of </IN><pobj of><DNP manzoor><NORP><NNP>Danish </NNP></NORP><PERSON><NNP>Manzoor </NNP></PERSON>

</DNP manzoor></DNP murder></DNP connection></pobj of></prep of murder></pobj with></prep with connection>

</pobj in></prep in arrested><.>. </.></DVP arrested>

Pattern ID: 3; Pattern properties: N (not case-sensitive), E (to be applied on ETF), S (to be applied sentence-by-sentence)
MainRegex: <PERSON>(?P<Criminal>.*?)</PERSON>
OuterRegex: <dobj (arrested|detained)>(?P<select>.*?)</dobj (arrested|detained)>

OuterRegex match for the select named group:
<DNP terrorists><CARDINAL><CD>two </CD></CARDINAL><NNS>terrorists </NNS><prep of terrorists><IN>of

</IN><pobj of><DNP outfit><CARDINAL><NNP>Al-Badr </NNP></CARDINAL><NN>terror </NN><NN>outfit

</NN><RB>namely </RB><appos outfit><DNP sheikh><PERSON><NNP>Zahid </NNP><NNP>Sheikh

</NNP></PERSON><CC>and </CC><DNP ahanger><PERSON><NNP>Shareefudin </NNP><NNP>Ahanger

</NNP></PERSON></DNP ahanger></DNP sheikh></DNP outfit></DNP terrorists></appos outfit></pobj of></prep of terrorists>

MainRegex matches for the named group Criminal:
First match: <NNP>Zahid </NNP><NNP>Sheikh </NNP>; Second match: <NNP>Shareefudin </NNP><NNP>Ahanger </NNP>

Table 1: Example of ETF text and a linguistic pattern matched against the ETF text

the feature views are not mutually exclusive, there
are major differences. Most of the linguistic rules
use dependency parsing information, which is not
used by the sequence labelling model.
Multi-sentence patterns: Some of the linguistic
patterns have multi-sentence scope, i.e., they use
the context information which is outside the sen-
tence from which an entity mention is identified.
However, the sequence labeller processes only one
sentence at a time, and hence it can not use any con-
text information outside the current sentence. This
enables the sequence labeller to learn additional
features from the current sentence itself.

4 Related Work

The most relevant line of work for our linguis-
tic patterns is Semgrex (Chambers et al., 2007),
TRegex (Levy and Andrew, 2006), and spaCy Rule-
based matching2. Semgrex and TRegex allow users
to write patterns on dependency and constituency
trees, respectively. The patterns are based on regu-
lar expression matching for nodes (tokens) and var-
ious relationships between the nodes. Rule-based
matching provided by spaCy allows users to write
regular expression patterns for token-level match-
ing but for more complex rules, Python scripting is
necessary. Our patterns specification language is
specified purely in terms of regular expressions and
allows users to write very powerful patterns using

2spacy.io/usage/rule-based-matching

facilities such as MainRegex-OuterRegex combina-
tion (e.g., PatternID=3 in Table 2) and embedded
entity types (e.g., PatternID=4 in Table 2).

A form of indirect supervision is distant supervi-
sion (Mintz et al., 2009) where a knowledge base
is used to automatically create an annotated dataset.
Recently, Snorkel framework (Ratner et al., 2017)
was proposed to combine multiple weak supervi-
sion sources. However, it is not easily adaptable
for sequence labelling tasks. Lison et al. (2020)
proposed an entity extraction technique using weak
supervision from multiple labelling functions such
as entity extraction models trained on other do-
mains, gazettes, heuristic functions etc. In our
case, for a domain-specific entity like Risk entity
(introduced in the next section), labelling func-
tions based on other domains, gazettes or knowl-
edge bases are not feasible. However, two re-
cent approaches (Safranchik et al., 2020; Liang
et al., 2020) look promising for our problem setting
where linguistic rules are used for weak supervi-
sion for entity extraction and we plan to explore
them as future work.

5 Application

Weak supervision using linguistic patterns is
especially useful for extraction of domain-specific
entity types for which obtaining or creating
training data is costly. Hence, we demonstrate its
effectiveness for extraction of mentions of one

370

Variable definitions (only partial patterns are shown due to space constraints):
NEGATIVE NOUNS:=((un|non)\W*availability|breach(es)?|discrepanc(y|ies)|lack|delays?|slip(pages?)?|over\W*run· · ·
RIGHT BOUNDARY:=((,|\.|:)[]|\b(due|because|hence|which|who|that|based|if|may)[]|\bto[][ˆ]*<VB[A-Z]?>)

NEGATIVE VERBS:=(pending|(impact|delay|affect|hinder|hamper|disrupt)(ed|s|ing)?)

POSITIVE VERBS:=(developed|maintained|installed|completed|followed|complied|tracked|updated|approved|defined· · ·
Extraction patterns (above VARIABLEs are included using <<<VARIABLE>>>, the extracted entity mentions are shown in square brackets):
-PatternID=1 MainRegex: <DNP_<<<NEGATIVE_NOUNS>>>>(?P<Risk>((?!\bno[]).)*?[]((?!\bno[]).)*?[]((?!\bno[]).)*?)
(<<<RIGHT_BOUNDARY>>>|</DNP_<<<NEGATIVE_NOUNS>>>>)

// E.g., Frequent changes in Tech Stack might lead to [delivery slippage].
-PatternID=2 MainRegex: <nsubj_<<<NEGATIVE_VERBS>>>>(?P<Risk>.*?)(<<<RIGHT_BOUNDARY>>>|</nsubj_<<<NEGATIVE_VERBS>>>>)

// E.g., [Lack of right combination of skills in resources] may impact the timelines of the project delivery.
-PatternID=3 MainRegex: <nsubjpass_<<<POSITIVE_VERBS>>>>(?P<Risk>.*?\b(not|nt|no)[].*?\b<<<POSITIVE_VERBS>>>[])
OuterRegex: ˆ(?P<select>.*?)</NEG_<<<POSITIVE_VERBS>>>>

// E.g., It was observed that [assessment on data privacy was not completed].
-PatternID=4 MainRegex: <nsubj_leads?>(?P<Risk>.*?)</nsubj_leads?>.*?\bleads?[][ˆ]*?\bto[][ˆ]*?[[[Risk]]]

// E.g., [Frequent changes in Tech Stack] might lead to delivery slippage.
-PatternID=5 (Multi-sentence)
MainRegex: <DNP_[A-Za-z]+>(?P<Risk>((?!<SENT>|</SENT>|<<<RIGHT_BOUNDARY>>>).)*)</DNP_[A-Za-z]+>
OuterRegex: \brisks?[][ˆ]*?:[][ˆ]*?</SENT>(?P<select>.*?)$

Table 2: Representative linguistic patterns for extraction of Risk entity mentions.

such type – Risk. In large IT services organizations,
thousands of projects are going on simultaneously.
These projects are routinely audited and as a part
of this process, auditors also write their opinion
about each project as an audit summary. One of
the most important piece of information in these
audit summaries is potential Risks that the project
is facing or may face in near future. We define Risk
as an entity type which is any undesirable factor
which may have an adverse effect on project ob-
jectives or outcomes. E.g., impacting timelines

of the project delivery, unavailability

of skilled resources. It is important to note
that Risk mentions can be not only noun phrases
but also verb phrases. Hence, extraction of Risk
mentions is challenging compared to the traditional
Named Entity Recognition (NER) task where
the entity types (such as PERSON or ORG) are
mentioned in the form of noun phrases only.

Table 2 shows some linguistic patterns designed
for extraction of Risk entity mentions along with
examples of sentences and extracted mentions. Pat-
ternID=4 uses the embedded entity type [[[Risk]]]
where the final pattern dynamically substitutes
Risk extractions by earlier patterns (delivery
slippage in this case which is already extracted by
the first pattern). PatternID=5 is a multi-sentence
pattern which first identifies a list of sentences
immediately followed by “risks:” (using Out-
erRegex) and then extracts noun phrases from such
sentences as Risk mentions (using MainRegex).

We used a dataset of 3804 audit summaries
consisting of 8046 sentences. We manually
annotated Risk entity mentions in 700 of these and
used 500 as our training set (L) and remaining
200 as our evaluation set. 3104 unlabelled

Technique P R F1
Only Linguistic Rules 0.73 0.38 0.50
CRF trained using L 0.60 0.28 0.38
BiLSTM-CRF trained using L 0.41 0.38 0.39
CRF trained using L ∪ U 0.59 0.37 0.46
BiLSTM-CRF trained using L ∪ U 0.65 0.54 0.59

Table 3: Extraction accuracy for RISK mentions using
the evaluation dataset of 200 Audit summaries

audit summaries (U) were used to augment the
manually annotated training set L using the
entity mentions identified in U by the linguistic
rules. Table 3 shows the overall entity extraction
performance on the evaluation set, using CRF and
BiLSTM-CRF (Huang et al., 2015) models. It
can be observed that the models trained on L ∪ U
clearly outperform the models trained only on L as
well as only rules-based extraction. Consider the
sentence: The SIT and UAT environment is

same, this may impact the quality of the

deliverables. Here, only the BiLSTM-CRF
model trained using L ∪ U was able to extract the
Risk mention The SIT and UAT environment is

same which was neither extracted by the linguistic
rules nor by the model trained only on L.

6 Conclusions
We proposed a powerful patterns specification lan-
guage for specifying linguistic rules for entity ex-
traction which are matched against ETF text. The
language is also generalizable to encode linguis-
tic knowledge for relation and event extraction.
We demonstrated how an entity extraction system
can be quickly built for a domain-specific entity
type Risk where a small manually annotated dataset
is augmented with a large automatically labelled
dataset using linguistic knowledge.

371

References
Nathanael Chambers, Daniel Cer, Trond Grenager,

David Hall, Chloe Kiddon, Bill MacCartney, Marie-
Catherine De Marneffe, Daniel Ramage, Eric Yeh,
and Christopher D Manning. 2007. Learning align-
ments and leveraging natural logic. In Proceedings
of the ACL-PASCAL Workshop on Textual Entail-
ment and Paraphrasing, pages 165–170.

Matthew Honnibal and Ines Montani. 2017. spacy 2:
Natural language understanding with bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. https://spacy.io/.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991.

Roger Levy and Galen Andrew. 2006. Tregex and tsur-
geon: tools for querying and manipulating tree data
structures. In LREC, pages 2231–2234. Citeseer.

Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li.
2020. A survey on deep learning for named entity
recognition. IEEE TRANSACTIONS ON KNOWL-
EDGE AND DATA ENGINEERING, page 1.

Chen Liang, Yue Yu, Haoming Jiang, Siawpeng Er,
Ruijia Wang, Tuo Zhao, and Chao Zhang. 2020.
Bond: Bert-assisted open-domain named entity
recognition with distant supervision. In Proceed-
ings of the 26th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining,
pages 1054–1064.

Pierre Lison, Aliaksandr Hubin, Jeremy Barnes, and
Samia Touileb. 2020. Named entity recognition
without labelled data: A weak supervision approach.
arXiv preprint arXiv:2004.14723.

Mike Mintz, Steven Bills, Rion Snow, and Dan Juraf-
sky. 2009. Distant supervision for relation extrac-
tion without labeled data. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP, pages
1003–1011.

G. K. Palshikar. 2012. Techniques for named entity
recognition: A survey. In Collaboration and the
Semantic Web: Social Networks, Knowledge Net-
works and Knowledge Resources, pages 191–217.
IGI Global.

S. Pawar, G.K. Palshikar, and P. Bhattacharyya. 2017.
Relation extraction: A survey. In arXiv:1712.05191.

Alexander Ratner, Stephen H Bach, Henry Ehrenberg,
Jason Fries, Sen Wu, and Christopher Ré. 2017.
Snorkel: Rapid training data creation with weak su-
pervision. In Proceedings of the VLDB Endowment.
International Conference on Very Large Data Bases,
volume 11, page 269. NIH Public Access.

Esteban Safranchik, Shiying Luo, Stephen H Bach, Ela-
heh Raisi, Stephen H Bach, Stephen H Bach, Daniel
Rodriguez, Yintao Liu, Chong Luo, Haidong Shao,
et al. 2020. Weakly supervised sequence tagging
from noisy rules. In AAAI, pages 5570–5578.

372

Proceedings of the 17th International Conference on Natural Language Processing, pages 373–378
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Leveraging Alignment and Phonology for low-resource Indic to
English Neural Machine Transliteration

Parth Patel1, Manthan Mehta2, Pushpak Bhattacharyya1 and Arjun Atreya1

{parthpatel, pb, arjun}@cse.iitb.ac.in, f20170408@pilani.bits-pilani.ac.in
1Department of Computer Science & Engineering

Indian Institute of Technology Bombay, Mumbai, India
2 Department of Computer Science & Information Systems

Birla Institute of Technology & Science, Pilani, India

Abstract

In this paper we present a novel translitera-
tion technique based on Orthographic Syl-
lable (OS) segmentation for low-resource
Indian languages (ILs). Given that align-
ment has produced promising results in
Statistical Machine Transliteration sys-
tems and phonology plays an important
role in transliteration, we introduce a new
model which uses alignment representa-
tion similar to that of IBM model 3 to
pre-process the tokenized input sequence
and then use pre-trained source and tar-
get OS-embeddings for training. We ap-
ply our model for transliteration from ILs
to English and report our accuracy based
on Top-1 Exact Match. We also compare
our accuracy with a previously proposed
Phrase-Based model and report improve-
ments.

1 Introduction

The process of transliteration is defined in
Zhang et al. (2012) as “the conversion of a
given name in the source language (a text
string in source script) to a name in the target
language (another text string in target script),
such that the target language name is: (i)
phonemically equivalent to the source name,
(ii) conforms to the phonology of the target
language, and (iii) matches the user intuition
of the equivalent of the source language name
in the target language, considering the culture
and orthographic character usage in the tar-
get language”. This definition of translitera-
tion is apt in the context of Machine Transla-
tion since it employs transliteration as a sub-
system to handle Named Entities (NEs). We
are interested in solving the transliteration
problem for Indian to English language pairs
and in this paper, we demonstrate the use of
OS and pre-trained embeddings to overcome

the data sparsity problem that arises in low-
resource languages.
The structure of the paper is as follows: Sec-
tion 2 presents the state of the art on machine
transliteration. In section 3 and 4, we describe
some background and our proposed approach.
Then, in section 5, we present our experiments
and results. Finally, in section 6, we present
our conclusions and in section 7, we express
gratitude to our supporters.

2 Related Work

Arbabi et al. (1994) proposed the very first
transliteration system for Arabic to English
transliteration. In 1998, Knight and Graehl.
(1998) proposed a statistical based approach
that back transliterates English to Japanese
Katakana which was later adopted for Ara-
bic to English back transliteration by Stalls
and Knight. (1998). In 2000, three inde-
pendent research teams proposed English-to-
Korean transliteration models. Other series of
work on transliteration has focused on char-
acter as a unit of transliteration and using
Recurrent Neural Networks. Neural network-
based system in the 2016 was proposed by
Finch et al. (2016) for multiple language pairs.
They used Bi-directional LSTMs for good pre-
fix and suffix generation and were able to sur-
pass the state-of-the-art results of previous
systems on the same datasets. Kunchukuttan
et al. (2018); Le et al. (2019) used standard
encoder-decoder architecture (with attention
mechanism (Bahdanau et al., 2014)). Until
recently, the best-performing solutions were
discriminate statistical transliteration meth-
ods based on OS-based statistical machine
transliteration (Atreya, 2016) for Indian to
English language pairs. We focus on apply-
ing OS as a transliteration unit on encoder-
decoder architecture (with attention) (Luong

373

et al., 2015).

3 Background Knowledge
We first describe the Orthographic syllables,
which form the essence of this transliteration
module, introducing a new technique for word
segmentation, following which we will formu-
late the probabilistic model for Grapheme-to-
Grapheme alignment, explaining the method
to position each orthographic syllable in the
word.

3.1 Orthographic Syllables
Indic languages possess greater grapheme to
phoneme consistency as compared to En-
glish(Atreya, 2016). However, the syllable
boundary identification for segmentation of an
Indic language word into a list of syllables is
extremely challenging because of the presence
of Schwa (short ’a’ vowel preceded by a con-
sonant unless specified otherwise) and diph-
thongs (sound formed by combination of two
vowels) in the syllable unit. In this work,
we have used a variant of Syllable as a unit,
called Orthographic Syllable which essentially
is ‘Syllable −(minus) Coda’ (See Figure:1).
The algorithm used for the OS segmentation
is presented in Algorithm 1.

Syllable

Onset
(C*)

Rhyme
Coda
(C*)

Nucleus
(V+)

OS

Figure 1: Structure of Orthographic Syllable where
the left over Coda concatenates with the Onset of
the next OS

3.2 Grapheme-to-Grapheme
Alignment

Le et al. (2019) and Yao and Zweig (2015)
have reported that, in grapheme-to-phoneme
alignments, the grapheme possesses the fertil-
ity property similar to IBM Model 3 i.e. it can
map to either a null or single or compound
phonemes. We assume that same holds true
for grapheme-to-grapheme alignments. Since,
the aim of alignment is to find a grapheme
sequence Y defined by Y = {p1, p2, ..., pN},

given an OS segmented grapheme sequence X
defined by X = {o1, o2, ..., oM}. Essentially,
the problem can be seen as finding the opti-
mal grapheme sequence Ŷ , which maximizes
its conditional probability, as in Equation 1.
Since p(X) is independent of the grapheme se-
quence Y , we can simplify the equation 2 to
get Equation 3.

Ŷ = arg max
Y

p(Y |X) (1)

Ŷ = arg max
Y

(X|Y)p(Y)

p(X)
(2)

Ŷ = arg max
Y

p(X|Y)p(Y) (3)

Mathematically, given X, Y , and an align-
ment A, the posterior probability p(P |O, A) is
estimated as follows:

p(Y |X, A) ≈
N∏

n=1

p(pn|pn−k
n−1, o

n+k
n−k) (4)

where k is the context window size and n is
the alignment position index.
We use expectation-maximization as described
in Jiampojamarn et al. (2007) for re-aligning
the input sequence after OS segmentation.

Algorithm 1 Orthographic Syllable segmen-
tation . Consonant and Vowel are represented
by C and V respectively

1: procedure SEGMENT(word) ▷ Split
word based on regular expression: C∗V +

2: seg_os← ‘‘”
3: prev_vowel← False
4: for each character c in word do
5: if prev_vowel and (c!=vowel) then
6: prev_vowel← False
7: seg_os← seg_os + ‘‘#”
8: end if
9: if c = vowel then

10: prev_vowel← True
11: end if
12: seg_os← seg_os + c
13: end for
14: return seg_os.split(‘‘#”)
15: end procedure

4 Approach
In this section, we present our approach, fol-
lowed by a description of our experimental

374

setup, describing the data gathering and clean-
ing, followed by the model configurations and
then the evaluation technique.

4.1 Proposed Approach
Our approach for Indic to English Neural Ma-
chine Transliteration consists of 4 steps: (1)
orthographic syllable segmentation, (2) modifi-
cation of OS-segmented input sequences based
on alignment representation, (3) creation of
orthographic syllable embeddings with aligned
input sequences as input and (4) then we train
an RNN-based machine transliteration model.
The whole process is illustrated in Figure 2.

4.2 Experimental Data
We run our experiments on baby names
dataset available in multiple IL and English
from India Child Names website1 and Bachpan
website2. The bilingual dataset for learning is
divided into training, development, and test-
sets at a ratio of 90%, 5% and 5% respectively.
The details about the dataset are mentioned
in Table 1.

4.3 Model Configuration
We use the m-2-m aligner3 toolkit (Jiampoja-
marn et al., 2007) to align the training data
at OS level. We choose m = 2 similar to (Le
et al., 2019) for alignment. For the pre-trained
source and target OS embeddings, we apply
gensims4 toolkit (Řehůřek and Sojka, 2010)
with dimension size of 100, 200, and 300, a
window size of 3, and the skip-gram option.

For model training, we apply OpenNMT-
py5 toolkit (Klein et al., 2017) to train our
transliteration model. In the transliteration
system configuration, we run our model with
Adam optimizer and use Luong et al. (2015)
attention with two learning rates 0.01 and
0.001 for 50000 training steps. We also
use 2, 3, and 4 layered encoder-decoder net-
works(LSTMs) each with vector sizes of 100,
200, and 300 and report the top accuracy val-
ues for multiple language pairs.

1www.indiachildnames.com
2www.bachpan.com
3https://github.com/letter-to-phoneme/

m2m-aligner
4https://radimrehurek.com/gensim/models/

fasttext.html
5https://github.com/OpenNMT/OpenNMT-py

xx-en pair train dev test total
Assamese (as) 95308 5295 5295 105897
Bengali (bn) 71832 3991 3991 79813
Gujarati (gu) 16599 923 923 18443
Hindi (hi) 43074 2393 2393 47860
Kannada (kn) 16601 923 923 18445
Malayalam (ml) 15721 874 874 17467
Marathi (mr) 46908 2606 2606 52120
Punjabi (pa) 44737 2486 2486 49707
Tamil (ta) 16393 911 911 18214
Telugu (te) 19970 1110 1110 22188

Table 1: Dataset details for 10 IL where xx repre-
sents IL code mentioned in parenthesis of column
1

4.4 Evaluation Technique
We use Top-1 Exact Match accuracy as the
evaluation metric (Banchs et al., 2015). This
is one of the metrics used in the NEWS shared
tasks on transliteration.

5 Results
We discuss and analyse the results of our ex-
periments, indicating the major improvements
and scope of improvement for our approach.

5.1 Results on Test Data
To evaluate our proposed approach, we have
implemented three systems (Table 2):

1. Baseline System: We reproduce the re-
sults of Atreya (2016) using MOSES6

toolkit (Koehn et al., 2007) for our ex-
periments along with GIZA++7 (Och and
Ney, 2003) for learning alignments.

2. System 1: Encoder-Decoder LSTM(Klein
et al., 2017) + Attention Mecha-
nism(Luong et al., 2015) + OS segmen-
tation(Atreya, 2016)+ one hot encoding
as the encoding mechanism.

3. System 2: Encoder-Decoder
LSTM(hidden sizes of 128 and 256
were tried) + Attention Mechanism +
OS segmentation + pre-trained source
and target OS embeddings(sizes of 100,
200 and 300 were used as embedding

6https://github.com/moses-smt/mosesdecoder
7https://github.com/moses-smt/mgiza

375

Bi-lingual
dataset

OS	Segmentation Alignment
Extraction

Aligner

OS	Embedding
Generation

FastText

RNN	+	OS
Embedding	Machine

Transliteration

[hi]	आभरण	
(Gratification)
[en]	aabharana

[gu]	આનંદ
(Joy)

[en]	aanand

[hi]		भगवा	न
(God)

[gu]	ત	�લી
(Toll)

[hi]	आ#भरण	
[en]	aa#bha#ra#na	

[gu]	આ#નં#દ	
[en]	aa#na#nd

[hi]	आ#भ:रण
[en]	aa#bha:ra:na

[gu]	આ#નં#દ
[en]	aa#na#nd

[hi]	bha:gwaa	n
[gu]	ta:llee

Figure 2: System Architecture for Indic to English Neural Machine Transliteration

Exp. DS Indic (xx) to English (en) Language pair
as bn gu hi kn ml mr pa ta te

Baseline 50.68 37.75 48.87 57.21 48.94 48.49 45.77 39.28 35.39 46.99

System 1 128 81.92 75.8 73.58 63.52 72.7 71.82 67.98 66.51 65.38 69.19
256 80.43 75.56 73.75 62.96 73.96 71.19 67.43 66.45 65.76 70.22

System 2 128 82.97 78.42 72.59 62.68 74.29 74.65 68.83 68.73 65.7 71.59
256 81.54 77.21 73.84 62.73 75.48 74.54 69.2 68.16 66.77 69.78

Table 2: Top-1 accuracy figures of xx-en language pairs with 128 and 256 dimension size(DS)

sizes). The learning rate used here was
0.001 with Adam optimizer as already
mentioned in section 4.3.

As evident from Table 2, our systems 1 and 2
increase the Top-1 accuracy by at-least 50%.
We list the following observations:

• All language pairs perform better with
a learning rate of 0.001 and a 2-layered
LSTM.

• We claim that the dimension size is in-
versely proportional to the size of the
dataset for Indic languages. This is sup-
ported by the fact that {gu, kn, ta}-en
language pairs have smaller dataset size
and perform better for LSTM with dimen-
sion size of 256. On the other hand, the
{as, bn, hi, ml, pa, te}-en language pairs
have a larger dataset and perform better
with dimension size of 128.

5.2 Error Analysis
Table 3 shows top-10 prediction errors along
with actual and predicted output examples.

y ŷ Count Expected
Word

Output
Word

1 ee i 832 ha mee d haa mi d
2 aa a 667 ko maa n ko ma n
3 i ee 567 haa mi d ha mee d
4 th t 288 vi dva thi vi dva ti
5 w v 202 i swa r i sva r
6 t th 187 ra nti ka ra nthi ka
7 a aa 174 ha mee d haa mi d
8 v w 158 vo to n wo to n
9 c k 107 mou ni ca mou ni ka
10 k c 55 ana mi ka ana mi ca

Table 3: Top-10 Most confused vowels across all
language pairs. y represents the expected output
whereas ŷ represents the actual predicted output

The most frequent error the system makes is
confusing long ई(E) sound with a short इ(e)
and have only predicted correctly 487 times.
The characters थ(th) and त(t), both unaspi-
rated and aspirated consonants, are also mis-
takenly substituted. Schwa present at the end

376

of an OS also presents a challenge for the
prediction since IL words are almost always
suffixed by a short अ(a) sound(unless other-
wise specified explicitly by using ◌्) that is
non-existent in English words. This is also
language dependent since राज़(raj, rule) from
Hindi to English should be transliterated as
Raj whereas from Dravidian(ta, te, kn, ml)
languages should be Raja. Similarly, even
words of the same language can have two dif-
ferent predictions like मा(mother) have ma and
maa which are both correct with respect to
English phonology. The characters w and v
are the sounds that both maps to the same
akshar of Indo-Aryan languages and are often
very difficult to differentiate.

6 Conclusion and Future Work
We show that using pre-trained OS-
embeddings on neural encoder-decoder
architecture involving OS tokenization out-
performs the baseline system by a significant
margin. The results also support our claim
that phonology and alignment play an
important role in increasing the accuracy
of transliteration. The reason for the im-
provement could be learning the Akshar
(a combination of vowel and consonant)
representation by encoder network and the
ability to learn canonical spellings in English.

Given the benefits of using alignment and
OS embeddings for low-resource ILs, we intend
to explore IL to IL transliteration with and
without English as a pivot.

7 Acknowledgement
We would like to show our gratitude to Min-
istry of Electronics And IT (MEITY8) and
our colleagues from Center for Indian Lan-
guage Technology (CFILT9) who provided in-
sight, expertise, and resources that greatly as-
sisted the research, and we thank 2 ”anony-
mous” reviewers for comments that improved
the manuscript.

References
Mansur Arbabi, Scott M Fischthal, Vincent C

Cheng, and Elizabeth Bart. 1994. Algorithms
8https://www.meity.gov.in/
9http://www.cfilt.iitb.ac.in/

for arabic name transliteration. IBM Journal of
research and Development, 38(2):183–194.

Arjun Atreya. 2016. Structure cognizant multi-
lingual query expansion in resource scarce lan-
guages. Ph.d thesis, IIT Bombay, April.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. arXiv
preprint arXiv:1409.0473.

Rafael E Banchs, Min Zhang, Xiangyu Duan,
Haizhou Li, and A Kumaran. 2015. Report of
news 2015 machine transliteration shared task.
In Proceedings of the Fifth Named Entity Work-
shop, pages 10–23.

Andrew Finch, Lemao Liu, Xiaolin Wang, and Ei-
ichiro Sumita. 2016. Target-bidirectional neural
models for machine transliteration. In Proceed-
ings of the sixth named entity workshop, pages
78–82.

Sittichai Jiampojamarn, Grzegorz Kondrak, and
Tarek Sherif. 2007. Applying many-to-many
alignments and hidden markov models to letter-
to-phoneme conversion. In Human Language
Technologies 2007: The Conference of the North
American Chapter of the Association for Com-
putational Linguistics; Proceedings of the Main
Conference, pages 372–379.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander M. Rush. 2017. Open-
NMT: Open-source toolkit for neural machine
translation. In Proc. ACL.

Kevin Knight and Jonathan Graehl. 1998. Ma-
chine transliteration. Computational linguistics,
24(4):599–612.

Philipp Koehn, Hieu Hoang, Alexandra Birch,
Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine
Moran, Richard Zens, et al. 2007. Moses: Open
source toolkit for statistical machine transla-
tion. In Proceedings of the 45th annual meeting
of the association for computational linguistics
companion volume proceedings of the demo and
poster sessions, pages 177–180.

Anoop Kunchukuttan, Mitesh Khapra, Gurneet
Singh, and Pushpak Bhattacharyya. 2018.
Leveraging orthographic similarity for multi-
lingual neural transliteration. Transactions of
the Association of Computational Linguistics,
6:303–316.

Ngoc Tan Le, Fatiha Sadat, Lucie Menard,
and Dien Dinh. 2019. Low-resource machine
transliteration using recurrent neural networks.
ACM Transactions on Asian and Low-Resource
Language Information Processing (TALLIP),
18(2):13.

377

Minh-Thang Luong, Hieu Pham, and Christo-
pher D Manning. 2015. Effective approaches
to attention-based neural machine translation.
arXiv preprint arXiv:1508.04025.

Franz Josef Och and Hermann Ney. 2003. A
systematic comparison of various statistical
alignment models. Computational linguistics,
29(1):19–51.

Radim Řehůřek and Petr Sojka. 2010. Software
Framework for Topic Modelling with Large Cor-
pora. In Proceedings of the LREC 2010 Work-
shop on New Challenges for NLP Frameworks,
pages 45–50, Valletta, Malta. ELRA. http:
//is.muni.cz/publication/884893/en.

Bonnie Glover Stalls and Kevin Knight. 1998.
Translating names and technical terms in ara-
bic text. In In Proceedings of the Workshop
on Computational Approaches to Semitic Lan-
guages, page 34–41.

Kaisheng Yao and Geoffrey Zweig. 2015. Sequence-
to-sequence neural net models for grapheme-
to-phoneme conversion. arXiv preprint
arXiv:1506.00196.

Min Zhang, Haizhou Li, Ming Liu, and A Ku-
maran. 2012. Whitepaper of news 2012 shared
task on machine transliteration. In Proceedings
of the 4th Named Entity Workshop, pages 1–9.
Association for Computational Linguistics.

378

Proceedings of the 17th International Conference on Natural Language Processing, pages 379–383
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

STHAL: Location-mention Identification in Tweets of Indian-context

Kartik Verma1,∗, Shobhit Sinha2,∗, Md Shad Akhtar3, Vikram Goyal3
1Delhi Technological University, India

2Thapar Institute of Engineering & Technology, India
3Indraprastha Instuitute of Information Technology Delhi (IIIT-Delhi), India

vkartik2k@gmail.com, shobhitsinha13@gmail.com
{shad.akhtar, vikram}@iiitd.ac.in

Abstract
We investigate the problem of extracting
Indian-locations from a given crowd-sourced
textual dataset. The problem of extracting fine-
grained Indian-locations has many challenges.
One challenge in the task is to collect rele-
vant dataset from the crowd-sourced platforms
that contain locations. The second challenge
lies in extracting the location entities from the
collected data. We provide an in-depth re-
view of the information collection process and
our annotation guidelines such that a reliable
dataset annotation is guaranteed. We evaluate
many recent algorithms and models, including
Conditional Random fields (CRF), Bi-LSTM-
CNN and BERT (Bidirectional Encoder Rep-
resentations from Transformers), on our devel-
oped dataset named STHAL. The study shows
the best F1-score of 72.49% for BERT, fol-
lowed by Bi-LSTM-CNN and CRF. As a result
of our work, we prepare a publicly-available
annotated dataset of Indian geolocations that
can be used by the research community. Code
and dataset are available at https://github.
com/vkartik2k/STHAL.

1 Introduction

Location-based systems (Gartner) are playing a vi-
tal role in multiple applications such as navigation
services, tourist place recommendation, address
standardization and safe routes recommendation.
To implement such systems and provide location-
based services effectively, it requires to have up-
to-date information on location names and their
associated events. One relevant source for such
information is social media which is considered as
a crowd-sourced dataset. Social media has become
the most potent medium for the real-time source of
data (B. Han and Baldwin, 2014) for analysis.

The impact of social media is inevitable and mas-
sive. Many case studies reflect on why people are

∗* First two authors have contributed equally.

Figure 1: Example of a tweet having non-standard lo-
cation name

such a lot active on social platforms and share infor-
mation. This puts the means to connect anywhere,
at any time.1 Journalists also use it as a medium
of power to gain insights about the background of
various events. However, social networks enable
one to harvest recent location events; there lie vari-
ous challenges due to the platforms being general
in terms of sharing of information by individuals.
One of the challenges is to select relevant posts out
of streaming data that contain location information.
The second challenge is to extract location entities
from noisy text (Kumar and Singh, 2019) data.

Previous state-of-the-art techniques based on Ge-
olocation Prediction in Twitter (Chi et al., 2016),
Detecting Location-Centric Communities (Lim
et al., 2015) and Social Media Data Location Pre-
diction (Han et al., 2012) do not perform well in
terms of extracting fine-grained location entities in
Indian context from the crowd-source data. One
of the specific reasons for inferior performance is
the non-standardization in location naming con-
ventions. For example, it is easy to find locations
names having words such as gali, zila, village, vi-
har, nagar, gaon, etc. An example is given in
Figure 1. It demands designing of specific meth-
ods to extract location names and associated events
from crowd-source data for Indian subcontinent.
The application of this approach can help to demys-
tify the route system, telematics vehicle tracking,
and Covid tracking using crowd sourced data.

1https://www.simplilearn.com/
real-impact-social-media-article

379

Keyword Selection

& Data Collection

Data

Annotation

Evaluation Model

Feature

ExtractionPreprossessing

Dataset Testing Training
Algorithms

Figure 2: Process flow diagram for the location tag-
ging.

In this paper, we investigate various approaches
for named entity recognition focusing mainly on lo-
cation names. The approaches include Conditional
Random Field (CRF) (Lafferty et al., 2001), neu-
ral network-based Bi-directional Long Short Term
Memory-Convolution Neural Network (Bi-LSTM-
CNN) (Chiu and Nichols, 2016), and Bidirectional
Encoder Representations from Transformers-based
(Devlin et al., 2019) models. We improve the fine-
grained location-based approaches by fine-tuning
BERT on our annotated dataset (Arase and Tsujii,
2019). We observe a performance improvement
of ≥ 2% F1-score points in BERT-based model
compared to the other two baseline systems.

The remainder of the paper is organized as fol-
lows: In Section 2, we describe the development
of STHAL dataset and the proposed approach. We
present our experimental results and necessary anal-
yses in Section 3. Finally, we conclude in Section
4.

2 Methodology

In this section, we describe our methodology in
detail. First, we explain STHAL’s development
process, and subsequently, present our system. A
high-level diagram is depicted in Figure 2.

2.1 Dataset Development

As discussed above, the need for dataset devel-
opment is driven by the fact that there exist no2

tweets dataset to cater the requirements of location-
specific entity extraction (or NER, in general) in
the Indian context. Therefore, we collect tweet
that mentions geographical location (or address) in
India and annotates them accordingly.

2.1.1 Data collection
The collection of the dataset was divided into two
stages: keyword selection for the seed word list
and extraction of tweets for each keyword in the
seed list. We adopt the (Aref et al., 2020) method
for the collection process.

2To the best of our knowledge.

Keyword Selection In doing the research, the
first challenge was to collect comprehensive data
for the topic. We mainly focused on collecting
the data based on location irrespective of its other
attributes, such as the statement’s sentiment or the
lingual. To tackle this issue, one comprehensive
solution can be creating a list of keywords that are
concentrated on tweets and crawl using an API.

We created a set of words which was used to ex-
tract data from Twitter. We choose Covid, accident,
and road as keywords for extraction. These key-
words were then iterated with the location database
(covered in the next section) to get the required
dataset.

Data Set Collection: Among various social me-
dia handles, we choose Twitter to extract the dataset
because of its wide range of coverage. Twitter is
playing an essential role in providing public tweets
in the form of JSON document, and it includes var-
ious added fields as well such as locations, status
Etc.

We use Tweepy3, a standard Twitter API consist
of REST (Representational State Transfer) APIs
and Streaming APIs, for data collection. The REST
search API provides access to general public tweets
with other relevant information. Bulk queries were
made to extract the required information. About
250 tweets were only retrieved within the given
time frame i.e, 1st January 2020 to 31st August
2020. There was various limitation related to the
tweets mentioned in the documentation. Due to
these limitations in search API, a custom tweet
scraper was made to query the tweets for a given
time frame and iterated the keywords and location
database (about 233 locations) to get the required
database. Around 3500, tweets were retrieved.

2.1.2 Data Pre-processing
Post data collection phase, we apply a series of pre-
processing steps to clean our dataset as follows:

• Removal of irrelevant tweets: We remove
some tweets irrelevant for our case. For example,
in the tweet ‘Delhi beats Mumbai in Ranji Tro-
phy.’, the mentions of ‘Delhi’ and ‘Mumbai’ are
not referring to a geographical location; instead,
they are referring to a cricket team playing for
the two cities.

• Normalization : In general, tweets consist of
lots of noisy texts; therefore, we normalize the
3https://www.tweepy.org

380

Text This is the situation of Mahatma Gandhi Road , Adarsh Nagar , Delhi 33 from the last month .
Labels O O O O O B-LOC I-LOC I-LOC O B-LOC I-LOC O B-LOC I-LOC O O O O O

Table 1: An example annotated tweet following BIO (Tjong Kim Sang, 2002) scheme from STHAL dataset

tweets to remove unprintable, junk, and some
special ($, ?, Etc.) characters.

Finally, we tokenize the remaining tweets using
CMU Ark tokenizer4 for further processing.

2.1.3 Data Annotation
The annotation process involves the analysis of
each tweet in the dataset manual. We adopt BIO
notation scheme (Tjong Kim Sang, 2002) to as-
sign a tag (B-LOC, I-LOC, or O) to each token
of a tweet. An annotated example is shown in
Table 1. The tweet contains three fine-grained loca-
tions (‘Mahatama Gandhi Road’, ‘Adarsh Nagar’,
and ‘Delhi 33’) that constitute one coarse-grained
location (i.e., ‘Mahatama Gandhi Road, Adarsh
Nagar, Delhi 33’). We annotate the location at
the fine-grained level. We can observe that the
fine-grained locations are separated by punctuation
(usually, comma) marks; thus can be easily con-
structed back to the coarse-grained annotations by
assigning I-LOC to each intermediate punctuation.

The first token of each location gets a B-LOC
tags marking the begin of the location. Each subse-
quent tokens in the location get I-LOC tags reflect-
ing the intermediate positions of the location. All
non-location tokens are marked with O represent-
ing outside of the location.

Table 2 lists statistics of the STHAL dataset. In
total, it consists of 3, 411 tweets with 8, 369 loca-
tion mentions.

2.2 Model and Other Baselines
The named-entity-recognition task is a sequence-
labelling task, in which, for a sequence of n tokens
(i.e., a sentence), we expect a sequence of m tags,
where n == m. Following the similar setup, we
employ BERT (Bidirectional Encoder Representa-
tions from Transformer) (Devlin et al., 2019) archi-
tecture. To compare the goodness of BERT-based
system, we also employ two standard models for
sequence labelling task, i.e., a CRF-based model
and a Bi-LSTM-CNN (Chiu and Nichols, 2016)
architecture.

• BERT: BERT as the sequence-learner for the
automatic extraction of location mentions from
4http://www.cs.cmu.edu/˜ark/TweetNLP/

Stats Value
No. of tweets 3, 411
No. of tokens 1, 09, 162
No. of locations 8369

Avg. length of sentence 32.002 tokens
Avg. location length 2.255 tokens
Multilingual English and Romanized Hindi

Table 2: A few statistics of the STHAL dataset.

tweets. Recently, BERT has been established
as a de facto system for a variety of NLP tasks
mainly due to its excellent capability in extract-
ing the underlying semantics from the text. We
utilize a pre-trained BERT base model and fine-
tune it for the location mention identification in
tweets.

• CRF: A CRF (Conditional Random Field) (Laf-
ferty et al., 2001) is a class of discriminative
model, used for predicting sequences. It exploits
the contextual information of the input as well
as the predicted labels of the preceding tokens
for classifying the current token. The tokens are
converted into feature vectors (Quang H Pham,
2019) and are then used by the CRF for sequen-
tial labelling. We compute the following three
features for the current and previous three tokens:
surface form in lower case; a binary feature for
all caps; and a binary feature for title case.

• Bi-LSTM-CNN: The second system is a
pipeline model of Bi-LSTM (Hochreiter and
Schmidhuber, 1997) followed by a CNN layer
(Kim, 2014). We employ GloVe embeddings
(Pennington et al., 2014) model for the feature
extraction of input tokens. The hidden repre-
sentations of Bi-LSTM is fed to a CNN layer
and subsequently to the output layer for final
classification. To ensure the convoluted features
for each token, we zero-padded (Hashemi, 2019)
the input. We use 30 trigram filers followed by
max-pool (Wu and Gu, 2015) layer.

3 Experiments and Evaluation Results

We implement CRF, Bi-LSTM-CNN, and BERT
models in sci-kit-learn, TensorFlow, and PyTorch

381

Text Check distance from Gali No . 5 , Dwarka to Subzi Mandi Old , New Delhi , Delhi - 110036 .
Gold O O O B-LOC I-LOC I-LOC I-LOC O B-LOC O B-LOC I-LOC I-LOC O B-LOC I-LOC O B-LOC I-LOC I-LOC O

A
CRF O O O O O O O O O O B-LOC I-LOC I-LOC O B-LOC I-LOC O O O O O
B-CNN O O O B-LOC O O O O O O O O O O B-LOC I-LOC O B-LOC O O O
BERT O O O B-LOC I-LOC O O O B-LOC O B-LOC I-LOC I-LOC O B-LOC I-LOC O B-LOC O I-LOC O

B
CRF O O O B-LOC I-LOC I-LOC I-LOC O B-LOC O B-LOC I-LOC I-LOC O B-LOC I-LOC O B-LOC O O O
B-CNN O O O B-LOC I-LOC I-LOC I-LOC O B-LOC O B-LOC I-LOC I-LOC I-LOC I-LOC I-LOC O B-LOC I-LOC I-LOC O
BERT O O O B-LOC I-LOC I-LOC I-LOC O B-LOC O B-LOC I-LOC I-LOC O B-LOC I-LOC O B-LOC I-LOC I-LOC O

Table 3: A qualitative analysis of the obtained outputs for two setups, A and B. We make two observations: a)
Training on dataset with Indian addresses and locations help; and b) BERT yields better outputs (it correctly
identifies all five instances of location mentions in setup B) compared to the other two baselines. Red text marks
misclassifications.

libraries, respectively. For the evaluation, we uti-
lize CONLL-2002 evaluation script5 for computing
the precision, recall, and F1-score for the location
mentions. In all the experiments, we randomly split
our annotated dataset, STHAL, into 75:25 ratio for
the train and test sets. Moreover, to establish our
hypothesis that the exiting NER datasets do not
adapt well to the location identifications for the
Indian context, we conduct our experiments in two
setups.

• Setup A: Training on the existing Named Entity
Recognition system (NER) 6 dataset and testing
on the STHAL’s test set.

• Setup B: Train and testing on STHAL.

In Table 4, we report our experimental results
for both setups on STHAL’s test set. All three mod-
els, i.e., CRF, Bi-LSTM-CNN, and BERT, yield
F1-scores of 19.60%, 26.08%, and 34.03%, respec-
tively, in setup A. One important observation we
make here is that the precision of CRF is the high-
est, while recall is the lowest among all. This sug-
gests that the CRF model is too pessimistic about
tagging a token as location-mention, i.e., the low
recall value reflects the non-aggressive approach in
tagging tokens as location-mentions, and the tokens
it tagged as location-mentions are correct 66.23%
(precision) of times. The BERT-based model im-
proves upon the recall value but at the cost of low
precision; however, the F1-score also improves.

It is evident that the best model in setup A
(BERT) does not have good F1-score, mainly due
to lack of Indian-styled location-mentions in the
train set. In comparison, we observe significant
improvements for all models in setup B. The best
F1-score of 72.49% is obtained by BERT, followed
by Bi-LSTM-CNN (70.31%) and CRF (69.99%).

5https://www.clips.uantwerpen.be/
conll2002/ner/bin/conlleval.txt

6https://www.kaggle.com/
abhinavwalia95/entity-annotated-corpus

Setup Model Precision Recall F1-Score

A
CRF 66.23% 11.50% 19.60%
Bi-LSTM-CNN 41.26% 19.06% 26.08%
BERT 34.03% 27.36% 34.03%

B
CRF 75.46% 65.26% 69.99%
Bi-LSTM-CNN 67.45% 74.41% 70.31%
BERT 71.98% 73.00% 72.49%

Table 4: Experimental results for location-mention
identification on STHAL’s test set. It’s hard-evaluation,
i.e., if any token is misclassified in a location mention,
we treat it as the misclassified location mention.

3.1 Error Analysis
We present a qualitative analysis of the obtained
outputs in Table 3. For an example tweet in
STHAL’s test set, we list the token-wise predic-
tion for all three systems in two setups. We make
the following two observations:

• In setup A, where the systems are trained on
the existing NER dataset (covering global ad-
dresses and locations), all systems -including
BERT- commit mistakes in identifying Gali No.
5 as location. In contrast, we observe a better
performance of these systems when trained on
the STHAL dataset (covering Indian addresses
and locations) in setup B.

• In both setups, we observe a superior perfor-
mance of the BERT-based system compared to
the other two baseline systems.

4 Conclusion

In this paper, we present our research on location-
mention identification in Indian-context. Due to
the lack of representation of Indian-styled location-
names and addresses (e.g., Gali No., chowk, etc.) in
existing datasets, we develop a new Twitter dataset,
STHAL, for location-mention identification in In-
dian context. We benchmark STHALusing BERT-
based sequence classifier. Evaluation shows that
the underlying system leverages the presence of the
Indian-styled location-mentions in train set.

382

In STHAL, we include location-mentions primar-
ily from Delhi-NCR and northern part of India.
Thus, we hypothesis that it may not be adequately
sufficient for discovering location-mentions across
India, e.g., southern or north-eastern India. In fu-
ture, we would like to explore the task of location-
mentions suitable for the entire nation.

References
Yuki Arase and Junichi Tsujii. 2019. Transfer fine-

tuning: A bert case study. In Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP 2019).

Abdullah Aref, Rana Mahmoud, Khaled Taha, and
Mahmoud Al-Sharif. 2020. Hate speech detection
of arabic shorttext. In 9th International Conference
on Information Technology Convergence and Ser-
vices (ITCSE 2020), pages 81–94.

P. Cook B. Han and T. Baldwin. 2014. Text-based twit-
ter user geolocation prediction. In Journal of Arti-
ficial Intelligence Research, volume Vol. 49, No. 1,
pages 451–500.

Lianhua Chi, Kwan Hui Lim, Nebula Alam, and
Christopher J. Butler. 2016. Geolocation prediction
in Twitter using location indicative words and tex-
tual features. In Proceedings of the 2nd Workshop
on Noisy User-generated Text (WNUT), pages 227–
234, Osaka, Japan. The COLING 2016 Organizing
Committee.

P.C. Chiu, Jason and Eric Nichols. 2016. Named entity
recognition with bidirectional lstm-cnns. Transac-
tions of the Association for Computational Linguis-
tics, 4:357–370.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Krisp Jukka M. Raubal Martin Van de Weghe Nico
Gartner, Georg. Location based services: ongoing
evolution and research agenda.

Bo Han, Paul Cook, and Timothy Baldwin. 2012. Ge-
olocation prediction in social media data by finding
location indicative words. In Proceedings of COL-
ING 2012, pages 1045–1062, Mumbai, India. The
COLING 2012 Organizing Committee.

Mahdi Hashemi. 2019. Enlarging smaller images be-
fore inputting into convolutional neural network:
zero-padding vs. interpolation. In Empirical Meth-
ods in Natural Language Processing (EMNLP).

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1746–1751,
Doha, Qatar. Association for Computational Lin-
guistics.

Abhinav Kumar and Jyoti Prakash Singh. 2019. Lo-
cation reference identification from tweets during
emergencies: A deep learning approach. Interna-
tional Journal of Disaster Risk Reduction, 33:365 –
375.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning, ICML
’01, pages 282–289, San Francisco, CA, USA. Mor-
gan Kaufmann Publishers Inc.

Kwan Hui Lim, Jeffrey Chan, Christopher Leckie, and
Shanika Karunasekera. 2015. Detecting location-
centric communities using social-spatial links with
temporal constraints. In Advances in Information
Retrieval, pages 489–494, Cham. Springer Interna-
tional Publishing.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532–1543.

Nguyen Viet Cuong Quang H Pham, Binh T Nguyen.
2019. Punctuation prediction for vietnamese texts
using conditional random fields. In SoICT 2019:
Proceedings of the Tenth International Symposium
on Information and Communication Technology,
page 322–327, New York NY United States. Asso-
ciation for Computational Linguistics.

Erik F. Tjong Kim Sang. 2002. Introduction to the
CoNLL-2002 shared task: Language-independent
named entity recognition. In COLING-02: The
6th Conference on Natural Language Learning 2002
(CoNLL-2002).

Haibing Wu and Xiaodong Gu. 2015. Max-pooling
dropout for regularization of convolutional neural
networks.

383

Proceedings of the 17th International Conference on Natural Language Processing, pages 384–392
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Abstract

Sentence completion detection (SCD) is an

important task for various downstream

Natural Language Processing (NLP) based

applications. For NLP based applications,

which use the Automatic Speech

Recognition (ASR) from third parties as a

service, SCD is essential to prevent

unnecessary processing. Conventional

approaches for SCD operate within the

confines of sentence boundary detection

using language models or sentence end

detection using speech and text features.

These have limitations in terms of relevant

available data for training, performance

within the memory and latency constraints,

and the generalizability across voice

assistant domains. In this paper, we propose

a novel sentence completion detection

method with low memory footprint for On-

Device applications. We explore various

sequence-level and sentence-level

experiments using state-of-the-art Bi-

LSTM and BERT based models for English

language.

1 Introduction

Voice-intelligence enabled devices have

tremendous potential in providing near natural

human behavior based product experience to the

users (Dellaert et al. 2020). Such a potential has

primarily stemmed from Artificial Intelligence

based mimicking of speech recognition, question

answering, dialogues, conversations, and

command-induced actions. In order to meet user

expectations and cater towards product usage

satisfaction, knowing when the question, reply or

command is complete, i.e., sentence completion

detection, is a crucial task.

Voice assistants like Google Assistant, Alexa,

Cortana, Siri and Bixby etc. are becoming very

popular in modern world. These systems rely on

the text, predicted by a streaming speech

recognition (ASR) system. Streaming ASR

produces text continuously. It is computationally

efficient to execute downstream NLP tasks only

when a complete sentence is found in the text. This

makes SCD a crucial need in voice assistant system.

For a partial text received from ASR, the

application can wait relatively longer than a

complete sentence. Various downstream NLP

applications such as unsupervised dependency

parsing, ASR transcript readability, accurate

information retrieval, and summarization can

benefit from SCD.

Detection of sentence completion, has been

widely attempted on speech (Hasan, 2014) and text

(Azzi, 2019) using sentence boundary detection

(SBD) (Sanchez, 2019), end-of-utterance detection

(Treviso, 2017), sentence end detection (SED)

(Hasan, 2015) models. The techniques evolved

from rule-based using handcrafted heuristics

(Wang, 2004), to machine learning and more

recently, deep learning (Schweter, 2019) based

methods. State-of-the-art deep learning

architectures reported for SBD include Bi-LSTM

CRF (Du, 2019) , BERT (Du, 2019) etc. techniques.

On various test datasets, we found their

performance highly promising. Upon exploring at

further depth, we found that these models have

certain limitations with regards to their size, on

device platform compatibility and system coupling

On-Device detection of sentence completion for voice assistants

with low-memory footprint

Rahul Kumar Vijeta Gour Chandan Pandey Godawari Sudhakar Rao

Priyadarshini Pai Anmol Bhasin Ranjan Samal

Samsung R&D Institute India, Bangalore

{rahul.k4, vijeta.gour, chandan.p, g.sudhakar, priya.pai,
anmol.bhasin, ranjan.samal}@samsung.com

384

for on-device deployment. These limitations are

briefly described below:

 Size of the models were too big for

deployment on memory constrained

devices such as mobile phones and smart

televisions. MobileBERT 1 takes 100.5Mb

with 74ms latency.

 Broad-spectrum conversation data

availability, which is representative of a

wide range of domains and follows SCD

policies as mentioned in Section 4.2

 State-of-the-art architectures reported for

SBD lack in ease of modelling with

modifications, within the Tensor-flow lite

environment.

 Decoupling of SBD models that are a part

of bigger system like ASR is challenging

and not readily applicable.

 SBD makes use of punctuations and case

sensitive information which are missing

from immediate ASR output.

We propose that Sentence Completion Detection

(SCD) can be achieved by token-level and

sentence-level inferencing.

In this research, we explore both token-level and

sentence-level inferencing with state-of-the-art

language models within on-device deployment

constraints. We delve into the tailoring of data,

completion detection policies (Section 4.2, SCD

Policies), embedding size optimization for

achieving a light-weight SCD model that can work

on a wide range of domains in memory-

constrained environments.

2 Related work

Recent SCD and SBD works are primarily useful

for legal text, long lectures, pdf documents etc.

Consequently, the datasets used for relevant work

included clean texts such as WSJ corpus and

Brown Corpus (Francis, 1979), noisy unstructured

texts generated from PDFs (Azzi, 2019), (Tian,

2019), lecture (Hasan, 2014) and ASR transcripts

(Treviso, 2017), (Rehbein, 2020). For training a

model that is suitable for the multi-domain voice

assistant, we could not find broad-spectrum

domain data focused on commands.

Further, we felt that, essentially, a shift of

emphasis from formal, edited text towards more

1https://www.tensorflow.org/lite/models/bert_qa/overview

spontaneous language samples which represent

ASR output is required Conventional language

models are trained on long structured sentences

leading to large memory footprints that cannot be

supported for fast on-device applications. Various

techniques have been reported for downsizing,

such as quantization, modifications in vocabulary,

truncating input etc.

We expand our work based on modifications in

state-of-the-art architectures and extensive custom

training with custom loss on multi-domain

conversation data. We also experimented upon

Tensorflow Lite post training quantization. We

primarily looked at Bi-LSTM and BERT

architectures as described below.

3 Model

We defined our SCD models in two categories:

 Sequence-based

 Sentence-based

For each of these categories, we explored selected

state-of-the-art Bi-LSTM based model and a

BERT-based model as described below. Bi-LSTM

is a sequence processing model that consists of two

LSTMs, one taking the input in a forward

direction, and the other in a backwards direction.

BERT stands for Bidirectional Encoder

Representations from Transformers. It is designed

to pre-train deep bidirectional representations from

unlabeled text.

3.1 Bi-LSTM and Attention based model for

sequence prediction [1.a]

We convert the text input sentence to a sequence

of tokens by splitting based on spaces. The model

(shown in Figure 1.a) contains an embedding layer

which gets trained along with the model and

generates vectors for the tokens present in the

sentence. For each of the generated tokens feature

labelling is done as either ‘0’ or ‘1’ based on the

method explained in 4.3. Example token features

for a sentence is shown below:

Utterance: “create an event at 5”

Create An Event At number

0 0 1 0 1

385

Tokens of the input sentence are converted into

token IDs. The sentence length used for prediction

is kept at 25 tokens, a considerable assumption for

sentences in voice assistant based systems. If the

sentence is larger than 25 tokens then only the last

25 tokens are used for prediction. So, the resultant

input dimensionality becomes 25x1. This resultant

vector is then passed to embedding layer which

converts it into 25x100 vector followed by a Bi-

Directional LSTM (Hochreiter, 1997), (Graves,

2005). The output of the Bi-LSTM layer is passed

to dense layer in a time distributed manner. The

output of dense layer is passed through an attention

layer followed by soft-max activation which

predicts a label for every token as shown in Figure

1.a. The Loss is calculated using Equation (1) and

the inference is done using Equation (2).

3.2 BERT Tiny based model for sequence

prediction [1.b]

We convert the text input sentence to a sequence of

tokens using Sentence piece tokenizer (Kudo,

2018). For each of the generated tokens feature

labeling is done. The tokens generated are marked

as ‘0’ or ‘1’ based on method explained in 4.3.

The sequence length used for these models is 42

tokens. So, a sequence of 42 tokens are passed

through a pre-trained BERT (Turc, 2019) Tiny

model which has got 2 encoder layers with 128

hidden states. The output of the BERT Tiny layer

is passed through a dense layer with soft-max

activation which predicts a label for every token.

The Loss is calculated using the Equation (1) and

the inference is done using Equation (2). Figure 1.b

below shows the model architecture.

3.3 Bi-LSTM and Attentions based model

with hybrid (word + character)

embedding for sequence prediction [1.c]

The model 1.a is extended to improve the model

performance on sentences containing out of vocab

words. To meet that objective we introduced a

hybrid embedding strategy. For every token

present in the sentence we generate its embedding

using char embedding in conjunction with word

embedding. Every word is split into characters and

then converted into IDs. The maximum length of a

word is considered as 10 and first ten characters are

taken if the length exceeds the maximum length.

The IDs are fed into an embedding layer followed

by LSTM sequence. The 50 dimension sequence

output of LSTM is concatenated with 100

dimension vector of word embedding. The

combined input is passed through a spatial dropout

followed by Bi-LSTM. The output of the Bi-LSTM

layer is passed to dense layer in a time distributed

manner. The output of dense layer is passed

through an attention layer followed by soft-max

activation which predicts a label for every token.

The Loss is calculated using Equation (1) and the

Figure 1.a Bi-LSTM and Attention based model for

sequence prediction

Figure 1.b BERT Tiny based model for sequence

prediction

386

inference is done using Equation (2), which uses

soft-max score of the last token.

𝐿 = 𝑙𝑝𝑎𝑟𝑡𝑖𝑎𝑙 + 𝑊 ∗ 𝑙𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 (1)

Where 𝐿 is total loss and 𝑙𝑝𝑎𝑟𝑡𝑖𝑎𝑙 and 𝑙𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

are losses on partial and complete tokens in the

sentence respectively. 𝑙𝑝𝑎𝑟𝑡𝑖𝑎𝑙 is calculated as the

sum of categorical cross entropy losses of all the

partial tokens. Similarly 𝑙𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 is calculated as

the sum of categorical cross entropy losses of all

the partial tokens. W is the ratio of total count of

partial tokens to the total count of complete tokens

in the training data.

𝑃𝑟𝑒𝑑 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐿𝑎𝑠𝑡_𝑇𝑜𝑘𝑒𝑛)) (2)

3.4 Bi-LSTM and Attention based model for

sentence classification [2.a]

 The input sequence is processed in a similar

way as mentioned in Section 3.1. The model

contains an embedding layer which gets trained

along with the model and generates embedding

vectors for the tokens present in the sentence. For

every sentence one label is assigned. For partial

sentences label ‘0’ is assigned and for complete

sentences label ‘1’ is assigned. Each token is

converted into IDs. The sentence length used for

prediction is kept at 25 tokens. If the sentence is

larger than 25 tokens then only the last 25 tokens

are used for prediction. So, the resultant input

dimensionality becomes 25x1. This resultant

vector is then passed to an embedding layer which

converts it into 25x100 vector followed by a Bi-

Directional LSTM (Hochreiter, 1997), (Graves,

2005). The output of the Bi-LSTM layer is passed

to dense layer followed by attention layer followed

by soft-max activation which predicts the label for

the entire sentence. Figure 2.a shows the model

architecture.

3.5 BERT based model for sentence

classification [2.b]

The sentence tokenization part is similar to the

model 1.b. However, this model treats this task as

classification. Each sentence is labelled as ‘1’ for

complete and ‘0’ for partial. The maximum

sequence length used as input is 42 tokens. The

tokenized utterance is passed through BERT Tiny

model which has got 2 encoder layers with 128

hidden state size. The output of the CLS token of

BERT Tiny layer is passed through a dense layer

with soft-max activation which predicts a label for

the sentence. Figure 2.b shows the model

architecture.

4 Experimental Setup

4.1 Datasets

For exploring various SCD modelling

architectures, we prepared an in-house dataset

containing partial and complete sentences

representing various domains such as phone call,

message, contacts, reminder, maps, accessibility,

calculator, clock, open domain, settings, apps, etc.

This dataset comprised of sentences of varied

Figure 2.a Bi-LSTM and Attention based model for

sentence classification

Figure 2.b BERT based model for sentence

classification

387

lengths as shown in Table 3. In addition to this,

based on our analysis of various available datasets,

we selected SNIPS (Coucke, 2018) for gaining

insights into model generalizability. The Snips

dataset on the other hand is collected from Snips

Personal Voice Assistant, spanning 14484 multiple

domain utterances. We split these utterances into

training, validation and test datasets. From the

original utterances present in the dataset we

generated partial and complete utterances by

generating pre-fixes. We omitted one word pre-

fixes from the newly generated utterances.

Table 1. Dataset details

A summary of the training and test data is

provided in 3 tables. Table 1 contains the details of

the original dataset. Table 2 contains the generated

utterances details of SNIPS dataset and Table 3

contains the details of the generated utterances of

in-house dataset.

Table 2. Generated utterances details of SNIPS

Table 3. Generated utterances details of In-House

dataset

4.2 SCD Policies

We aim to make this model highly suited to

understand the NLU component in voice assistants

for a variety of downstream applications. In each

of these aspects, a comprehensive policy formation

based on underlying information in relevant data is

very important. This, in fact, becomes the key

driving factor in determining user experience of the

voice assistants. Based on our analysis and

understanding, we outlined two main focus areas:

 Intent clarity

 Catchall phrases

We define all those sentences that can elicit an

actionable response from the downstream target

block in the voice assistant as complete. For

example –

“Create an event”

Further, sentences that end in open titles are

extremely dicey to handle. Any abrupt completion

would result in unsatisfactory experience at user’s

end as there could be multiple complete suffixes

for a given sentence. For example –

 “Create a reminder to buy milk”

In such a scenario, it is difficult to predict if the user

intends to continue after “buy milk” with “from a

nearby shop”. Consequently, strong allocation of

sentences with catch-all phrases into partial or

complete purely based on semantic understanding

will not yield us desirable results. We propose to

handle them separately by adopting system-

specific suitable behavior.

4.3 Data preprocessing

Before passing a sentence to the model, we

preprocessed it .Firstly, we removed punctuations

to make the input sentence similar to ASR output.

Secondly, we added acronym expansion, and

replaced integers with the term “number in order to

reduce Out Of Vocabulary (OOV) words. Lastly

we removed polite phrases to reduce sentence

length. We selected 25 token length for Bilstm

models and 42 for BERT models as 98% of the

tokenized sentences lengths are covered (Figure 3).

This reduces the inference time.

Dataset SNIPS In-House

Train Data 13084 300000

Test Data 700 48000

Validation Data 700 20000

Vocabulary Size 11241 72001

Max Sentence Length 36 89

Dataset
SNIPS

Total Partial Complete

Train 22213 9353 12860

Dev 1296 600 696

Test 1327 628 699

Dataset
In-House

Total Partial Complete

Train 2702376 1136745 1565631

Dev 50000 20000 30000

Test 79899 17433 62466

388

1. For Bi-LSTM Sequence Models

The tokens present in the sentence were assigned a

tag of 0 or 1 depending on whether the intermediate

sentence forming up to the current token was

already present in the dataset as complete.

This was done so as the model sees the sentence as

complete even if it is a part of another sentence. If

this is not taken care of then the model gets

confused for sub-sentences which are complete but

also part of a longer sentence. Every intermediate

substring of the sentence was checked if it was

already present as a complete sentence and the end

of the substring was marked as 1.

Utterance: “create a reminder”

create a reminder

0 0 1

Utterance: “create a reminder to buy”

create a reminder to buy

0 0 1 0 0

2. For BERT Sequence Model

The tokens generated by the Sentence Piece

Tokenizer were tagged according to strategy

mentioned in section 4.3(1). The root token and the

subsequent token for the word are both given the

same tag.

Utterance: “dont be so judgmental”

don ##t be so judgment ##al

0 0 0 0 1 1

4.4 Training and inferencing

We developed all the models described in section 3

using Tensorflow2.0 as it has a wide collection of

workflows, multiple language support and

deployment flexibility. We limited the size of the

vocabulary of the models- 1.a, 1.c and 2.a to 40000

for in-house dataset and 11000 for SNIPS dataset.

BERT tiny based models are initialized with pre

trained weights and fine-tuned using

recommended hyperparameters (batch size: 32,

learning rate: 3e-5, epochs: 3-5) during training.

We selected the best model based on best average

F1 score for both the classes of prediction (Partial

and Complete) as well as memory foot print.

𝐹1 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (3)

Once the models were ready, we converted them to

TensorFlow Lite with post training quantization for

on-device deployment. TensorFlow Lite is

designed for efficient model execution on memory

constrained devices such as mobile phones. Some

of this efficiency reportedly comes from the use of

a special storage format that reduces model file size

and relevant optimizations that have very less

impact on the accuracy.

4.5 Testing

We tested our models on-device on three test

datasets as described in 4.1 and report model

performances at various inferencing levels,

architecture levels and sentence complete detection

levels. Further, we also checked the latency and

memory footprint to evaluate the feasibility of

using such a model on mobile devices.

5 Results and discussion

In the following, we present the results of our

performance assessment on various models, i.e.,

both token-level and sentence-level inferencing

using Bi-LSTM and BERT techniques on the three

test datasets.

5.1 Performance assessment of various

models

Among the BERT and Bi-LSTM models, as shown

in Table 4. The best performance is achieved by

BERT-Tiny sequence based SCD model. On an

average, on both the datasets, it is able to achieve

an overall F1-score of 90.95%. The next best

Figure 3 Occurrences of sentences of varied lengths in

training data

389

performing model was with Bi-LSTM, attention

and word embedding for sentence classification.

Model SNIPS In-House Data

C P C P

1.a 84.3 77.3 95.5 90.0

1.b 88.0 84.3 96.8 92.3

1.c 82.9 75.2 87.7 88.4

2.a 87.5 83.8 95.69 86.66

2.b 87.8 84.5 93.05 90.19

Table 4. Comparison of F1 scores for partial and

complete utterances

Analysis on the results suggests that the sentence

completion detection is relatively challenging on

very short length (1-5 word) sentences (Figure 4).

This might be the reason behind slightly decreased

prediction performance (86.87% correct

predictions on an average across in-house and

Snips test datasets) as compared to sentences with

lengths greater than 5 words. We saw most

consistent performance on sentence length of 16-

20 words at 94.82% average correct predictions

across datasets and above 92.62% correct

predictions across all model architectures. Possibly

a clearer understanding of partial and complete can

be achieved by the model in this sentence length

range. Further, although there were very few

sentences with length beyond 21 words, the models

were able to learn completion detection and predict

95.71 % of test data correctly.

5.2 Analytical insights into partial complete

sentences prediction

Among the partial and complete sentences tested

uisng BERT sequence-based model, we observed

that the F1 score for complete sentences was better

than partial sentences. We also noticed the same

trend in majority of the cases. This is a promising

scenario for user experience, where if sentence

completion prediction is better on complete

sentences, the wait time can be drastically

shortened. Consequently, the user experience is

also likely to improve.

5.3 Analytical insights into predictions on

various test datasets

We observed that in general, the models trained

and tested on in-house data performed better than

the models trained and tested on SNIPS. The OOV

failures were observed less in Word+Char Bi-lstm

sequence model and Bert Tiny sequence model.

The sequence models were able to generalize the

data better than the sentence models due to the

subsequence learning mentioned in Section 4.3.

5.4 Memory footprint of various models

The memory footprint of each of the models

developed is given in Table 5. Low memory

footprint enables it to be used in memory

constrained environment.

Model Memory (in MB)

SNIPS In-House Data

1.a 6.1 6.8

1.b 4.5 4.5

1.c 4 4.8

2.a 6.1 6.8

2.b 4.5 4.5

Table 5. Comparison of model memory footprint

5.5 On Device Latency of various models

The On Device latency for each of the developed

models is mentioned in Table 6. The devices used

for testing were Android devices with SDK version

10. The solution works in real time due to low

latency.

Figure 4. Performance assessment of various models

on sentences of different lengths. (A) Results on in-

house test data. (B) Results on Snips test data.

390

Model Latency(in ms)

1.a 22-34

1.b 20-30

1.c 25-37

2.a 15-25

2.b 15-25

Table 6. Comparison of On-device run time latency

6 Conclusion

Sentence completion detection is important for

various NLP applications on voice assistant

enabled devices. The existing solutions do not cater

to the challenges present in conversational ASR

output data and are not optimized to work on

memory and latency constrained devices. In this

paper, we tailored state-of-the-art Bi-LSTM and

BERT models for on-device solutions. Fine-tuned

BERT Tiny sequence model [1.b] outperforms all

other models on both the datasets. Our

experimental results show that the mentioned

solutions are highly promising for various real-

time on-device applications.

References

Du, J., Huang, Y. and Moilanen, K., 2019. IG

Investments. AI at the FinSBD Task: Sentence

Boundary Detection through Sequence

Labelling and BERT Fine-tuning.

In Proceedings of the First Workshop on

Financial Technology and Natural Language

Processing (pp. 81-87).

Azzi, A.A., Bouamor, H. and Ferradans, S., 2019.

The finsbd-2019 shared task: Sentence

boundary detection in pdf noisy text in the

financial domain. In Proceedings of the First

Workshop on Financial Technology and

Natural Language Processing (pp. 74-80).

Sanchez, G., 2019, June. Sentence boundary

detection in legal text. In Proceedings of the

Natural Legal Language Processing Workshop

2019 (pp. 31-38).

Xu, C., Xie, L. and Xiao, X., 2018. A bidirectional

lstm approach with word embeddings for

sentence boundary detection. Journal of Signal

Processing Systems, 90(7), pp.1063-1075.

Treviso, M.V., Shulby, C.D. and Aluisio, S.M.,

2017. Evaluating word embeddings for

sentence boundary detection in speech

transcripts. arXiv preprint arXiv:1708.04704.

Che, X., Luo, S., Yang, H. and Meinel, C., 2016.

Sentence Boundary Detection Based on

Parallel Lexical and Acoustic Models.

In Interspeech (pp. 2528-2532).

Ho, T.N., Chong, T.Y. and Chng, E.S., 2016,

March. Improving efficiency of sentence

boundary detection by feature selection.

In Asian Conference on Intelligent Information

and Database Systems (pp. 594-603). Springer,

Berlin, Heidelberg.

Schweter, S. and Ahmed, S., 2019. Deep-EOS:

General-Purpose Neural Networks for

Sentence Boundary Detection. In KONVENS.

Fatima, M. and Mueller, M.C., 2019. HITS-SBD

at the FinSBD Task: Machine Learning vs.

Rule-based Sentence Boundary Detection.

In Proceedings of the First Workshop on

Financial Technology and Natural Language

Processing (pp. 115-121).

Au, W., Chong, B., Azzi, A.A. and Valsamou-

Stanislawski, D., 2020, July. FinSBD-2020:

The 2nd Shared Task on Sentence Boundary

Detection in Unstructured Text in the Financial

Domain. In Proceedings of the Second

Workshop on Financial Technology and

Natural Language Processing (pp. 47-54).

Mathew, D. and Guggilla, C., 2019. Ai_blues at

finsbd shared task: Crf-based sentence

boundary detection in pdf noisy text in the

financial domain. In Proceedings of the First

Workshop on Financial Technology and

Natural Language Processing (pp. 130-136).

Tian, K. and Peng, Z.J., 2019. aiai at finsbd task:

Sentence boundary detection in noisy texts

from financial documents using deep attention

model. In Proceedings of the First Workshop

on Financial Technology and Natural

Language Processing (pp. 88-92).

Hirano, M., Sakaji, H., Izumi, K. and

Matsushima, H., 2019. mhirano at the finsbd

task: Pointwise prediction based on multi-layer

perceptron for sentence boundary detection.

In Proceedings of the First Workshop on

Financial Technology and Natural Language

Processing (pp. 102-107).

Zhang, R. and Zhang, C., 2020, July. Dynamic

Sentence Boundary Detection for

Simultaneous Translation. In Proceedings of

the First Workshop on Automatic Simultaneous

Translation (pp. 1-9).

391

Rehbein, I., Ruppenhofer, J. and Schmidt, T.,

2020. Improving sentence boundary detection

for spoken language transcripts.

Le, T.A., 2020, January. Sequence Labeling

Approach to the Task of Sentence Boundary

Detection. In Proceedings of the 4th

International Conference on Machine

Learning and Soft Computing (pp. 144-148).

Wang, D. and Narayanan, S.S., 2004, May. A

multi-pass linear fold algorithm for sentence

boundary detection using prosodic cues.

In 2004 IEEE International Conference on

Acoustics, Speech, and Signal Processing (Vol.

1, pp. I-525). IEEE.

Oba, T., Hori, T. and Nakamura, A., 2006.

Sentence boundary detection using sequential

dependency analysis combined with crf-based

chunking. In Ninth International Conference

on Spoken Language Processing.

Hasan, M., Doddipatla, R. and Hain, T., 2014.

Multi-pass sentence-end detection of lecture

speech. In Fifteenth Annual Conference of the

International Speech Communication

Association.

Hasan, M., Doddipatla, R. and Hain, T., 2015.

Noise-matched training of CRF based sentence

end detection models. In Sixteenth Annual

Conference of the International Speech

Communication Association.

Dellaert, B.G., Shu, S.B., Arentze, T.A., Baker, T.,

Diehl, K., Donkers, B., Fast, N.J., Häubl, G.,

Johnson, H., Karmarkar, U.R. and Oppewal,

H., 2020. Consumer decisions with artificially

intelligent voice assistants. Marketing Letters,

pp.1-13.

Kudo, T. and Richardson, J., 2018. Sentencepiece:

A simple and language independent subword

tokenizer and detokenizer for neural text

processing. arXiv preprint arXiv: 1808.06226.

Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and

Toutanova, Kristina, 2019. Well-Read Students

Learn Better: On the Importance of Pre-training

Compact Models. arXiv preprint

arXiv:1908.08962v2.

Francis, W.N. and Kucera, H., 1979. Brown

corpus manual. Letters to the Editor, 5(2), p.7.

Hochreiter, S. and Schmidhuber, J., 1997. Long

short-term memory. Neural computation, 9(8),

pp.1735-1780.

Graves, A. and Schmidhuber, J., 2005. Framewise

phoneme classification with bidirectional

LSTM and other neural network

architectures. Neural networks, 18(5-6),

pp.602-610.

Coucke, A., Saade, A., Ball, A., Bluche, T.,

Caulier, A., Leroy, D., Doumouro, C.,

Gisselbrecht, T., Caltagirone, F., Lavril, T. and

Primet, M., 2018. Snips voice platform: an

embedded spoken language understanding

system for private-by-design voice

interfaces. arXiv preprint arXiv:1805.10190.

392

Proceedings of the 17th International Conference on Natural Language Processing, pages 393–399
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Polarization and its Life on Social Media: A Case Study on Sabarimala
and Demonetisation

Ashutosh Ranjan
IIIT Hyderabad

ashutosh.ranjan@research.iiit.ac.in

Dipti Sharma
IIIT Hyderabad

dipti@iiit.ac.in

Radhika Krishnan
IIIT Hyderabad

radhika.krishnan@iiit.ac.in

Abstract

This paper is an attempt to study polarisation
on social media data. We focus on two hugely
controversial and talked about events in the In-
dian diaspora, namely 1) the Sabarimala Tem-
ple (located in Kerala, India) incident which
became a nationwide controversy when two
women under the age of 50 secretly entered
the temple breaking a long standing temple
rule that disallowed women of menstruating
age (10-50) to enter the temple and 2) the In-
dian government’s move to demonetise all ex-
isting 500 and 1000 denomination banknotes,
comprising of 86% of the currency in circu-
lation, in November 2016. We gather tweets
around these two events in various time peri-
ods, preprocess and annotate them with their
sentiment polarity and emotional category, and
analyse trends to help us understand changing
polarity over time around controversial events.
The tweets collected are in English, Hindi and
code-mixed Hindi-English. Apart from the
analysis on the annotated data, we also present
the twitter data comprising a total of around
1.5 million tweets.

1 Introduction

Social media, over the past few years, has become
the fastest growing medium for expressing opin-
ions for billions of people worldwide. People have
always had opinions in history, some extreme and
some moderate. What has changed today, is the
way people can make their opinions reach masses
(read millions) of people in seconds to minutes
to hours, depending on the popularity of the per-
son and the general controversiality (for lack of a
better word) of the opinion. Earlier people could
influence a bunch of people in their vicinity and
sometimes, very rarely after going through multi-
ple filters of sanity, they would be able to bring
their idea to the world map. Today any random
person is able to express their ideas to millions of

people, and thereby has the potential to influence
masses much faster.

India is no different. Easy access to internet has
brought millions of Indians to Twitter, where they
express their opinions on topics that interest, affect
them. Leaders use social media to make their opin-
ions reach the masses as well. In a recent survey
by Pew Research Center it was revealed that a sig-
nificant percentage of people get their news from
social media (Pew Research Center, 2018). This
activity on twitter consequently helps people form
opinions or change their already existing opinions
on different topics. This paper attempts to study
this change in opinion of the masses of people by
observing and analysing their tweets on social me-
dia. We study the life of polarization on social
media in the Indian context.

We decide to focus our efforts on two pressing,
controversial and divisive issues - 1) Sabarimala
2) Demonetisation. We study how the polarity of
opinions of people change with respect to these
issues over time. The complete context of the two
events is described next.

1.1 Sabarimala

The Sabarimala temple is a temple complex located
at Sabarimala inside the Periyar Tiger Reserve in
Pathanamthitta district, Kerala, India. It is the site
of the one of the largest annual pilgrimages in the
world with an estimate of between 17 million and
50 million devotees visiting every year.

According to the Memoir of the Survey of the
Travancore and Cochin States, published in two
volumes by the Madras government in the 19th cen-
tury, women of menstruating age were denied entry
into the Sabarimala temple two centuries ago, as all
sexual intercourse in that vicinity is averse to the
celibate deity Lord Ayyappa. In response to a Pub-
lic Interest Litigation filed in 1991, the Kerala High
Court had judged that the restriction of entry of

393

women ages 10-50 to the temple was in accordance
with the usage prevalent from time immemorial,
and it directed the concerned board to uphold the
customary traditions of the temple. However, on 28
September 2018, the Supreme Court of India over-
turned the restriction on the entry of women, declar-
ing it unconstitutional and discriminatory. On 2nd
January 2019, two women under the age of 50 en-
tered the shrine for the first time since the Supreme
Court verdict, after attempts of many others failed
due to protests by devotees.

The event of two women entering caused huge
uproar on social media. One side of the debate
argued for the conservation of tradition, and the
other side argued for gender equality.

1.2 Demonetisation

In November 2016, the Government of India an-
nounced the demonetization of all 500 and 1,000
banknotes of the Mahatma Gandhi Series. It also
announced the issuance of new 500 and 2,000
banknotes in exchange for the demonetised ban-
knotes. The Prime minister of India Narendra Modi
claimed that the action would curtail the shadow
economy and reduce the use of illicit and counter-
feit cash to fund illegal activity and terrorism.

The announcement of demonetisation was fol-
lowed by prolonged cash shortages in the weeks
that followed, which created significant disruption
throughout the economy. People seeking to ex-
change their banknotes had to stand in lengthy
queues, and several deaths were linked to the rush
to exchange cash.

The issue came to relevance again in August
2018 when the Reserve Bank of India released a
report, according to which approximately 99.3%
of the demonetised banknotes, or 15.30 lakh crore
(15.3 trillion) of the 15.41 lakh crore that had been
demonetised, were deposited with the banking sys-
tem, leading analysts to state that the effort had
failed to remove black money from the economy.
By many economists, the move is blamed for reduc-
ing the country’s industrial production and slowing
down its GDP growth rate.

Initially, the move received support from sev-
eral bankers as well as from some international
commentators. By others it was widely criticised
as poorly planned and unfair, and was met with
protests, litigation, and strikes against the govern-
ment in several places across India. The stated
failure of demonetisation and subsequent downfall

of India’s GDP growth rate was also a major topic
of interest during the 2019 general elections and
cited by many opposition parties as a failure of the
presiding government.

These two incidents were divisive and evoked
different reactions in people. Both the events have
periods where they are focus of attention, and with
time the attention dies out. The change in polarity
from before the event through the time of the event
and then to the eventual end gives us some inter-
esting insights. Here in this study we analyse the
change in reactions at the mass level through differ-
ent time periods, and try to answer the following
questions:

• Is society inherently polarised?

• How does a divisive event affect the polarity?

2 Literature Review

Stephen Hawkins and Dixon (2018) published a
study entitled ”The Hidden tribes of USA”. The
study, through a survey, categorises the people of
USA in 7 major political categories from extreme
left to extreme right. They classify four of these
seven non-extreme classes as the exhausted ma-
jority. The concept of exhausted majority implies
that the majority of people lying in the middle of
the polarity spectrum are tired from the extremist
and tribal stands of the extreme left and extreme
right people. They want them to strike a balance in
their views and agree on a compromise instead of
being engaged in political tribalism. In our work,
we see a huge proportion of people keeping neutral
opinions which aligns with the above mentioned
work.

3 Data Collection

To analyse how people reacted to these two events,
we scraped tweets from twitter using keyword
search with the help of the api created by Jefferson
Henrique (2018). The tweets scraped are collected
according to the timeperiods of interest, as men-
tioned below.

3.1 Sabarimala
We scraped tweets with keyword ”sabarimala” for
five 3-month periods (Table 1), spread across two
years, to study the changing sentiments of people
with respect to the event. The 3-month periods are:

• Oct-Dec 2017, a supposedly non controversial
period, long before Supreme Court’s decision

394

Time Period No. of Tweets
Oct - Dec, 2017 6,445
Mar - May, 2018 770
Oct - Dec, 2018 15,373
Jan - Mar, 2019 74,498
May - July, 2019 12,115

Table 1: Sabarimala Twitter Data

in September 2018. This period also coin-
cides with the days of Mandalapooja festival
(around 15 November to 26 December) which
is when Sabarimala is the busiest (Dainik
Bhaskar, 2011). Hence this period saw a lot
of activity on Twitter.

• Mar-May 2018, another supposedly non con-
troversial period. The activity on Twitter was
a lot lower during this time with respect to the
previous period.

• Oct-Dec 2018, right after Supreme Court
Judgement (on 29th September, 2018), but be-
fore the date (2nd Jan 2019) the two women
entered the temple for the very first time.

• Jan-Mar 2019, right after the two women en-
tered the temple.

• May-July 2019, five to eight months after the
controversy.

3.2 Demonetisation

We scraped tweets with keyword ”demonetisation”
for five 3-month periods (Table 2), spread across
two years, to study the changing sentiments of peo-
ple with respect to the event. The 3-month periods
are:

• 8th Nov 2016 - 7th Feb 2017, right after the
demonetisation was announced on 8th Nov
2016.

• May-July 2018, 5-8 months after the event.

• 9th Nov 2017 - 8th Feb 2018, 1 year after the
announcement.

• 29th Aug 2018 - 29th Nov 2018, right after
Reserve Bank of India’s review that reported
that 99.3% of the cash has been deposited
back, effectively stating the failure of demon-
etisation.

Time Period No. of Tweets
9th Nov’16- 8th Feb’17 711373
May - July, 2017 41461
9th Nov’17 - 8th Feb’18 58464
29th Aug - 29th Nov, 2018 45108
Feb - Apr, 2019 38534

Table 2: Demonetisation Twitter Data

• Feb 2019 - Apr 2019, during general election
campaigning days just before the elections in
Apr and May 2019.

4 Data Preprocessing

To make preprocessing easier, the tweets were sep-
arated into three groups based on the language of
content, - 1) English 2) Hindi 3) Hindi-English
code-mixed. Tweets containing words from any
other language were removed. This separation was
done with the help of the language identifier by
Bhat et al. (2015).

All three groups of tweets were preprocessed
separately as follows:

4.1 Preprocessing English Tweets

• Remove special characters, username men-
tions (beginning with @) and urls.

4.2 Preprocessing Hindi Tweets

• Remove all special characters, username men-
tions (beginning with @), and urls.

• Translate the whole tweet to English using
python freeware translate.

4.3 Preprocessing Code-Mixed Hinglish
Tweets

These tweets were in roman script, with Hindi
words written in Roman script as well.

• Use language identifier (Bhat et al., 2015). to
find all the Hindi words.

• Use transliterator (Bhat et al., 2015) to translit-
erate the Hindi words from Roman script to
Devanagri script.

• Translate Hindi words in Devanagri script to
English using python freeware translate.

395

Figure 1: Sabarimala Gaussian Curves measuring polarity percentage

5 Methodology

5.1 Sentiment Analysis

We use the python library TextBlob (Loria, 2018)
which uses naive bayes to find the sentiment of
each of the tweets on a scale of -1 to 1. We say that
the polarity of a tweet increases as we move away
from 0 to either side.

5.2 Emotional change through the different
periods

We used the NRC Emotion Lexicon (Mohammad
and Turney, 2013) to find the emotions expressed
and their change through the different periods (Fig-
ures 2 and 5). The NRC Emotion Lexicon is a
labelled dataset that associates words with emo-
tions, which can be of eight types - anger, sadness,
disgust, joy, surprise, trust, anticipation and fear.
As a bonus, it also associates each word with either
positive or negative connotation.

6 Experiments and Results

6.1 Sabarimala

• Overall negative sentiment increases after the
Jan 1 incident. (Figure 1)

• Opinions polarized due to the event (on both

sides), in comparison to a non-event (non-
controversial) normal state. The graph shows
a significant decrease in the neutral population
in the subsequent periods. (Figure 1)

• 5-8 months after the polarizing event, the opin-
ions are still polarised and even more so than
they were at the time of the event. (Figure 1)

• The number of tweets increase drastically dur-
ing the period in which the event took place
wrt. previous non controversial periods. It
also decreases drastically in the period 5-8
months after the event. (Figure 3)

• Grouped emotion bars show increased anger,
sadness, negativity. (Figure 2)

6.2 Demonetisation

• The tweets in the first period, i.e. right after
when the event happens, are huge in number
and decrease drastically in the subsequent pe-
riods. (Figure 6)

• The graph shows a significant decrease in the
neutral population in the subsequent periods.
(Figure 4)

396

Figure 2: Emotion category Sabarimala

Figure 3: Sabarimala tweet frequency

• The graph shows an increase in percentage
of tweets towards negative and positive sides,
signalling increase in percentage of polarized
reactions. (Figure 4)

• Negativity, sadness emotions have increased
through the timelines with the maximum nega-
tivity and sadness being in the election period.
(Figure 5)

7 Key Observations

• Our study confirms the ”exhausted majority”
observation of the Hidden Tribes study. Ma-
jority of people have neutral opinion. Can be
observed both in Sabarimala and Demonetisa-
tion.

• The activity at the time of the event is a lot
more than at other times.

• Polarity before the event is negligible.

• Once an event has happened the polarity re-
mains even after a significant amount of time.

• Since 1) the number of people have decreased
significantly, 2) percentage of neutral people
have decreased significantly 3) People with
higher polarity have increased. 1, 2 and 3
make us believe that people with strong opin-
ions remain long after the event while peo-
ple with not so strong opinions disappear as
shown in the analysis of the above two events.

8 Limitations

• Limitations of translation and transliteration.

– Transliterating Hindi to English translit-
erate only the words and leaves the sen-
tence structure same.

– Translation changes the words and the
negativity of the words may not be cap-
tured in the translated words.

• Limitations of sentiment analyser.

– The sentiment analyser uses naive bayes
and ends up focussing on the toxicity of
specific words, rather than getting the
sentiment of the entire sentence.

397

Figure 4: Demonetisation Gaussian curves

Figure 5: Emotion category Demonetisation

Figure 6: Demonetisation Tweet frequency

• Limitations of emotional category finding

tool.

– Each word is associated with one or
more of the eight emotions. The analysis
counts the total number of words with
each emotion over the whole corpus.

– Ideally we would want an emotion to be
associated with each tweet.

– Hence even though the overall emotion
of the whole corpus is captured by word-
by-word emotion categorisation, tweet-
by-tweet emotion categorisation might
help us gauge the emotions expressed

398

better.

9 Conclusion

We realize that:

• Majority of people hold neutral opinions.

• The polar opinions that seemingly remain af-
ter months are because of the people who were
polar even before.

References
Irshad Ahmad Bhat, Vandan Mujadia, Aniruddha Tam-

mewar, Riyaz Ahmad Bhat, and Manish Shrivastava.
2015. Iiit-h system submission for fire2014 shared
task on transliterated search. In Proceedings of the
Forum for Information Retrieval Evaluation, FIRE
’14, pages 48–53, New York, NY, USA. ACM.

Dainik Bhaskar. 2011. Why millions throng sabari-
mala shrine.

Jefferson Henrique. 2018. Getoldtweets api.

Steven Loria. 2018. Textblob.

Saif Mohammad and Peter Turney. 2013. Crowdsourc-
ing a word-emotion association lexicon. Computa-
tional Intelligence, 29.

Pew Research Center. 2018. Americans are wary of the
role social media sites play in delivering the news.

Mı́riam Juan-Torres Stephen Hawkins, Daniel Yudkins
and Tim Dixon. 2018. The hidden tribes of usa. In
More in Common.

399

Proceedings of the 17th International Conference on Natural Language Processing, pages 400–408
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

A Rule Based Lightweight Bengali Stemmer

Souvick Das
University of Calcutta

Kolkata, India
souvik.cs@hotmail.com

Rajat Pandit
West Bengal State University

Kolkata, India
rajatpandit123@gmail.com

Sudip Kumar Naskar
Jadavpur University,

Kolkata, India
sudip.naskar@gmail.com

Abstract

In the field of Natural Language Process-
ing (NLP) the process of stemming plays a
significant role. Stemmer transforms an in-
flected word to its root form. Stemmer sig-
nificantly increases the efficiency of Infor-
mation Retrieval (IR) systems. It is a very
basic yet fundamental text pre-processing
task widely used in many NLP tasks. Sev-
eral important works on stemming have
been carried out by researchers in English
and other major languages. In this pa-
per, we study and review existing works on
stemming in Bengali and other Indian lan-
guages. Finally we propose a rule based ap-
proach that explores Bengali morphology
and leverages WordNet to achieve better
accuracy. Our algorithm produced stem-
ming accuracy of 98.86% for Nouns and
99.75% for Verbs.

1 Introduction

Information retrieval is a very essential process
to extract relevant data or documents system-
atically from big data collections. Inverted in-
dex is a crucial data structure used in almost
all modern IR systems. All the words in the
entire data collection is stemmed first before
the inverted index is built. Thus stemming
plays a very important role in IR (Kowalski,
2007).
Stemming is the process of reducing inflec-
tional or derived variant forms of one word to
its root form. Two major components of IR
task is basically indexing and retrieval. Stem-
ming not only enhances the recall rate of IR
task but also reduces the index size signifi-
cantly. Thus, it increases the efficiency of the
information retrieval system.

Depending on the linguistic rules of a partic-
ular language, words of any natural language

can be inflected in many ways. Bengali is
one of the most morphologically decorated lan-
guages. Generally inflected words are gener-
ated from the root word by adding some suf-
fixes. It is observed that one root word in
Bengali may have more than 20 morphologi-
cal variants. Another challenge is in finding
root word from a compound word i.e a word
can be formed by conjunction of more than
one root words. A large number of notable
works have been done on stemming techniques
for different languages from the last couple of
decades. Most of the approaches were first
applied in English language and subsequently
adapted in other languages. Different stem-
ming approaches involve different techniques
such as longest suffix matching, dictionary
based look-up, co-occurrence computation etc.
Several works (Faili and Ravanbakhsh, 2010;
Urmi et al., 2016; Makhija, 2016) have been
done based on these techniques in different
languages. However, a very few papers uti-
lize these techniques in Bengali language but
failed to achieve over 95% of accuracy.

In this paper, we propose a rule based
technique that utilizes rich volume of Bengali
Grammar rules also involves Bengali Word-
Net (Dash et al., 2017) to achieve better accu-
racy. It is worth mentioning that we also verify
the extracted stem word from our rule based
algorithm with the help of modified WordNet.
The sole purpose of the modification of the
WordNet here is to reduce the complexity of
the approach by circumventing the unneces-
sary prefix suffix removal of the word. The
verification process and WordNet modification
thus help us to achieve next level of higher
accuracy. The following example helps to un-
derstand the proper usage of the WordNet in
this approach. Suppose a word সরাইখানা (Inn) is

400

the root word and within this word one of the
suffixes খানা is present. If we remove the suf-
fix from the word, it will mean something else.
Similar example can be seen for the word বার
(Strong) where one of the suffix set র is present
within the word. In Bengali stemming, filter-
ing of root word and inflected word was a im-
mense challenge. We overcome this problem
by introducing the WordNet in the methodol-
ogy. In the subsequent section, we present sev-
eral cases where the modification of WordNet
plays an important role.

The rest of the paper is structured as follows:
Section 2 states the related works in this liter-
ature and brief review on them. Formation
of different types of inflections in Bengali lan-
guages are analyzed in section 3. Section 4
elaborates different techniques involved in the
proposed methodology and the entire method-
ology. Different resources that are used in the
evaluation of the algorithm is described in sec-
tion 5. Experiment and dataset used in the
experiment is detailed out in section 6. Eval-
uation and results are presented in section 7.
Finally we conclude this paper in section 8.

2 Related Work

There are two types of approaches in stemming
mechanism. The first approach is called stem-
ming in which affixes and suffixes are removed
in order to extract the root word. The second
approach is called lemmatization. Lemmati-
zation requires a sound knowledge of the re-
searcher in the particular language. As an ex-
ample the word “Good” in English language
has its variants “Better” and “Best”. In order
to get the lemma (root word) “Good” we need
lemmatization. Lemmatization involves dictio-
nary look up to solve this kind of unusual case
of extracting root words.

Stemming technique for English language is
well studied and several techniques have been
developed. The very first stemming technique
Lovins stemmer was proposed by Julie Beth
Lovins in 1968 (Frakes and Fox, 2003). Lovins
stemmer removes a suffix just in two major
steps. It maintains 294 endings, 29 condi-
tions and 35 transformation rules. Later, well
known rule based Porters stemming (Porter,
1980) technique was proposed in 1980 which is
basically a rule based algorithm. In its 8 steps

it handles different cases of morphological and
inflexional endings in different steps. An ex-
tension of the Lovins algorithm is known as
Dawson stemmer (Jivani et al., 2011) was pro-
posed which covers wide range of list of 1200
suffixes.
These above mentioned algorithms work very
well for English language but we are more
interested in different stemming algorithms
for Indian languages. Ramanathan and Rao
(2003) proposed a lightweight stemmer for
Hindi in 2004 which removes the suffixes based
on the longest suffix matching from a list of
suffixes. They also developed a suffix list in
Hindi language to enhance the performance
of the stemming. Akram et al. (2009) pro-
posed an affix-exception list based stemmer for
Urdu language. They omit prefix and suffix
from the word based on looking up the excep-
tion list of prefixes or suffixes. This stemmer
finds the stem word based on lexical look up
method. A successful look up ignores the strip-
ping off of the prefix and suffix of a word. Hus-
sain et al. proposed a stemming mechanism
for Urdu language based on n-gram stripping
model (Durrani and Hussain, 2010). Kumar
and Rana (2011) developed a brute force al-
gorithm to strip off suffixes in order to find
stem words in Punjabi language. They have
overcome the problem of over-stemming and
under-stemming. The suffix stripping is re-
placed sometimes by suffix substitution. Islam
et al. (2007) proposed a lightweight stemmer
which strips off suffixes and finds the stem
word for Bengali. The fundamental idea of
this algorithm is to remove suffixes based on
the longest suffix matching. They also main-
tain a list of possible suffixes for Bengali lan-
guage. Paik et al. (2011) reported a simple cor-
pus based unsupervised stemmer for Bengali
Language. The algorithm uses some statistics
collected from corpus analysis based on the
co-occurrences between word variants. They
generate a graph where nodes are the vari-
ants of word and an edge between them rep-
resents a co-occurrence. Das and Mitra (2011)
used the Porter stemming technique in Bengali
language. Majumder et al. (2007) developed a
stemming technique based on statistical clus-
tering based approach to discover equivalence
classes of root words using some set of distance

401

Table 1: Comparison of different stemming techniques in Indian languages

Year Language Method Author(s) Description Accuracy
2004 Hindi A lightweight stemmer Ramanathan et al. Strip off the words endings

from a suffix list on a ‘longest
match’ basis.

88%

2009 Urdu Affix-exception list
based stemmer

Qurat-Ul-Ain Akram et
al.

Stems the Urdu words using
lexical lookup method (Assas-
band).

91.20%

2012 Urdu Unsupervised ap-
proach to develop
stemmer

Shahid Husain et. al. n-gram stripping model 95.8%

2010 Punjabi Brute Force
Technique

Dinesh Kumar, Prince
Rana

Suffix Stripping 80.73%

2007 Bengali Yet Another Suffix
Stripper

Majumder et al. Statistical clustering based ap-
proach to discover equivalence
classes of root words using
some set of distance measures.

91.56%

2009 Bengali A lightweight stemmer Islam et. al. Suffix Stripping 90.80%
2011 Bengali A Fast Corpus-Based

Stemmer
Jiaul H. Paik and Swa-
pan Kumar Parui

A purely corpus based tech-
nique finds the equivalence
classes of variant words in an
unsupervised manner.

95%

2011 Bengali Porter stemming tech-
nique

Suprabhat Das and
Pabitra Mitra

Suffix Stripping 96.27%

2014 Bengali Rule Based Bengali
Stemmer

Redowan Mahmud.
MD et. al.

Rule based suffix removal tech-
nique without using any list of
suffixes.

88%

2016 Bengali Bengali Lemma-
tizer(BenLem)

A. Chakrabarty and U.
Garain

Reverse transformation based
lemmatizer from surface
words.

81.85%

2016 Bengali A Neural Lemmatizer
for Bengali

A. Chakrabarty et. al. Neural network based lem-
matizer using word2vec and
CBOW

69.57%

measures. Mahmud et al. (2014) developed a
rule based Bengali stemmer in 2014. This pa-
per identify the occurrences of different inflec-
tions and their pattern. They developed rules
to remove suffix from a inflected word with-
out using any list of suffix list. Chakrabarty
and Garain (2016) have designed a Bengali
Lemmatizer (BenLem) which is able to handle
both inflection and derivational morphology in
Bengali language. In this approach, they used
the FIRE Bengali News Corpus. It achieved
81.85% of accuracy in terms of resolving the in-
flected and derived words. Chakrabarty et al.
(2016) proposed a neural network based lem-
matizer which achieved 69.57% of accuracy.
Thangarasu and Manavalan (2013) presented
a literature review on stemming techniques for
the Indian languages. Patel and Shah (2016)
presented a literature review on unsupervised
stemming techniques.

Table 1 shows different stemming tech-

niques for Indian languages. In this compar-
ison Das and Mitra (Das and Mitra, 2011)
shows the highest accuracy of 96.27% for Ben-
gali language with respect to other Indian
languages and the lowest accuracy is 80.73%
for Punjabi language proposed by Kumar and
Rana (Kumar and Rana, 2011).

3 Inflections of words in Bengali
language

Inflection of word is a process in which a word
takes different forms. It may be based on
tense, number and person. Different forms
of the actual word are called inflected words.
Bengali is one of the most morphologically dec-
orated languages due to its wide range of in-
flected words. In this language inflections are
mainly observed for verbs and nouns. Adjec-
tives in Bengali can take only two suffixes -
তর and তম, marking comparative and superla-
tive adjectives, respectively, while adverbs in

402

Table 2: Possible Suffixes for Bengali Language

Tense 1st Person &
2nd Person

2nd Person (Formally,
Informally)

2nd Person (In-
formally for Ju-
nior Persons)

3rd Person
(Formally)

3rd Person
(Informally)

Past Indefinite লাম ল, লন িল লন লা, লা
Past Continuous িছলাম িছেল িছিল িছেলন িছল
Past Perfect এিছলাম এিছেল, এেয়িছেল, ইেয়িছেল

এেয়িছেলন, এিছেলন, ইেয়িছেলন
ইেয়িছিল, এিছিল, এেয়িছিল এিছেলন, এেয়িছেলন,

ইেয়িছেলন
ইেয়িছল, এেয়িছল,
এিছল

Present Indefinite ই এন ইস এন এ
Present Continu-
ous

ি , ছ ,ছ , ন, এেছন ি স, এিছস ন, এেছন , এেছ

Present Perfect এিছ এছ, এেছন এিছস এেছন এেছ
Present Perfect
Continuous

Not Applicable এন Not Applicable উন উক

Future Indefinite ব (বা) ব, বন িব বন ব
Future Continuous তথাকব তথাকেবন তথাকিব তথাকেবন তথাকেব
Future Perfect এথাকল থাকেব এথাকিব এথাকেবন এথাকেব
Future Perfect
Continuous

Not Applicable বনওএন িতস বন ব

Habituatal Past তাম ত, তন িতস তন ত

Bengali do not get suffixed. In this section we
address the inflections of verbs and nouns. We
also analyze the rules of inflections.

3.1 Inflections for Verbs

In Bengali language a verb is formed from the
root-verb by joining some suffixes. As an ex-
ample the root-verb of verb বেলেছন (Told) is বল
and the suffix is এেছন. The inflections in verbs
are varied according to tenses and the persons.
The deviation of verb form according to the
tense can be observed easily. For example the
word বলেছ (Telling), বেলেছন (Told) is deviation of
actual root word বলা (Tell). Inflections are also
noticed in case of informal and formal commu-
nications. For example the verb (Go) in the
sentence “you (addressing younger one) are go-
ing” is presented as যাি স and the verb (Go) in
the sentence “you (addressing elder/ respected
one) are going” is presented as যাে ন. Both of
these words are infected form of যাওয়া (Go) and
the root-verb is যা. One important point is es-
sential to notice that the deviation of word
যাওয়া (Go) is িগেয়িছেলন (Went) where there is no
such linguistic interpretation. In such cases
we maintain a mapping between root-verb and
its possible deviations. We have listed out a
number of possible suffixes in table 2 that are
used to deviate a verb from its stem form. We
apply rule based stemming mechanism to ex-
tract root-verb by omitting suffixes from the
inflected word. A detailed procedure is illus-
trated in section 4. It is worth mentioning

that the length of the root-verb in Bengali lan-
guage is maximum 3. Root-verbs of different
length is also presented in the table 3

3.2 Inflections for Noun
Noun inflections in Bengali language are lim-
ited. In case of verbal inflections the stem
words can be changed sometimes but in case
of Nominal inflection the stem word cannot
be changed. Noun inflections are occurred
to mention singular and plural forms of an
object. Limited number of suffixes (Bhat-
tacharya et al., 2005) such as `িট', `টা' ,`রা', `খানা',
`খািন', ` েলা', ` িল', `এরা', `রািজ', `রািশ', `পু ', `সমূহ' etc. are
added to the stem words. These suffixes are
also added according to the representation of
human being or other living things or non-
living things. A number of noun inflections
are presented in table 4. Example of different
Noun inflections can be ছেলিট (The boy), বই িল
(Books), ব ৃ ািদ (Trees), পবতমালা (Mountain range)
etc.

4 Proposed Methodology

We have discussed about various verb and
noun inflections in Bengali Language till now.
We also mentioned possible suffixes for devia-
tion of a word and the different root-verb of
different lengths of verbs. In this section, we
illustrate our methodology to find stem of a
verb.

It is easily observable that the number of
rules for formation of different length of root-

403

Table 3: Different Types of Root-Verbs available in Bengali

Length Category Root-Verbs
1 Single Letter হ, , ল, ঘ
1 Letter + আ খা, ধা, পা ,যা, গা
1 Letter + ই িদ, িন
1 Letter +◌ু , ধু, নু, etc
2 2 Letters কর, কম, গড়, চল, পড়, জম etc around 100 root-verbs
2 letter + হ কহ, সহ, বহ etc
2 ◌্ is addded at last কা , গাঁ , চা , আঁ , কাঁ , বাঁ , িল , িক , িজ , িঘ , িফ , িভ , িচ , উ , , ফু , খুঁ , খু ,

উ etc almost 200 root-verbs
2 is added at last গা , বা , না , চা etc
2 ◌া is added at last চড়া, কাটা, লাফা, চরা, ছড়া, ছরা, আগা, চালা, নাহা, গাহা, িফরা, িছটা, িশখা, িঝমা, িপটা, িমটা,

লুকা, ঘুরা, কুড়া, উঁচা, পুঁড়া, ধুয়া, ধায়া, শায়া, খায়া, খাঁচা, গাছা, পৗঁছা, দৗড়া etc around
250 root-verbs

3 ◌া is added at last চটকা, সমঝা, কচলা, ধমকা, িছটকা, িহঁচড়া, িসটকা, িবগড়া, মড়া, মুচড়া, উলটা, উপচা, ছাবলা,
কাঁচকা, কাঁকড়া etc almost 150 root-verbs

Table 4: Different types of Noun Inflections

Objects Singular Plural
Human Beings টা, টােক, িট, টার, র, ◌র, ক etc েলা, িল, েলার, িলর, রা, দর, দরেক etc
Other Living or
Non-Living Things

টা, টােক, িট, টার, র, টােত, িটেত, ◌র, ◌
etc

েলা, িল, েলার, িলর, এরা, জন, িলেত,
েলােত, রািজ, রািশ, পু , সমূহ, বণ, বদৃ, বগ,
মালা, িদ etc

verbs are limited. We can generate root-verbs
of different length from an inflected word by
applying the mentioned rules. For example
from the inflected word খেয়েছন (ate) we can
generate possible root-verbs of different length
upto 3. If we consider length 3 we get খয়ছা,
খুয়ছা, িখয়ছা etc about 6 words. Similarly for
length 2 we can generate words like খয,় খহ,খা ,
িখয়, খু etc about 8 words and finally for length
1 we have খ, খা, িখ, খু . Out of these all possible
root-verbs only one will be matched with
valid one (খা) and corresponding verb(খাওয়া)
(eat) will be retrieved.

At this point we would like to illustrate our
proposed methodology for stemming. The al-
gorithm is presented in Algorithm 1. This al-
gorithm takes one word possibly an inflected
word IW and access Bengali WordNet. Before
doing any kind of suffix removal it checks the
word in the WordNet to confirm that the word
is inflected or not. In some cases suffixes are
present in a word and creates a new word. Re-
moving this suffix from the word changes the
intended meaning of the word. For example

আধার (Dark), if we remove ‘র’ from the word, it
will be আধা (Half or Half pieces). On the other
hand if we consider word গাধার (Donkey’s) and
if we remove `র' then it will be গাধা (Donkey)
which is valid suffix removal. So before doing
suffix removal we should search that particular
word in the WordNet. In the next stage, al-
gorithm perform the stemming mechanism ac-
cording to its category (Noun or Verb). In this
phase root form of the verb is generated. The
function G() generates the root-verb according
to the lengths ranging from 3 to 1. It gener-
ates all possible root-verbs based on the first 3
letters of the inflected word by applying rules
mentioned in table 3. If it does not find any
matching valid root-verb, it continues to gener-
ate all possible root-verbs of length 2 and so on.
As the number of rules are constant and very
few, it does not take too much amount of time.
If a match found then the corresponding verb
of the root-verb is returned. In the previous
step we have already filtered the root words
having some suffixes within those root words.
In this stage we can emphasis that the words
will have intentional suffixes merged with its

404

Algorithm 1 Stemming Algorithm
Input IW is the word that is the inflected form of a

verb or noun along with its parts of speech tagged. We
maintain a database for list of nouns and verbs. ND is
the database containing nouns and VD is the database
containing verbs. We maintain a list of root-verbs, root
form of Nouns are in RND database and RVD accordingly.
SF is the set of suffixes used to inflect a Noun.

OutputAfter applying the following procedure ac-
tual root word will be assigned to RW.
1: procedure Stemmer(IW)
2: WPOS ← P(IW)
3: if WPOS = NOUN then
4: if S(IW, ND) = true then
5: RW ← IW
6: return(RW)
7: else
8: i← 0
9: while i > 4 do

10: RWP ← R(IW, SF[i])
11: if S(RWP, RND) = true then
12: RW ← RWP
13: return(RW)
14: end if
15: i← i + 1
16: end while
17: end if
18: end if
19: if WPOS = V ERB then
20: if S(IW, VD) = true then
21: RW ← IW
22: return(RW)
23: else
24: length← 3
25: while length > 0 do
26: RVð ← G(length, IW)
27: for each RG in RVð do
28: if S(RG , RVD) = true then
29: RW ← GRV(RVð, RVD)
30: return(RW)
31: end if
32: end for
33: length← length− 1
34: end while
35: end if
36: end if
37: end procedure

root. So we generate all possible root-verbs of
length 3 then of length 2 and finally length of
1. It is worth mentioning that according to the
Bengali grammar, the length of the root-verbs
never exceed its length by 3. The next stage
is set up for the Nouns.

We define an array of possible suffixes for
Noun words mentioned in table 5 . Based on
utilization of suffixes, we define a suffix strip-
ping rules. Let us consider an inflected word
ছেল েলােদরেক (to the boys). In this word multi-
ple suffixes are applied. So in general we first
search for suffixes like ক, ত and remove those
suffixes if present in the inflected word. Here

in this example the inflected word ছেল েলােদরেক
becomes ছেল েলােদর. Now after that we search
◌, র ,এরা, য,় রা and remove those suffixes if avail-
able. Now the word becomes ছেল েলােদ. Again
we search for দ, কা, টা, িট and remove the one is
present in the word. So the word is now ছেল েলা
(Boys). After that the algorithm searches for
জন, েলা, িল, খানা and removes the appropriate
one. In this stage we get ছেল (Boy) which
is the root word. Furthermore, the algorithm
will search for রািজ, রািশ, বণ, পু , বদৃ, বগ, সমূহ but at
any stage if the word can be found in the Word-
Net we return that word as the root form of
the inflected word.

Another major notable limitation of Ben-
gali WordNet is that, WordNet does not con-
tain deviated words a lot. It is certainly much
difficult to identify all linguistic deviation of a
word and store them all in WordNet. A word
can be spoken or written in different way and
that is deviated from one region to another
region of a country. As an example, the de-
viated form of the word বলা (Telling) can be
বলেত or বলতা. Inhabitants of various regions of
West Bengal (A state of India) use the word
‘বলেত’ and on the other hand some inhabitants
of some regions of West Bengal use the word
‘বলতা’.
At this point we briefly illustrate the steps in-
volved in the proposed algorithm. The algo-
rithm takes inflected word (IW) as input. In
the next step function P() extracts the parts of
speech (WPOS) of IW. If it is a “NOUN” then a
function S() searches the Noun database (ND)
for a match. If a match found, it means the in-
flected word has a meaning itself hence there is
no need of stemming. Otherwise we can strip
off different suffixes depending upon the pres-
ence of suffixes within the inflected word. We
iterate through the suffix set SF and a function
R() searches different possible suffixes within
the inflected word and removes them. R() re-
turns a word RWP in every iteration that does
not contain ith suffix set of SF. RWP then
searched in the “Root Noun” database RND
using function S(). Whenever a match found
the word is returned as the root form of the
inflected word.

If WPOS is “VERB” then again the search
function S() searches the word in verb
database (VD) for a match. A match indicates

405

Table 5: Suffix Array

Index 1 2 3 4 5
Suffixes ক, ত� ◌, র ,এরা, য,় রা দ, কা, টা, িট জন, েলা, িল, খানা রািজ, রািশ, বণ, পু , বদৃ, সমূহ

that the word has its own meaning. So we
return the word as it was. Otherwise a func-
tion G() will generate all possible root-verb
from the inflected word and store them in set
RVð. In first iteration it takes first 3 charac-
ters of the inflected word and make all possible
root-verbs using the predefined rules. Then it
takes 2 characters and so on. As in Bengali
grammar root-verbs can have of length maxi-
mum of three, we start finding root-verbs in
descending order. Every element within the
set RVð is checked in the root-verb database
RVD. At any point if a match found then the
corresponding stem verb (RW) is returned.

5 Resources Used

Bengali WordNet: Bengali WordNet is a
part of IndoWordNet1. Bengali WordNet is a
lexical database for Bengali words and it con-
tains around 61 thousand Bengali words along
with the Synsets. We imported the Bengali
WordNet in MySQL database. We created
a separate table for all the root-verbs corre-
sponding to the Bengali verbs.

TDIL Corpus: For the corpus, we used
the Technology Development for Indian Lan-
guages (TDIL) corpus (Jha, 2010) in this
work.

6 Experiment

6.1 Dataset
We tested our algorithm on a testset of ran-
domly chosen 500 sentences from the TDIL
Bengali corpus of health and tourism domain
articles. In this test dataset there are 2,756
unique content words containing 1304 Nouns,
1230 Verbs, 54 Adverbs and 168 Adjectives.
Since in Indian languages, nouns and verbs
get highly inflected, we concentrated on the
stemming of nouns and verbs in Bengali. We
used the Stanford Bengali POS Tagger to as-
sign POS tag to each word of the testset. Fi-
nally we manually verified the POS tags and
corrected the wrongly assigned tags.

1http://tdil-dc.in/indowordnet/

Table 6: System performance

Category #Words #Correctly
Stemmed Accuracy

Noun 1274 1234 96.86
Verb 1230 1227 99.75

6.2 Implementation
We implemented our algorithm in Python 3.6
and MySQL. In the very first step each sen-
tence of the corpus is scanned by our python
script. The Natural Language Tool Kit (nltk)
package has been used to accomplish the nec-
essary preprocessing tasks. Within the nltk
package we have used Stanford Bengali POS
Tagger to tag parts of speech for each word
of the sentence. Then the sentence is tok-
enized into set of words. Another python
script has been used to remove stop words
listed by TDIL. At this point we use our actual
python program to implement our proposed al-
gorithm. It takes the tokenized words along
with tagged parts of speech. We have used
MySQL to store the Bengali WordNet. When-
ever a searching in the WordNet is required,
a particular module is responsible to search a
particular word in the WordNet.

7 Result and Analysis

Our algorithm works for Verbs and Nouns.
Out of 1230 verbs it successfully stems 1217
Verbs. In the other hand it successfully stems
1274 Nouns. Our algorithm fails for 43 words
due to lack of words in Bengali WordNet. The
accuracy of our algorithm shows 96.86% for
the Verbs and 99.75% for Nouns. The accu-
racy of our algorithm is shown in table 6. The
comparison of accuracy of different stemming
techniques are presented in Figure-1. In figure-
1 it is shown that our technique gives better ac-
curacy than state-of-art stemming techniques
in Bengali language.

In our approach we validate inflected words
before applying our proposed rule based suffix
removal technique. This validation technique

406

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00% 90.80% 95%

81.85%

69.57%

96.27% 91.56% 88%
96.86% 99.75%

A
C

C
U

R
A

C
Y

STEMMING MECHANISMS

Figure1
Comparison of Accuracy of Different Stemming Techniques

is done by searching the word in the Word-
Net to check whether the word is inflected or
not. We incorporate the rules of Bengali gram-
mar to understand how verbs are formed from
the root-verbs. Subsequently we observed that
there are very limited rules for inflections of
nouns. We extract the root-verbs from the
inflected verbs by finding the combinations
of suffixes and root-verbs of different lengths.
Root words are also extracted from inflected
nouns by applying step by step suffix removal.

The mechanism extracts actual root word
from the inflected word and verifies it with
the WordNet entry. There are some advan-
tages and disadvantages in this approach. One
of the major advantages is that the extracted
root word will always be correct. This valida-
tion enhances the correctness of the extraction
of root words.

One vital limitation of this entire mecha-
nism is that, our algorithm rely on WordNet.
There may be a situation where our algorithm
extracts correct root word but it is not present
in the WordNet and the extracted root word
will be discarded.

8 Conclusions and Future Work

We have proposed a rule based algorithm for
stemming verbs and nouns in Bengali. Incor-
poration of WordNet adds an extra degree in
validation and extracting root words from in-

flected words. Bengali grammar rules have
been used to find root-verbs of verbs efficiently.
We have covered almost all kinds of root-verbs
and possible suffixes to create a root word from
an inflected verb.

References
Qurat-ul-Ain Akram, Asma Naseer, and Sarmad

Hussain. 2009. Assas-band, an affix-exception-
list based urdu stemmer. In Proceedings of the
7th workshop on Asian language resources, pages
40–46. Association for Computational Linguis-
tics.

Samit Bhattacharya, Monojit Choudhury,
Sudeshna Sarkar, and Anupam Basu. 2005.
Inflectional morphology synthesis for bengali
noun, pronoun and verb systems. In Proc. of the
National Conference on Computer Processing
of Bangla (NCCPB 05), pages 34–43.

Abhisek Chakrabarty, Akshay Chaturvedi, and Ut-
pal Garain. 2016. A neural lemmatizer for ben-
gali. In Proceedings of the Tenth International
Conference on Language Resources and Evalua-
tion (LREC’16), pages 2558–2561.

Abhisek Chakrabarty and Utpal Garain. 2016.
Benlem (a bengali lemmatizer) and its role in
wsd. volume 15, pages 1–18. ACM New York,
NY, USA.

Suprabhat Das and Pabitra Mitra. 2011. A rule-
based approach of stemming for inflectional and
derivational words in bengali. In Students’
Technology Symposium (TechSym), 2011 IEEE,
pages 134–136. IEEE.

407

Niladri Sekhar Dash, Pushpak Bhattacharyya, and
Jyoti D Pawar. 2017. The wordnet in indian
languages. Springer.

Nadir Durrani and Sarmad Hussain. 2010. Urdu
word segmentation. In Human Language Tech-
nologies: The 2010 Annual Conference of the
North American Chapter of the Association for
Computational Linguistics, pages 528–536. Asso-
ciation for Computational Linguistics.

Heshaam Faili and Hadi Ravanbakhsh. 2010. Affix-
augmented stem-based language model for per-
sian. In Proceedings of the 6th International
Conference on Natural Language Processing and
Knowledge Engineering (NLPKE-2010), pages
1–4. IEEE.

William B Frakes and Christopher J Fox. 2003.
Strength and similarity of affix removal stem-
ming algorithms. In ACM SIGIR Forum, vol-
ume 37, pages 26–30. ACM.

Md Islam, Md Uddin, Mumit Khan, et al. 2007. A
light weight stemmer for bengali and its use in
spelling checker. BRAC University.

Girish Nath Jha. 2010. The tdil program and
the indian langauge corpora intitiative (ilci). In
LREC.

Anjali Ganesh Jivani et al. 2011. A comparative
study of stemming algorithms. volume 2, pages
1930–1938.

Gerald J Kowalski. 2007. Information retrieval
systems: theory and implementation, volume 1.
Springer.

Dinesh Kumar and Prince Rana. 2011. Stemming
of punjabi words by using brute force technique.
volume 3, pages 1351–1357.

Md Redowan Mahmud, Mahbuba Afrin, Md Ab-
dur Razzaque, Ellis Miller, and Joel Iwashige.
2014. A rule based bengali stemmer. In Ad-
vances in Computing, Communications and In-
formatics (ICACCI, 2014 International Confer-
ence on, pages 2750–2756. IEEE.

Prasenjit Majumder, Mandar Mitra, Swapan K
Parui, Gobinda Kole, Pabitra Mitra, and
Kalyankumar Datta. 2007. Yass: Yet another
suffix stripper. volume 25, page 18. ACM.

Sangita D Makhija. 2016. A study of different
stemmer for sindhi language based on devana-
gari script. In 2016 3rd International Confer-
ence on Computing for Sustainable Global Devel-
opment (INDIACom), pages 2326–2329. IEEE.

Jiaul H Paik, Dipasree Pal, and Swapan K Parui.
2011. A novel corpus-based stemming algorithm
using co-occurrence statistics. In Proceedings of
the 34th international ACM SIGIR conference
on Research and development in Information Re-
trieval, pages 863–872. ACM.

Miral Patel and Apurva Shah. 2016. An unsuper-
vised stemming: A review. volume 14, page 476.
LJS Publishing.

Martin F Porter. 1980. An algorithm for suffix
stripping. volume 14, pages 130–137. MCB UP
Ltd.

Ananthakrishnan Ramanathan and Durgesh D
Rao. 2003. A lightweight stemmer for hindi. In
the Proceedings of EACL.

M Thangarasu and R Manavalan. 2013. A liter-
ature review: stemming algorithms for indian
languages.

Tapashee Tabassum Urmi, Jasmine Jahan Jammy,
and Sabir Ismail. 2016. A corpus based unsu-
pervised bangla word stemming using n-gram
language model. In 2016 5th International Con-
ference on Informatics, Electronics and Vision
(ICIEV), pages 824–828. IEEE.

408

Proceedings of the 17th International Conference on Natural Language Processing, pages 409–419
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

End-to-End Automatic Speech Recognition for Gujarati

Deepang Raval, Vyom Pathak, Muktan Patel, Brijesh Bhatt
Computer Engineering Department, Dharmsinh Desai University, Nadiad

deepangraval2012@gmail.com, angerstick3@gmail.com,
muktan123@gmail.com, brij.ce@ddu.ac.in

Abstract
We present a novel approach for improving
the performance of an End-to-End speech
recognition system for the Gujarati lan-
guage. We follow a deep learning based ap-
proach which includes Convolutional Neu-
ral Network (CNN), Bi-directional Long
Short Term Memory (BiLSTM) layers,
Dense layers, and Connectionist Temporal
Classification (CTC) as a loss function. In
order to improve the performance of the
system with the limited size of the dataset,
we present a combined language model
(WLM and CLM) based prefix decoding
technique and Bidirectional Encoder Rep-
resentations from Transformers (BERT)
based post-processing technique. To gain
key insights from our Automatic Speech
Recognition (ASR) system, we proposed
different analysis methods. These insights
help to understand our ASR system based
on a particular language (Gujarati) as well
as can govern ASR systems’ to improve
the performance for low resource languages.
We have trained the model on the Mi-
crosoft Speech Corpus, and we observe a
5.11% decrease in Word Error Rate (WER)
with respect to base-model WER.

1 Introduction
ASR is the process of deriving the transcrip-
tion (word sequence) of an utterance, given
the speech waveform. Speech Recognition
has been an active area of research for many
decades. Initial work in ASR was based on
statistical modeling techniques like Hidden
Markov Model (HMM) (Baker, 1975) and used
phonemes to represent distinct sounds that
make up the word. With the rise of Deep
Learning based techniques and the increasing
availability of data, the End-to-End speech
recognition systems started showing compet-
itive results. Initial deep learning based ASR

models, based on Recurrent Neural Network
(RNN) and CTC (Graves et al., 2006), over-
came the issues of statistical systems and pro-
vided the mapping of variable length input to
output. With the further advancements in al-
gorithms and resources, various complex deep
learning architectures have been introduced
for an effective End-to-End speech recognition
system. End-to-End speech recognition for low
resource languages has not gained significantly
from the advancements in deep learning due to
lack of training data compared to other high
resource languages. Linguistic diversities1 also
makes it difficult to adopt models across lan-
guages.

In this paper, we present a speech recogni-
tion system for the Gujarati Language. Gu-
jarati is a rich language consisting of 34 conso-
nants and 13 vowels. While the more number
of vowels may reduce the homophones, more
number of consonants may increase the ambi-
guity.

The key contributions of this paper are as
follows,

• We have adopted the state of the art ASR
model described in (Amodei et al., 2015)
for the Gujarati Language.

• We present a novel approach of combin-
ing two language models, 4-gram word-
level language model (WLM) and bi-gram
character-level language model (CLM) to
improve performance of prefix decoding.

• We propose a Spell Corrector BERT
based post-processing technique to cor-
rect erroneous prediction and further im-
prove the performance of the ASR Sys-
tem.

1http://www.cs.cmu.edu/ ytsvetko/jsalt-part1.pdf

409

The proposed system reduced the WER to
65.54% from the initial 70.65%. We analyzed
the system using the testing hypothesis and de-
rived many useful insights on the performance
of the system as well as the cause of the er-
rors in the hypothesis. We analyzed that the
errors produced in the Gujarati language are
mainly because of interchanging/mismatching
diacritics (‘િ◌’, ‘◌ી’, etc.), consonants (‘ધ’,
‘જ’, ‘ય’, etc.), independents (‘આ’, ‘અ’, ‘ઇ’,
‘ઈ’, etc.) and some homophones.

The remaining of the paper is organized as
follows, Section 2 describes the Literature Sur-
vey of ASR system architectures. The pro-
posed approach is described in Section 3. Sec-
tion 4 constitutes the experiments conducted
and its observations are followed in Section 5.
Section 6 provides the conclusion of our work.

2 Related Work

Since the first ASR circuit developed by Bell
Laboratories (Davis et al., 1952) in the 1950s,
ASR has remained an active area of research.
In early 1960’s (Kenichi et al., 1966) pre-
sented a phoneme based speech recognition
which involved the first use of speech seg-
menter in different portions of the input ut-
terances. (Vintsyuk, 1968; Sakoe and Chiba,
1978) introduced the concept of the non-
uniform time scale for alignment of speech
patterns (dynamic wrapping). Both of these
works lead to the Viterbi Algorithm (Viterbi,
1967) which had been an indispensable tech-
nique in ASR for decades. By the mid-
1970s, the basic ideas of applying fundamen-
tal pattern recognition technology to speech
recognition, based on Linear Predictive Cod-
ing (LPC) (Atal and Hanauer, 1971) meth-
ods, were proposed by Itakura (Itakura, 1975).
CMU’s Harpy System (Lowerre and Reddy,
1976), was the first ever system to use the
Finite State Network (FSN) to reduce com-
putation for matching in Speech Recognition.
However, methods which optimized the result-
ing FSN did not come about until the early
1990’s (Mohri, 1997), which were limited to
small to medium vocabulary electronic based
solutions for ASR.

The earlier approaches of Electronics based
ASR were eventually replaced by statistical ap-
proaches with the introduction of HMM based

speech recognition. The basic implementation
of HMM based speech recognition model was
first published in 1975 by Baker (Baker, 1975)
at CMU. Further work on HMM continued
with the introduction of first ever use of HMM
for continuous speech recognition in 1976 (Je-
linek, 1976). As the research continued, the
HMM model was tried with various machine
learning techniques including the HMM/ANN
architecture in 1990 (Bourlard and Wellekens,
1990), HMM/GMM architecture in 1997 (Ro-
dríguez et al., 1997) and HMM/SVM architec-
ture in 1998 (Golowich and Sun, 1998). This
wave for HMM continued till the introduction
of RNN based approaches in early 2005.

The above approaches had major drawbacks
such as

• It requires high task-specific knowledge,
e.g. to design the state models for HMMs.

• It requires fairly complex parameter tun-
ing as the pipeline contains multiple con-
figurations.

(Graves et al., 2006) introduced a novel
method for training RNNs to label un-
segmented sequences directly, using CTC,
thereby eliminating the above drawbacks and
creating an End-to-End ASR system. With
further enhancements in algorithms and re-
sources, deep learning based End-to-End ASR
systems got better and better and they
started outperforming traditional ASR sys-
tems (Graves and Jaitly, 2014; Hannun et al.,
2014). End-to-End ASR systems with encoder-
decoder have shown competitive results (Chan
et al., 2016). The RNN encoder-decoder
paradigm uses an encoder RNN to map the
input to a fixed-length vector and a decoder
network to expand the fixed-length vector into
a sequence of output predictions (Cho et al.,
2014; Sutskever et al., 2014). Adding an at-
tention mechanism to the decoder greatly im-
proves the performance of the system, partic-
ularly with long inputs or outputs.

As we saw End-to-End ASR gives great re-
sults but at the cost of large data required
to train it, which is not feasible for low re-
source languages. According to Interspeech
2018, Low Resource Automatic Speech Recog-
nition Challenge2, TDNN-based systems (Ped-

2https://tiny.cc/Interspeech2018

410

Figure 1: End-to-End Automatic Speech Recogni-
tion Process

dinti et al., 2015) are efficient in modelling long
temporal context and performed well even
in the low-resource setting (Fathima et al.,
2018; Pulugundla et al., 2018). Even with the
smaller amount of data, with some enhance-
ments, End-to-End systems showed promising
results (Billa, 2018).

The work similar to our approach are pre-
sented in speech recognition primer3, and Gu-
jarati Automatic Speech Recognition4. The
first approach is based on a combination
of CNN (Chua and Yang, 1988) and BiL-
STM (Schuster and Paliwal, 1997) the latter
approach uses a combination of 3 Gated Re-
current Units (GRUs). The first approach is
designed for English, while the second is for
Gujarati.

Our approach differs from the above two as
follows,

• The model architecture described in our
paper constitutes 1 CNN - 3 BiLSTM - 3
Dense layers.

• We present a more effective approach to
decode the output using the prefix beam
search algorithm along with the combina-
tion of the language model.

• Our approach introduces a post-
processing technique to improve the
performance of the system even more.

BERT is a neural network-based technique
for natural language processing pre-training.
The pre-trained BERT model can be fine-
tuned with just one additional output layer

3https://github.com/apoorvnandan/speech-
recognition-primer

4https://github.com/niteya-shah/Gujarati-
Automatic-Speech-Recognition

to create state-of-the-art models for a wide
range of tasks, such as question answering
and language inference, without substantial
task-specific architecture modifications (De-
vlin et al., 2018). Multilingual-BERT uses a
representation that is able to incorporate infor-
mation from multiple languages (Pires et al.,
2019).

3 Proposed Approach

Figure 1 describes the End-to-End speech
recognition system proposed in the paper.
This section describes the processing involved
in the various stages.

3.1 Audio feature
We have used mel-frequency cepstral coeffi-
cients (MFCC) (Motlıcek, 2002) as features
to represent the input audio signal. We con-
vert the input audio signal into MFCC. The
dimension of these features are (Time_Steps,
MFCCs) and for the given batch size it is of di-
mension (Batch_Size, Time_Steps, MFCCs).
These features serve as the input to the deep
learning model.

3.2 Model Architecture
The model architecture incorporates four ma-
jor components: CNN layer, BiLSTM layer,
Dense Layer, and CTC. Each component has
its own importance and components like CNN
layer, BiLSTM layer, and Dense layer have to
be tuned as per the size of the input data.

Convolutions in frequency and time do-
mains, when applied to the spectral input
features prior to any other processing, can
slightly improve ASR performance (Abdel-
Hamid et al., 2012; Sainath et al., 2013). It
also attempts to model spectral variance due
to speaker variability, which is another reason
to use the first layer as convolution (Amodei
et al., 2015). We have used a single 1D-
convolution layer with 200 filters with ReLU
activation function with kernel size 11 and
stride value as 2. Features extracted are then
passed to a deep BiLSTM RNN (Schuster and
Paliwal, 1997).

We have used 3 BiLSTM layers, each layer
consisting of 200 BiLSTM units (400 LSTM
units) and tanh as the activation function of
each unit. When provided input from the con-

411

Figure 2: Working of decoding algorithm using
WLM and CLM

volution layer, the BiLSTM layer gives us out-
put as (Batch_Size, Convolved_Time_Steps,
LSTM_blocks). Features extracted are then
passed to a DNN (Hinton et al., 2006), which
consists of 3 layers where the first 2 layers con-
sist of 200 units. The number of units in the
last layer is equal to the number of characters
in the languages.

While training, a common technique for
mapping variable-length audio input to
variable-length output is the CTC algo-
rithm (Graves et al., 2006) coupled with an
RNN. The CTC-RNN model performs well in
End-to-End speech recognition with grapheme
outputs (Graves and Jaitly, 2014; Hannun
et al., 2014; Maas et al., 2014, 2015). Given the
network outputs, CTC maximizes the proba-
bilities of the correct labelings. The CTC ob-
jective function is differentiable thus the net-
work can then be trained with standard back-
propagation through time (Werbos, 1990).

3.3 Decoding
We propose an enhanced language model
based prefix decoding which uses our cus-
tom built 4-gram word-level language model
(WLM) and a bi-gram character-level language
model (CLM) (Brown et al., 1992). Here we
refer to it as Prefix with LMs’. Both of these
models were created using the whole Gujarati
Wikipedia5. Using prefix decoding with two
language models (WLM and CLM) makes de-
cent corrections, as it introduces language con-
straints at both word and character scope. We
have compared this approach with greedy de-
coding (Maas et al., 2014) and prefix decod-
ing (Maas et al., 2014).

As shown in the figure 2, the output from
5https://gu.wikipedia.org/wiki/

the network is passed through the prefix de-
coding algorithm which incorporates a WLM
and a CLM. The WLM will score the last word
given in the prefix word sequence. This score’s
influence can be controlled by WLM weight
(wlm). Similarly, CLM will score the last char-
acter to be appended given its previous char-
acter. This score’s influence on the new prefix
is controlled by CLM weight (clm). We en-
compassed the insertion bonus by multiplying
the count of words in prefixes to avoid bias
towards shorter prefixes. To control the influ-
ence of insertion bonus we used beta (β).

3.4 Post Processing
We propose a BERT based post-processing
technique to improve the output of speech
recognition systems. The BERT model is used
to correct the spelling of the predicted out-
put words. Here we term this technique as
Spell Corrector BERT. Figure 3 describes the
working of sentence correction algorithm using
BERT. For a sentence, we iterate through all
the words during which we find the replace-
ments for the current word by finding its cor-
responding zero, one, or two edit substitutes
from the Wikipedia corpus. Using the list pro-
duced by this approach, we can verify that if
the word predicted is correct, it would be al-
ready present in the list and needs not to be
replaced.

If the current word is not present in the
replacements list, then that word is replaced
with [MASK] and the sentences are generated
by replacing the [MASK] with the word re-
placements from the replacements list. Fur-
ther, the sentences are tokenized and passed
to the BERT model. As an output, BERT
returns the list of replaced words and their
respective probabilities w.r.t. the sentence.
From this list, we select K word replace-
ments with the highest probability and ap-
pend this list of word replacements to the
output_list. Once all the words are iterated, a
final output_list is generated which contains a
list of all words with at most K replacements
for each word. Given a sentence containing
3 words, અમદાવાદર એપોટર્ પર where અમદાવાદર
and એપોટર્ are incorrect, this process gives the
output_list= [[અમદાવાદ, અમદાવાદમા,...] ,
[એરપોટર્, પોટર્ ,...] , [પર]]. This output_list
is passed to a combinator which generates sen-

412

Figure 3: Working of Spell Corrector BERT

tences by combining the words. If there is a
list contain a single word in it, it is selected as
it is and if there is a list of word replacements
then various combinations are produced using
the combinator. The output of this process
will be output_sentences= [અમદાવાદ એરપોટર્
પર , અમદાવાદ પોટર્ પર , અમદાવાદમા એરપોટર્ પર
,...]. To select the best sentence out of all the
sentences, a WLM is used for sentence scoring
and the sentence with the highest score is se-
lected as the final_output = અમદાવાદ એરપોટર્
પર.

4 Experiments

4.1 Dataset

We have used Microsoft Speech Corpus avail-
able for Gujarati6 which contains approxi-
mately 22,807 training examples and 3,075
testing examples. The dataset contains an
eclectic collection of speakers where the length
of a single audio utterance is 6.35±2.33 sec-
onds. Out of 22,807 training examples, we
have used 16,000 utterances (≈28.2 Hours) for
training and 4,807 (≈8.5 Hours) utterances
for validation and all the testing examples i.e.
3,075 (≈5.4 Hours) utterances for inferencing.

6https://msropendata.com/datasets/7230b4b1-
912d-400e-be58-f84e0512985e

Figure 4: Training and Validation Loss for the
model

4.2 Training
The training data, as well as validation data,
was divided into 7 batches and the model was
trained for 24 epochs and 92 hours on T4 GPU
with 16 GB of GPU-memory. The model con-
sists of 2,744,676 total parameters. We used
Adam optimizer for gradient descent, and for
calculating the loss we used CTC loss function.

4.3 Decoding
We have used Gujarati data scraped from
Wikipedia containing 2,501,841 words with a
vocabulary size of 163,170 words. We used this
corpus to create the statistical word-level lan-
guage model and produced 1,570,614 4-grams.
We also used the same corpus to create the sta-

413

Table 1: Sentence and its corresponding output through various decoding techniques.

Actual અમદાવાદ એરપોટર્ પર સુરક્ષાને લઈ તમામ તૈયારીઓ કરી
દેવાઈ છે

Greedy અમદાવાદાર પર પણ સુરક્ષાઅને લઈને તમમ ટેરે કરી
જવોાય છે

Prefix with LMs’ અમદાવાદાર પર પણસુરક્ષાને લઈને તમમ કેરે કરી જવાય
છે

Prefix with LMs’ & Spell Corrector BERT અમદાવાદ પર પણ સુરક્ષાને લઈને તમામ કેરે કરી જવાય
છેે

Table 2: Distribution of single letter error words

Technique Consonants Diacritic Independents
Greedy 66.41% (1,962) 28.23% (834) 5.34% (158)

Prefix with LMs’ 66.52% (1,824) 27.97% (767) 5.5% (151)
Prefix with LMs’ & Spell Corrector BERT 52.90% (829) 38.67% (606) 8.4% (132)

Table 3: Techniques and their corresponding WER

Techniques Word Error Rate (%)
Greedy 70.65

Prefix without Language Model 69.95
Prefix with WLM 69.53
Prefix with CLM 68.64
Prefix with LMs’ 68.23

Prefix with LMs’ & Spell Corrector BERT 65.54

tistical character-level language model to cre-
ate bi-grams for each alphabet of the Gujarati
language. For prefix decoding, the beam width
was taken as 50 and all other parameters were
decided using cross-validation. The algorithm
of Prefix with LMs’ recorded a 2.42% decrease
in WER w.r.t. system using greedy decoding
technique.

4.4 Post Processing

Spell Corrector BERT is used to further im-
prove the output produced by Prefix with
LMs’. We have used a pre-trained BERT mul-
tilingual model by Google7 combined with a
4-gram WLM as the core components of Spell
Corrector BERT. The algorithm of Spell Cor-
rector BERT recorded a 2.69% decrease in
WER w.r.t. standalone Prefix with LMs’. The
table 3 shows the comparison of WER for dif-
ferent techniques.

7https://github.com/google-
research/bert/blob/master/multilingual.md

5 Observation
5.1 Comparison of various decoding

and post-processing techniques
We have tested the performance of the decod-
ing technique and post-processing by observ-
ing the distribution and frequency of the sin-
gle letter error words. Table 1 shows a sam-
ple testing sentence as well as the hypothe-
sis generated by our model using various de-
coding techniques and post-processing tech-
niques. Table 2 describes the distribution of
single-letter error words observed in different
approaches. Here, the count of errors due to
consonants/diacritics/independents w.r.t. the
total count of single-letter error words in each
decoding technique is shown as a percentage.
It shows that, Prefix with LMs’ and Pre-
fix with LMs’ & Spell Corrector BERT post-
processing, both help in reducing single letter
error words.

Table 2 also shows count of single letter er-
ror words. Subsequently, from this count we
can conclude that, percentage decrease of the
error in consonant, diacritic and independents
using Prefix with LMs’ is 7%, 8% and 4% re-
spectively w.r.t greedy decoding, while using
Prefix with LMs’ & Spell Corrector BERT, the
percentage decrease of the error in consonant,
diacritic and independents is 57.74%, 27.00%
and 16.45% respectively w.r.t. greedy decod-
ing.

We observe that, with a lesser number of

414

incorrect characters, Spell Corrector BERT ei-
ther retains WER or in the majority of the
cases, will improve WER significantly. Table
4 shows sample sentences with a different num-
ber of erroneous words for comparison of the
performance of Spell Corrector BERT.

5.2 System Analysis
The system analysis is performed on the model
hypothesis decoded using Prefix with LMs’
& Spell Corrector BERT. We have evalu-
ated the performance of the proposed model
on 3,075 test examples. Out of total erro-
neous words, 7.19% words have one letter er-
ror with similar sounding alphabets of letters
interchange. e.g. ‘શ’ → ‘સ’, ‘ઇ’ → ‘ઈ’
, ‘િ◌’ → ‘◌ી’. The interchange of con-
sonants/diacritics/independents is due to the
factors like, noise, channel variability, speaker
variability, anatomy of the vocal tract, speed
of speech, regional and social dialects, homo-
phones (Forsberg, 2003). Any incorrect word
in the sentence is replaced on the basis of prob-
ability and hence WLM, CLM, or BERT is not
solely responsible for the selection of any word,
it is the combination of the probabilities that
results in the final output.

5.2.1 Error due to conso-
nants/independents/diacritics

Table 5 displays examples of words which have
a single-letter error due to consonants, inde-
pendents, and diacritics. Ref. depicts the ac-
tual word in the sentence, Hyp. denotes the
output word, Ref. Freq. shows the count of ref-
erence word in the corpus, Hyp. Freq. is the
count of hypothesis word in the corpus, Ref.
→ Hyp. shows the character that is replaced
and Type shows the type of error in the infer-
ence word. From this table, we can observe
that, despite the hypothesis word being infre-
quent in the corpus, the similar sounding let-
ters in the reference word gets replaced. This
advocates the idea that the replacement of the
similar sounding letters from the words is also
one of the factors inducing the errors in the
system, irrespective of the words’ frequency in
the corpus.

Out of the total 1,567 one letter error words,
52.90% errors are due to single consonant mis-
match. The top three incorrectly predicted
consonants are ‘ક’, ‘ર’, ‘ત’, with frequencies

102, 92, and 79 respectively. Together they
contribute to 32.93% of total errors due to con-
sonants.

In figure 5, the connection between two
consonants represents the error of interchang-
ing/misplacing these consonants with each
other. For example, the connection be-
tween ‘શ’ and ‘સ’ indicates that these con-
sonants are generally interchanged/misplaced
with each other, in a word predicted by the
system.

Out of the total 1,567 one letter error words,
8.40% errors are due to single-independent
mismatch. The top three incorrectly pre-
dicted independents are ‘ઈ’, ‘ઇ’, ‘અ’, with
frequencies 81, 21, and 13 respectively. To-
gether they contribute to 87% of total errors
due to independents. We observe that ([‘ઇ’,
‘ઈ’],[‘ઉ’, ‘ઊ’]) are more vulnerable to being
misplaced/interchanged.

Out of the total 1,567 one letter error words,
38.67% errors are due to single-diacritic mis-
match. The top three incorrectly predicted
independents are ‘◌ી’, ‘◌ે’, ‘◌ા’, with fre-
quencies 213, 120, and 76 respectively. We
observe that frequency of diacritic ‘◌ી’ and
‘◌ે’is greater than the sum of the frequencies
of remaining diacritics, and they constitute to
67% of total incorrectly predicted diacritics.

The output ([શરૂ, સરૂ],[સાડા, સાળા],[કોઈ,
કોએ]) are interesting cases as the hypothe-
sis words are not present in the corpus. The
predicted output misplaced ([‘શ’, ‘ડ’, ‘ઈ’])
with similar sounding ([‘સ’, ‘ળ’, ‘અ’]) re-
spectively without any prior knowledge of the
word. This is due to the character by character
prediction approach of our model.

Figure 5: Interchanging consonants which results
in erroneous prediction.

415

Table 4: Sample sentences for comparing performance of BERT

Actual અમદાવાદ એરપોટર્ પર સુરક્ષાને લઈ તમામ તૈયારીઓ કરી
દેવાઈ છે

At most one error per word અમદાવદ એપોટર્ પર સુરક્ષામે લઈ તમાન તૈયરીઓ જરી
દેરાઈ છેે

Spell Corrector BERT Output અમદાવાદ એરપોટર્ પર સુરક્ષાને લઈ તમામ તૈયારીઓ કરી
દેવાઈ છેે

At most two errors per word અમદવા એરપર્ પર સરક્ષને લઈ તમ તૈયરઓ કરી દેવ છે
Spell Corrector BERT Output અમદાવાદ એરપોટર્ પર સુરક્ષાને લઈ તમે તૈયારીઓ કરી

દેવ છે

At least 1 word with error greater than 2 અમદાવાદાર પર પણ સુરક્ષાઅને લઈને તમમ ટેરે કરી
જવોાય છે

Spell Corrector BERT Output અમદાવાદ પર પણ સુરક્ષાને લઈને તમામ કેરે કરી જવાય
છેે

Table 5: Examples of words which have single letter error

Ref. Hyp. Ref. Freq. Hyp. Freq. Ref.→Hyp. Type
શરૂ સરૂ 282 0 શ → સ Consonant
ત્યારે ક્યારે 377 15 ત → ક Consonant
ધરાઈ ધરાઇ 9 15 ઈ → ઇ Independent
ઊમેયુ ઉમેયુ 2 11 ઊ → ઉ Independent
પ્રારં�ભક પ્રારંભીક 4 0 િ◌ → ◌ી Diacritic
ચૂંટણીમાં ચુંટણીમાં 50 12 ◌ૂ → ◌ુ Diacritic

5.2.2 Error due to homophones
Out of a total of 606 words that had a sin-
gle diacritic error, only 2.97% of errors were
due to homophones which is a small fraction
of the total amount of errors in the inference
from the ASR system. This might be because
Gujarati is mostly a phonetic language with
only a few exceptions. Also, the number of al-
phabets (vowels and consonants) in Gujarati
are more than that in English. By reducing
diacritic errors, we can resolve errors due to
homophones. This helps us to understand that
our system is not much affected by error due
to homophones. Table 6 shows the incorrectly
predicted homophones.

5.2.3 Effect of word frequency on error
To understand the effect of frequency on error,
we calculated the frequency of the predicted
words in the test dataset. We categorized the
words into three different categories based on
the correctness of the word referenced to their

occurrence in the testing dataset. The three
different categories are,

• ACPW: Words that are always predicted
correctly.

• AIPW: Words which are always predicted
incorrectly

• CAIPW: Words which are predicted cor-
rectly as well as incorrectly at times.

Count of ACPW, AIPW and CAIPW is
1,069, 7,809 and 1,604 respectively. Mean fre-
quencies/occurrences of ACPW, AIPW and
CAIPW is 1.11, 1.34, and 15.38 respectively.
Words which are ACP, AIP and CAIP in test-
ing, are shown in training with a mean fre-
quency/occurrence of 4.75, 4.86, and 77.81 re-
spectively with a count of 857, 5,764 and 1,594
respectively. This gives us a rationalization for
the fact that our system is able to learn from
the utterances shown in the training and can
infer unseen examples too.

416

Table 6: Examples of words which are incorrectly predicted homophones

Reference Word કતાર્ (Actor) રિવ (Sun) પીતા (Drinking)
Hypothesis Word કરતા (Than) રવી (Winter Crop) પતા (Father)

Table 7: Sample words which are predicted correctly as well as incorrectly

Words in Testing Total Count Wrong count Right count Correctness(%)
આજે 81 32 49 60.49

રાજકોટના 2 1 1 50.00
તાકાત 2 1 1 50.00
િવભાગ 7 4 3 42.86
આવે 67 24 43 64.18

Average 53.50

We also analyzed the correctness of the
words from the set CAIPW. 8.32 out of 15.38
mean frequencies of CAIPW are correct and
the remaining 7.06 out of 15.38 are incorrect.
Table 7 shows some examples of the correctly
as well incorrectly predicted words with the
amount of correctness. This gives an explana-
tion for how words are predicted correctly as
well as incorrectly with the same proportion.

5.2.4 Error due to half-conjugates
This type of error occurs due to the mismatch
in the speed of utterance. The fast-conjugate
error occurs when a word is uttered too quickly
but the hypothesis word is predicted slow, e.g.,
(મુખજીર્ → મુખરજી). When a word is uttered
slowly but the hypothesis word is predicted
fast then this type of error is called slow-
conjugate error (ગયો → ગ્યો). Out of total erro-
neous predicted words, 2.4% of them have half-
conjugate error and out of those 2.4% words,
10% words consist of pure half-conjugate erro-
neous words. This justifies the fact that the er-
ror due to half-conjugate is trivial and thus the
variation in speaker speed is not a significant
factor due to which error occurs in inference
by our system.

6 Conclusion

In this paper, we have presented an End-to-
End speech recognition system for Gujarati.
We propose a prefix decoding technique that
uses two language models to improve the per-
formance of the system. We have also used
a BERT based spelling corrector model in a
post-processing step to further improve the

performance. We observe that the proposed
approach reduces the overall WER by 5.11%.

While deep learning models require a lot
of training data for better results, in this pa-
per we showed that without increasing the
training data we can improve the performance.
This is particularly important for a resource-
constrained language like Gujarati. We are
optimistic that with an increase in data our
optimizations would perform even better.

We explored and analyzed the inferences
from our ASR system to gain key insights
which consist of checking the correctness of the
word error due to consonants, diacritics, in-
dependents, half-conjugates, and homophones.
These insights can help to understand our ASR
system based on a particular language (Gu-
jarati) as well as can govern ASR systems’ to
improve the performance for low resource lan-
guages.

Acknowledgement

Param Shavak supercomputer was used to per-
form some experiments of this research work.
We are thankful to GUJCOST and Depart-
ment of Science and Technology, GoG for es-
tablishing supercomputer facility.

References
O. Abdel-Hamid, A. Mohamed, H. Jiang, and

G. Penn. 2012. Applying convolutional neural
networks concepts to hybrid nn-hmm model for
speech recognition. In 2012 IEEE International
Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pages 4277–4280.

417

Dario Amodei, Rishita Anubhai, Eric Battenberg,
Carl Case, Jared Casper, Bryan Catanzaro, Jing-
dong Chen, Mike Chrzanowski, Adam Coates,
Greg Diamos, Erich Elsen, Jesse H. Engel, Linxi
Fan, Christopher Fougner, Tony Han, Awni Y.
Hannun, Billy Jun, Patrick LeGresley, Libby
Lin, Sharan Narang, Andrew Y. Ng, Sherjil
Ozair, Ryan Prenger, Jonathan Raiman, San-
jeev Satheesh, David Seetapun, Shubho Sen-
gupta, Yi Wang, Zhiqian Wang, Chong Wang,
Bo Xiao, Dani Yogatama, Jun Zhan, and
Zhenyao Zhu. 2015. Deep speech 2: End-to-
end speech recognition in english and mandarin.
CoRR, abs/1512.02595.

Bishnu S Atal and Suzanne L Hanauer. 1971.
Speech analysis and synthesis by linear predic-
tion of the speech wave. The journal of the
acoustical society of America, 50(2B):637–655.

J. Baker. 1975. The dragon system–an overview.
IEEE Transactions on Acoustics, Speech, and
Signal Processing, 23(1):24–29.

Jayadev Billa. 2018. Isi asr system for the low
resource speech recognition challenge for indian
languages. pages 3207–3211.

H. Bourlard and C. J. Wellekens. 1990. Links
between markov models and multilayer percep-
trons. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12(12):1167–1178.

Peter F Brown, Vincent J Della Pietra, Peter V
Desouza, Jennifer C Lai, and Robert L Mer-
cer. 1992. Class-based n-gram models of natural
language. Computational linguistics, 18(4):467–
480.

William Chan, Navdeep Jaitly, Quoc Le, and Oriol
Vinyals. 2016. Listen, attend and spell: A neu-
ral network for large vocabulary conversational
speech recognition. In 2016 IEEE International
Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pages 4960–4964. IEEE.

Kyunghyun Cho, Bart Van Merriënboer, Caglar
Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2014.
Learning phrase representations using rnn
encoder-decoder for statistical machine transla-
tion. arXiv preprint arXiv:1406.1078.

L. O. Chua and L. Yang. 1988. Cellular neural net-
works: theory. IEEE Transactions on Circuits
and Systems, 35(10):1257–1272.

Ken H Davis, R Biddulph, and Stephen Balashek.
1952. Automatic recognition of spoken digits.
The Journal of the Acoustical Society of America,
24(6):637–642.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training
of deep bidirectional transformers for language
understanding. CoRR, abs/1810.04805.

Noor Fathima, Tanvina Patel, C Mahima, and
Anuroop Iyengar. 2018. Tdnn-based multilin-
gual speech recognition system for low resource
indian languages. In INTERSPEECH, pages
3197–3201.

Markus Forsberg. 2003. Why is speech recognition
difficult.

Steven E. Golowich and Don X. Sun. 1998. A sup-
port vector/hidden markov model approach to
phoneme recognition, in. In Center for Media
Technology (RCMT), School of Creative Media,
City University of Hong Kong, Hong Kong, pages
125–130.

Alex Graves, Santiago Fernández, Faustino Gomez,
and Jürgen Schmidhuber. 2006. Connectionist
temporal classification: Labelling unsegmented
sequence data with recurrent neural ’networks.
volume 2006, pages 369–376.

Alex Graves and Navdeep Jaitly. 2014. Towards
end-to-end speech recognition with recurrent
neural networks. In Proceedings of the 31st
International Conference on International Con-
ference on Machine Learning - Volume 32,
ICML’14, page II–1764–II–1772. JMLR.org.

Awni Y. Hannun, Carl Case, Jared Casper, Bryan
Catanzaro, Greg Diamos, Erich Elsen, Ryan
Prenger, Sanjeev Satheesh, Shubho Sengupta,
Adam Coates, and Andrew Y. Ng. 2014. Deep
speech: Scaling up end-to-end speech recogni-
tion. CoRR, abs/1412.5567.

Geoffrey E. Hinton, Simon Osindero, and Y. Teh.
2006. A fast learning algorithm for deep belief
nets. Neural Computation, 18:1527–1554.

Fumitada Itakura. 1975. Minimum prediction
residual principle applied to speech recognition.
IEEE Transactions on acoustics, speech, and sig-
nal processing, 23(1):67–72.

F. Jelinek. 1976. Continuous speech recognition
by statistical methods. Proceedings of the IEEE,
64(4):532–556.

Maeda Kenichi, Sakai Toshiyuki, and Doshita
Shuji. 1966. Phonetic typewriter system. US
Patent 3,265,814.

B Lowerre and R Reddy. 1976. The harpy speech
recognition system: performance with large vo-
cabularies. The Journal of the Acoustical Soci-
ety of America, 60(S1):S10–S11.

Andrew Maas, Ziang Xie, Dan Jurafsky, and An-
drew Ng. 2015. Lexicon-free conversational
speech recognition with neural networks. In Pro-
ceedings of the 2015 Conference of the North
American Chapter of the Association for Com-
putational Linguistics: Human Language Tech-
nologies, pages 345–354, Denver, Colorado. As-
sociation for Computational Linguistics.

418

Andrew L. Maas, Awni Y. Hannun, Daniel Ju-
rafsky, and Andrew Y. Ng. 2014. First-pass
large vocabulary continuous speech recognition
using bi-directional recurrent dnns. CoRR,
abs/1408.2873.

Mehryar Mohri. 1997. Finite-state transducers in
language and speech processing. Computational
linguistics, 23(2):269–311.

Petr Motlıcek. 2002. Feature extraction in speech
coding and recognition. Technical report, Tech-
nical Report of PhD research internship in ASP
Group, OGI-OHSU,< http ….

Vijayaditya Peddinti, Daniel Povey, and Sanjeev
Khudanpur. 2015. A time delay neural network
architecture for efficient modeling of long tem-
poral contexts. In Sixteenth Annual Conference
of the International Speech Communication As-
sociation.

Telmo Pires, Eva Schlinger, and Dan Garrette.
2019. How multilingual is multilingual bert?
CoRR, abs/1906.01502.

Bhargav Pulugundla, Murali Karthick Baskar,
Santosh Kesiraju, Ekaterina Egorova, Martin
Karafiát, Lukás Burget, and Jan Cernockỳ. 2018.
But system for low resource indian language asr.
In INTERSPEECH, pages 3182–3186.

Elena Rodríguez, Belén Ruíz, Ángel García-
Crespo, and Fernando García. 1997.
Speech/speaker recognition using a hmm/gmm
hybrid model. In Audio- and Video-based Bio-
metric Person Authentication, pages 227–234,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Tara Sainath, Abdel-rahman Mohamed, Brian
Kingsbury, and Bhuvana Ramabhadran. 2013.
Deep convolutional neural networks for lvcsr.
pages 8614–8618.

Hiroaki Sakoe and Seibi Chiba. 1978. Dynamic
programming algorithm optimization for spoken
word recognition. IEEE transactions on acous-
tics, speech, and signal processing, 26(1):43–49.

M. Schuster and K. K. Paliwal. 1997. Bidirectional
recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673–2681.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information pro-
cessing systems, pages 3104–3112.

Taras K Vintsyuk. 1968. Speech discrimination
by dynamic programming. Cybernetics, 4(1):52–
57.

Andrew Viterbi. 1967. Error bounds for convolu-
tional codes and an asymptotically optimum de-
coding algorithm. IEEE transactions on Infor-
mation Theory, 13(2):260–269.

P. J. Werbos. 1990. Backpropagation through time:
what it does and how to do it. Proceedings of
the IEEE, 78(10):1550–1560.

419

Proceedings of the 17th International Conference on Natural Language Processing, pages 420–429
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Deep Neural Model for Manipuri Multiword Named Entity
Recognition with Unsupervised Cluster Feature

Jimmy Laishram
Department of CSE

Manipur Technical University
Imphal, Manipur, India

jimmy_l@mtu.ac.in

Kishorjit Nongmeikapam
Department of CSE

IIIT, Manipur
Imphal, Manipur, India

kishorjit@iiitmanipur.ac.in

Sudip Kumar Naskar
Department of CSE
Jadavpur University

Kolkata, West-Bengal, India
sudip.naskar@cse.jdvu.ac.in

Abstract

The recognition task of Multi-Word
Named Entities (MNEs) in itself is a chal-
lenging task when the language is inflec-
tional and agglutinative. Having break-
through NLP researches with deep neu-
ral network and language modelling tech-
niques, the applicability of such tech-
niques/algorithms for Indian language like
Manipuri remains unanswered. In this
paper an attempt to recognize Manipuri
MNE is performed using a Long Short
Term Memory (LSTM) recurrent neural
network model in conjunction with Part Of
Speech (POS) embeddings. To further im-
prove the classification accuracy, word clus-
ter information using K-means clustering
approach is added as a feature embedding.
The cluster information is generated using
a Skip-gram based words vector that con-
tains the semantic and syntactic informa-
tion of each word. The model so proposed
does not use extensive language morpholog-
ical features to elevate its accuracy. Finally
the model’s performance is compared with
the other machine learning based Manipuri
MNE models.

1 Introduction
Multi Word Named Entity (MNE) is a part
of Multiword Expression (MWE) which is an
ordered group of words that can exist inde-
pendently and carries different meaning as op-
posed to its constituent word (Nongmeikapam
and Bandyopadhyay, 2011). Accurate recogni-
tion of such MNE plays a vital role in various
NLP tasks such as POS tagging (Nongmeika-
pam et al., 2011b), Chunking (Nongmeikapam
et al., 2014), NER classification (Singh and
Bandyopadhyay, 2010). Manipuri, being a
highly inflectional language where affixes de-
fine the nature of the words (Choudhury et al.,

2004), machine recognition of MNE presents
a challenging task for NLP researchers. In
Manipuri, the majority of researches on MNE
classification are done using machine learn-
ing approaches such as CRF (Nongmeika-
pam and Bandyopadhyay, 2010, 2011; Nong-
meikapam et al., 2011a) and SVM (Singh
and Bandyopadhyay, 2010). These researches
use extensive morphological features to ob-
tain accurate recognition of the MNE. Such
morphological features include affixes, context
words, digit features etc. For an agglutinative
and low-resource language, the inflectional na-
ture amounts to the large Out of Vocabulary
(OOV) words, thus making any sequence la-
belling task or morphological feature creation
tasks difficult.

Word embedding is a distributed represen-
tation of text in low dimensional real valued
vectors and are known to contain semantic
or syntactic information and has shown to be
an effective feature for many natural language
classification tasks of English language (Wang
et al., 2015). Word embedding has also been
extremely useful for Chinese language process-
ing (Yin et al., 2016), Japanese language pro-
cessing (Kitagawa and Komachi, 2017) and
for some Indian languages processing (Ajay
et al., 2016; Bhattacharya et al., 2016). In Ma-
nipuri, the effectiveness of word embeddings
to any NLP tasks, till this date remains unan-
swered. The general attempt to work in Ma-
nipuri NLP task using embedding follows the
idea used in English i.e. to learn the embed-
ding of a word from the context. Unlike En-
glish, Manipuri words are a composite of com-
plicated structure with several affixes produc-
ing OOV words. Regardless of its context,
affixes to a word plays a major role in defin-
ing the semantic meaning (Choudhury et al.,

420

2004). In this paper, a Manipuri MNE classifi-
cation task is attempted using a bi-directional
Long Short Term Memory (Bi-LSTM) with
Skip-gram word embeddings. The usage of ex-
tensive morphological features for deep neural
network is avoided, as these features would re-
quire vector representations which may lead
to considerable large input layer to update.
To segregate the Manipuri MNE words based
on the semantics, a K-means algorithm based
cluster information of each word is added as a
feature to the LSTM model.

1.1 Manipuri Multi Word Named
Entity

Manipuri is an Indian language which is highly
agglutinative in nature, tonal, has redupli-
cated words and no gender marking. It be-
longs to the Tibeto-Burman languages spoken
mostly in North-Eastern region of India which
includes Manipur and Assam. The Manipuri
MNEs can be decomposed into multiple lex-
emes and displays lexical, syntactic, semantic,
pragmatic idiomatic behaviour. These encom-
passes all the multi-word named entities such
as a person’s name, location name etc (Nong-
meikapam et al., 2014). Some examples of
MNEs are given in table 1 below:

MNE Details Example
Beginning of Person’s Name আরিড(RD)
Internal of Person’s Name মহতা(Mehta)

Beginning of Location Name নু (New)
Internal of Location Name িদি গী(Delhi-gi)

Beginning of Organization Name েয়টর (Theatre)
Internal of Organization name স র (Center)

Table 1: Manipuri MNE

Nongmeikapam and Bandyopadhyay (2010)
have identified various challenges of MNE
recognition task as described below:

• Manipuri lacks capitalization of named
entities unlike English or other European
languages.

• The MNE inflections can be found in the
language because of nominal suffixes and
pronominal prefixes.

• Due to free word order in the language,
the MNE can appear in subject or object
position.

• Many Named Entities (NEs) can appear
in a dictionary that carry different mean-
ings which creates a homonym effect.

• Manipuri is a resource constraint lan-
guage. Annotated corpus, name dictio-
naries, morphological analyser, POS tag-
ger etc are not readily available.

1.2 Motivation
The agglutinative and inflectional nature of
Manipuri has poised a challenge for any com-
putational processing task. Manipuri is a
language where NLP resources such as anno-
tated corpus, accurate morphological analyzer
etc are not readily available. Above all, the
present deep neural network NLP algorithms
and language modelling techniques have not
been proven its efficiency for language such
as Manipuri. The introduction of deep neu-
ral network in the Manipuri NLP task such
as MNE classification can provide a beneficial
step towards the challenges faced in POS tag-
ging, NER etc.

2 Related Works
Notable amount of Manipuri MWE classifi-
cation research have been done using tra-
ditional machine learning approach such as
CRF (Conditional Random Field) and SVM
(Support Vector Machine). Nongmeikapam
and Bandyopadhyay (2010) reported an im-
provement of Manipuri MWE identification
using CRF and Reduplicated Multi-Word Ex-
pressions (RMWE). The MWE identification
model uses a dictionary and rule-based ap-
proach to first detect the complete, mimic, par-
tial, double and echo RMWEs and then pre-
pare a model training set using features such
as affix information, POS information word
frequency and word length. The CRF model
attained a performance F-Score measure of
72.24%.

Nongmeikapam et al. (2011a) conducted a
research for identification of RMWE using
CRF with various features. The features were
stem words, number of affixes, stemmed af-
fixes, POS of surrounding words, surround-
ing words, length of the word, word frequency
and digit features. With the features, the
CRF classification model predicted with Re-
call, Precision and an F-Score measure of

421

92.91%, 91.90% and 92.40% respectively.
Nongmeikapam and Bandyopadhyay (2011)

conducted a research on CRF based MWE
identification with Genetic Algorithm (GA)
based feature selection method. In genetic al-
gorithm, the MWE features are represented as
genes in a chromosome which are binary val-
ued (1 or 0). Selection of a feature is done
when the gene value is 1. Random crossover
is performed to select the best possible com-
bination of features. To avoid chromosome
repetition, random mutation is performed. As
a fitness function, three fold cross validation
technique is used. Using the technique, the
best features were surrounding words, affixes,
surrounding POS, word length and word fre-
quency. The CRF model with the aforemen-
tioned GA based selected features, attained an
increase in F-score by 2.91% as compared to
baseline CRF model without GA based feature
selection. Overall the model performed with
F-Score= 73.74%, Precision= 86.84% and Re-
call= 64.08%.

Singh and Bandyopadhyay (2010) proposed
a web based Manipuri corpus for Multiword
NER and RMWE identification model using
SVM. For classification purpose, the best fea-
tures were selected for SVM classifier. The
features were context word, word affixes, MNE
and RMWE information, digit features, infre-
quent words, word length and POS informa-
tion. The model was trained over 1235 sen-
tences with 28629 words and predicted with
an F-Score measure of 93.96% for MNE and
94.07% for RMWE.

3 System Design
The Manipuri MNE classification is shown in
Figure 1. Being a low resource language
with limited information on morphological fea-
tures, extraction of necessary information for a
particular word is crucial as these information
will help the model in accurate MNE classifi-
cation. In this research, two models have been
implemented for Manipuri MNE classification.
They are

1. A baseline model with Bi-LSTM deep neu-
ral networks with Word embedding using
Skip-gram with default POS embedding.

2. A model 1 in which the cluster informa-

Figure 1: Manipuri MNE Classification System Ar-
chitecture

tion is added as additional feature to the
baseline model.

The use of word embedding, feature embed-
ding and Bi-LSTM are described in the follow-
ing subsections.

3.1 Word Embeddings
As deep neural network function on real-
valued vectors, it is essential that the input
words (S = x1, x2, x3...xt where xt are the
word sequence in a sentence S) are converted
to a D-dimensional real-valued word vector
that carries semantic and syntactic informa-
tion. The Skip-gram (Mikolov et al., 2013a)
word embedding algorithm is used to create
the word vectors because for a small corpora
with infrequent words, the skip-gram embed-
ding can represent rare words (Mikolov et al.,
2013b) with precision as compared to other
word embedding techniques. The skip-gram
model is described below.

Skip-gram Model: (Mikolov et al., 2013a)
introduced Skip-gram model for vector rep-
resentation of large amount of unstructured
words without the need of dense matrix mul-
tiplication. The objective of the Skip-gram
model is to find the word representation that
can predict surrounding words in a sentence.

422

The Skip-gram model takes in a sequence of
words W = w1, w2, w3....wN and generates the
context word C = c1, c2...., ck on the basis of
the center word wi.

Given a sequence of Manipuri words
w1, w2, w3, ..., wN , the Skip-gram model max-
imizes the average log probability P as given
below:

1

N

N∑

(n=1)

∑

(−m≤j≤m,m ̸=0)

log(p(wn+m|wn)) (1)

where m is the size of the training context
which can be a function of the center word
wi. When p(wn+m|wn) is put to a softmax
function, we get:

p(wc|wn) =
evc.vw

∑W
w=1 e(vw.v′

c)
(2)

where vw and vc are the input and output vec-
tors of word vocabulary W and context words
C respectively. Now putting the probability
of equation 2 in equation 1, we get:

∑

(wn∈W,wc∈C)

log(p(wc|wn))

=
∑

(wn∈W,wc∈C)

(logevc.vw − log
∑

ev
′
c.vw) (3)

Using the above described Skip-gram model
(actual implementation is described in 4.3), a
word embedding is obtained that encodes the
semantic and syntactic information to its real-
values vectors. The hyper-parameter for the
model is as follows: Minimum word count =
3, window size= 3 and embedding dimension=
120.

3.2 Word Cluster Formation
To elevate the accuracy, cluster information
is added as an additional feature to train the
dataset using the K-means algorithm and the
Skip-gram word vectors as shown in Figure 2
where each word is assigned to a specified clus-
ter using the Euclidean distance similarity.

The K-means clustering is performed on a
normalized word vectors Xnorm, as cosine sim-
ilarity and euclidean similarity are connected
linearly and bears same result in clustering

Figure 2: Word Clustering using K-Means Algo-
rithm

(Qian et al., 2004). The normalized word vec-
tor is given by:

XNorm =
X

max(X)
(4)

With the normalized word vectors Xnorm =
(x1

norm, x2
norm,, xn

norm), each word is as-
signed to its appropriate k-cluster category us-
ing the Euclidean distance similarity measure
which is given by:

dEuclidean(p, q) =

√√√√
n∑

i=1

(pi − qi)2 (5)

Where p and q are data points. Finally the
objective function with k random data points
chosen to be the initial centroid is given by:

argmin(
k∑

i=1

∑

v∈V

dEuclidean(v, si)) (6)

3.3 POS and Cluster Embedding
As neural network work with tensors, each ad-
ditional feature needs to be in a matrix form,
called embedding matrix where it relates each
index of the object with its translation to ten-
sors. Selecting a vector of a specific object can
be translated into a matrix product in the fol-
lowing way:

vi =

{
1, ifi ̸= Objectindex

0, ifi = Objectindex
(7)

[Objectvector]Dim×1

= [M]Dim×words.[V⃗](pos/cluster)×1 (8)

423

Where V⃗ is the one-hot vector that determines
which word needs to be translated. And M is
the embedding matrix. Two matrices will be
created each for POS and cluster feature.

3.4 LSTM Layer
In this Manipuri MNE recognition research,
the recognition task is done using a bi-
directional LSTM RNN. The purpose of choos-
ing the LSTM network is because of its ca-
pability to overcome the diminishing gradient
problem when the input sequence is large. In
our MNE classification research, it has been
found that the longest sequence is of 120 Ma-
nipuri words as shown in Figure 3 which led
us to choose the LSTM RNN.

Figure 3: Manipuri Sentence length

LSTM is an Recurrent Neural Net-
work (RNN) that works on a sequential
data(Lample et al., 2016). A sequence of data
) {w1, w2,wn} as input (Concatenation of
Word, POS, Cluster and Affix vectors) and
return another sequence {h1, h2,hn} that
represents some information at every time
step in the input which is given by:

ht = lstm(ht−1, [E(wt)||e(wpos
t , pt)]) (9)

[E(wt)||e(wpos
t , pt)] = xt is the embedding

where E(wt) is the word embedding for the
word wt using Skip-gram, e(wpos

t) is the POS
embedding and e(pt) cluster embedding for the
Manipuri word wt . The symbol || in equation
9 represents concatenation of embedding vec-
tors. The LSTM architecture is shown in 4.

LSTM(Reddy et al., 2018) consists of three
gates that control the proportion of the input

Figure 4: Long Short Term Memory Architecture

to give to the memory cells, and the propor-
tion from the previous states to forget gate,
that helps to overcome the diminishing gradi-
ent problem faced by RNN. At any given time
t over Manipuri input sequence, three gates
composite the LSTM unit cell:

1. An input gate it with the corresponding
weight matrix: Wi and bi, which is math-
ematically represented as:

it = σ(Wi[ht−1 + xt] + bi) (10)

2. A forget gate ft with corresponding
weight matrix: Wf and bf . Mathemati-
cally ft is represented as:

ft = σ(Wf [ht−1 + xt] + bf) (11)

3. An output gate ot with corresponding
weight matrix: Wo and bo. Mathemati-
cally ot is represented as:

ot = σ(Wo[ht−1 + xt] + bo) (12)

where σ is the sigmoid function

All of these aforementioned gates are set to
generate a certain state using the current in-
put xt, the state ht−1 from the previous step
and current state of this cell, for the decisions
whether to forget the memory stored, to take
the input or to output the state generated. C̃
is the new candidate to be added to the new
state which is given by:

C̃t = tanh(Wt[ht−1 + xt] + bc) (13)

The current state ct will be generated by cal-
culating the weighted sum using both previous
cell and current information generated by the

424

current cell. The following equation provides
the current state ct:

ct = itC̃t + ft.ct−1 (14)

Finally, the hidden state ht to the next LSTM
unit is calculated as:

ht = ot tanh(ct) (15)

As Manipuri is a context dependent lan-
guage, it is beneficial to have access to the
future and past contextual information which
led to implementation of bidirectional LSTM
modifier which is given by:

−→
ht = lstm(

−−→
ht−1, xt))

←−
ht = lstm(

←−−
ht−1, xt))

3.5 Output layer
The output layer of the model consist of Time-
Distributed Dense function with softmax acti-
vation. This function allows us to apply the
same function across every output over the
time. Finally the softmax classifier calculates
a probability distribution over the sequence la-
bels.

4 Experimental Setup

4.1 Dataset
The dataset for Manipuri MWE classification
is collected from a leading newspaper agency
“The Sangai Express1” in Manipur with 76526
words. The appropriate POS and MNE tags
are manually annotated and the dataset is
split into training and testing set in 80:20 ra-
tio. Further, 1 Million unannotated Manipuri
dataset is used for the Skip-gram model train-
ing. Table 2 describes the dataset used in
training and testing of the proposed Manipuri
MWE model:

Details Values
Number of Sentences 3504

Total number of words 76526
Number of distinct words 16297

Maximum number of words in a sentence 120
Multi-word Named Entities 12421

Table 2: Manipuri Dataset details

1https://www.thesangaiexpress.com/

4.2 Hyper-parameter details
For Manipuri MNE classification model, dif-
ferent hyper-parameters settings were used for
bi-directional LSTM training as described in
Table 3. As deep neural network tends to
overfit, spatial dropout and recurrent dropout
are used as regularization in the model whose
value is described in the table 3 below:

Hyper-parameters Values
Bi-LSTM units 100

Bi-LSTM batch size 32(Bengio, 2012)
Spatial1D Dropout 30%
Recurrent Dropout 10%
Activation Function Sigmoid

Loss Function binary cross-entropy
Optimizer RMSprop

Learning Rate= 0.0001, ρ = 0.9

Table 3: Manipuri MNE Classification Hyper-
parameters

Ruder (2016) suggests the use of the Gradi-
ent Descent optimizer:RMSprop, to overcome
the radically diminishing learning rates during
training. Graves (2013) published the first use
of RMSprop optimizer in recurrent neural net-
work and suggest a default value of learning
rate = 0.0001 and decay constant ρ = 0.9.

4.3 The Skip-gram model
The Skip-gram model as shown in figure 5,
takes in a pair of inputs words for each train-
ing example ([input word wi, target word ci])
having unique identifier which is then passed
to an embedding layer initialized with random
weights. It is then passed to a merge layer

Figure 5: Skip-gram Model summary

to compute the dot product of these vectors
where a sigmoid layer predicts the output

Y =

{
1, ifwi and ci is relevant

0, if otherwise
(16)

425

The loss is leveraged by the mean squared error
loss and performs back-propagation with each
epoch to update the embedding layer.

5 Results and Evaluation

The main aim of this research is to focus on the
addition of features and their effects on the fi-
nal result of MNE classification as compared
to the base models. We have used the Preci-
sion, Recall and F-Score evaluation metrics to
measure the performance of the models.

5.1 Result of the Skip-gram model
Figure 6 shows the word similarity plot using
Euclidean distance measure of the Skip-gram
model. The circled areas contains some of

Figure 6: Euclidean Distance Similarity among
words of Skip-Gram Model. The numbers in the
figure represents index of the Manipuri MNE in the
word vector

the MNE words identified by its index, that
have similar euclidean distance, positioned
near each other in the vector space.

Types of Relationship Word Similar word
Word Pair

Organization কাউি লগী পা সু
Council-gi Party-su

Person Name থৗনাউজম লােকন
Thounaojam Loken

Location িডম মাংবংু
Tiddim Moibung

Designation িমিন রনা সে টির
Minister-na Secretary

Table 4: Types of Word Relationship among word
pairs

Table 4 shows the word-word similarity
among the MNEs. The proposed Ski-gram
model was found that the similarity of word
representation go beyond the syntactic regu-
larities with 89% of MNEs having found simi-

larly distant in the vector space. The aggluti-
native nature of the language affects the Skip-
gram model, as affixes define the inflection of
the words (Bhat and Ningomba, 1997).

In the case of Time, Date and Currency
MNEs, the Skip-gram model cannot find the
similar word as these words are basically num-
bers and identifier words for Time পূূং (poong) ,
Currency লপূা (Lupa) and Date তাং (Tang) are
unique and does not occur frequently in the
dataset.

5.2 Optimal number of Clusters
The MNE classification models (as described
in section 3) uses word cluster information
generated from the Skip-gram model with K-
means clustering algorithm. The clustering is
to segregate the words into cluster and added
as an additional feature to the LSTM model
training. To select the optimal number of clus-
ter for the k-means algorithm to perform clus-
tering, the Silhouette analysis is performed for
cluster number 3 to 10.

Figure 7: Silhouette Score for the clusters

From the Figure 7, it can be seen that the
s(4) = 0.78 which is closer to 1, which led us
to choose the number of clusters = 4.

5.3 MNE LSTM model Output
With the embedding weights generated from
the Skip-gram model and the cluster informa-
tion using the K-means algorithm, the MNE
Bi-LSTM model is created. The result of the
MNE classification using Bi-LSTM and Skip-
gram embedding is shown in figure 8. The
baseline model attained an average F-Score
measure of 81.47% in classifying the MNE.

426

Figure 8: Average F-Score measure of Manipuri
MNE models

With the addition of cluster information
during the training, the MNE classification F-
Score measures is increased to 94.98%. The
fine grain classification report of the baseline
model with cluster features is shown in Table
5.

MNE P R F Support
MW Person name 1.00 1.00 1.00 128

MW Location name 0.9408 0.9310 0.9358 52
MW Date/Time 0.9447 0.9212 0.9328 102

MW Organization Name 0.9213 0.9347 0.9306 43

Table 5: Fine grain Classification Report of the
MWE Model using Skip-gram-LSTM where P=
Precision, R= Recall and F= F-Score

The LSTM MNE model with cluster feature
is able to recognize the multiword person name
with 100% accuracy. The following are some
of the errors encountered during testing of the
model:

• The Manipuri transliterated English ab-
breviation were unable to be correctly rec-
ognized by the model as these words could
not contribute enough to the semantic
structure of the Skip-gram model from
the context word.

• Most of the English multiword organiza-
tion names were recognized incorrectly,
which considerably decreased the accu-
racy, as the dataset, being a Manipuri
News corpus contains fair amount of such
type of words.

Overall, the model predicted the MNE tags of
the words with state-of-the art accuracy con-
sidering the fact that no morphological rules or
features were used in the model. Such model
casts itself as break-through to Manipuri NLP
computation where low resource is always a
constraint.

5.4 Comparison with other MNE
Classification Models

A comparative study is performed as described
in Table 6. All the machine learning ap-
proaches for Manipuri MNE recognition such
as SVM (Singh and Bandyopadhyay, 2010)
and CRF Nongmeikapam and Bandyopadhyay
(2010); Nongmeikapam et al. (2011a), use ex-
tensive morphological features such as sur-
rounding words, word length, stemmed affixes,
word counts, digit features, word frequency
and NE tags.

Manipuri MWE Model F-Score (%)
SVM MNE: 93.96%

(Singh and Bandyopadhyay, 2010)
CRF 72.24%

(Nongmeikapam and Bandyopadhyay, 2010)
CRF 92.40%

(Nongmeikapam et al., 2011a)
Bi-LSTM with Skip-gram Embedding MNE:94.98%

Table 6: Comparison of Manipuri MWE classifica-
tion Models

The F-Score measure of the proposed Ma-
nipuri MNE classification is calculated as the
average of all the F-Score measures of the
MNEs given in fine classification report table
5.

6 Conclusion

Finally, a deep neural model has been reported
for Manipuri MNE recognition using Bi-LSTM
and word embeddings in this paper. The train-
ing data consists of POS tagged words of 76526
with 12421 number of MNE. The Bi-LSTM
model make use of embedding matrix gener-
ated using the Skip-gram for Manipuri Words.
Word clusters information generated using the
Skip-gram word vectors, is used as an addi-
tional feature. The use of K-means cluster
information is to create a semantically mean-
ingful MNE clusters. It has been reported
that the cluster information generated from
the Skip-gram embedding word vectors carries
semantic values and has been able to supple-
ment the MNE recognition task resulting in
an increase in the average F-Score measure
by 86% for MNE, as compared to the base-
line model. The proposed Skip-gram model
correctly represented the similarity of MNE
words with about 89% accuracy. Overall the

427

model achieved an average F-Score measure of
94.98%.

6.1 Impact on other research
As Manipuri is a low-resource language where
properly tagged dataset is unavailable, it be-
comes crucial for algorithms that can function
without the tagged dataset. This research pro-
vides a way on how Manipuri words can be
partitioned using Skip-gram embedding and
K-means clustering algorithm and can provide
effective solution for researches such as Ma-
nipuri News clustering, Document clustering,
sentiment analysis, hate speech detection.

References
SG Ajay, M Srikanth, M Anand Kumar, and

KP Soman. 2016. Word embedding models for
finding semantic relationship between words in
tamil language. Indian Journal of Science and
Technology, 9(45).

Yoshua Bengio. 2012. Practical recommendations
for gradient-based training of deep architectures.
CoRR, abs/1206.5533.

Darbhe N Shankara Bhat and MS Ningomba. 1997.
Manipuri Grammar: XD-US...., volume 4. Lin-
com Europa.

Paheli Bhattacharya, Pawan Goyal, and Sudeshna
Sarkar. 2016. Using word embeddings for query
translation for hindi to english cross language
information retrieval. Computación y Sistemas,
20(3):435–447.

Sirajul Islam Choudhury, Leihaorambam Sarba-
jit Singh, Samir Borgohain, and Pradip Ku-
mar Das. 2004. Morphological analyzer for ma-
nipuri: Design and implementation. In Asian
Applied Computing Conference, pages 123–129.
Springer.

Alex Graves. 2013. Generating sequences with re-
current neural networks. CoRR, abs/1308.0850.

Yoshiaki Kitagawa and Mamoru Komachi. 2017.
Long short-term memory for japanese word seg-
mentation. arXiv preprint arXiv:1709.08011.

Guillaume Lample, Miguel Ballesteros, Sandeep
Subramanian, Kazuya Kawakami, and
Chris Dyer. 2016. Neural architectures for
named entity recognition. arXiv preprint
arXiv:1603.01360.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg
Corrado, and Jeffrey Dean. 2013b. Distributed
representations of words and phrases and their
compositionality. CoRR, abs/1310.4546.

Kishorjit Nongmeikapam and Sivaji Bandyopad-
hyay. 2010. Identification of mwes using crf in
manipuri and improvement using reduplicated
mwes. In Proceedings of the International Con-
ference on Natural Language Processing, India.

Kishorjit Nongmeikapam and Sivaji Bandyopad-
hyay. 2011. Genetic algorithm (ga) in feature
selection for crf based manipuri multiword ex-
pression (mwe) identification. arXiv preprint
arXiv:1111.2399.

Kishorjit Nongmeikapam, Dhiraj Laishram,
Naorem Bikramjit Singh, Ngariyanbam Mayek-
leima Chanu, and Sivaji Bandyopadhyay. 2011a.
Identification of reduplicated multiword expres-
sions using crf. In International Conference on
Intelligent Text Processing and Computational
Linguistics, pages 41–51. Springer.

Kishorjit Nongmeikapam, Lairenlakpam Nonglen-
jaoba, Yumnam Nirmal, and Sivaji Bandhyopad-
hyay. 2011b. Improvement of crf based manipuri
pos tagger by using reduplicated mwe (rmwe).
arXiv preprint arXiv:1111.2399.

Kishorjit Nongmeikapam, Thiyam Ibungomacha
Singh, Ngariyanbam Mayekleima Chanu, and
Sivaji Bandyopadhyay. 2014. Manipuri chunk-
ing: An incremental model with pos and rmwe.
In Proceedings of the 11th International Con-
ference on Natural Language Processing, pages
277–286.

Gang Qian, Shamik Sural, Yuelong Gu, and Sakti
Pramanik. 2004. Similarity between euclidean
and cosine angle distance for nearest neighbor
queries. In Proceedings of the 2004 ACM sym-
posium on Applied computing, pages 1232–1237.

Aniketh Reddy, Monica Adusumilli, Saikiranmai
Gorla, Lalita Neti, and Aruna Malapati. 2018.
Named entity recognition for telugu using lstm-
crf.

Sebastian Ruder. 2016. An overview of gradi-
ent descent optimization algorithms. CoRR,
abs/1609.04747.

Thoudam Doren Singh and Sivaji Bandyopadhyay.
2010. Web based manipuri corpus for multi-
word ner and reduplicated mwes identification
using svm. In Proceedings of the 1st Workshop
on South and Southeast Asian Natural Language
Processing, pages 35–42.

Peilu Wang, Yao Qian, Frank K Soong, Lei
He, and Hai Zhao. 2015. Part-of-speech tag-
ging with bidirectional long short-term mem-
ory recurrent neural network. arXiv preprint
arXiv:1510.06168.

428

Rongchao Yin, Quan Wang, Peng Li, Rui Li, and
Bin Wang. 2016. Multi-granularity chinese word
embedding. In Proceedings of the 2016 confer-
ence on empirical methods in natural language
processing, pages 981–986.

429

Proceedings of the 17th International Conference on Natural Language Processing, pages 430–436
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Abstract1

Automatic short answer grading (ASAG)
techniques are designed to automatically
assess short answers written in natural
language. Apart from MCQs, evaluating
free text answer is essential to assess the
knowledge and understanding of children
in the subject. But assessing descriptive
answers in low resource languages in a
linguistically diverse country like India
poses significant hurdles. To solve this
assessment problem and advance NLP
research in regional Indian languages, we
present the Science Answer Assessment
(ScAA) dataset of children’s answers in the
age group of 8-14. ScAA dataset is a 2-way
(correct/incorrect) labeled dataset and
contains 10,988 and 1,955 pairs of natural
answers along with model answers for
Hindi and Marathi respectively for 32
questions. We benchmark various state-of-
the-art ASAG methods, and show the data
presents a strong challenge for future
research.

1 Introduction

Answer assessment is a key component of
teaching and learning process and automating it
has many advantages including speed,
availability, consistency and fairness of
assessments. Though the evaluation of multiple-
choice questions is straightforward and can be
scaled, there is need for systems to assess free text

* Currently affiliated with LinkedIn. This work was done as
a Pratham volunteer and is not connected with LinkedIn.

answers as well. Prior research has shown that
recognition questions (like MCQ) are deficient as
they do not capture multiple aspects of acquired
knowledge such as reasoning and self-explanation
(Wang et al., 2008). The free text answers are
important as they help measure the understanding
of the student with respect to a particular concept.
Grading responses to short answer questions is
considered difficult as it requires deep
understanding of natural language. There can be
multiple versions in which a correct answer can
be articulated for the same question (examples
highlighted in Table 1). Any errors in assessment
can affect students’ learning engagement and
feedback directly.
 ASAG has been in research for many years now,
but most of the work has been done primarily for
English. In comparison, there has been far less
research in similar areas for Indian languages,
which are primary medium of instruction in a large
proportion of schools of India. Thus, we present a
dataset for ASAG for Indian languages - Hindi and
Marathi to aid development of robust solutions.
 An Android app2 for assessment was developed
by our team at Pratham and was piloted in our
Hybrid Learning Program. The Hybrid Learning
Program of Pratham is spread across 3 states of
India - Rajasthan, Uttar Pradesh and Maharashtra.
The Android Assessment app enabled collection
of free text answers to questions in Hindi and
Marathi essential for building systems for ASAG
in Indian languages. These free-text answers are 2-

1 Data is available at:
https://github.com/PrathamOrg/ScAA-Dataset
2 Pratham Online Assessment App:
https://play.google.com/store/apps/details?id=com.
pratham.assessment&hl=en_IN&gl=US

ScAA: A Dataset for Automated Short Answer Grading of
Children’s Free-text Answers in Hindi and Marathi

Dolly Agarwal1, Somya Gupta2, Nishant Baghel1

1Pratham Education Foundation
2Pratham Volunteer*

1{dolly.agarwal, nishant.baghel}@pratham.org, 2somya.gupta1@gmail.com

430

way labeled as correct/incorrect by human
annotators.
The main contributions of this paper are:

• A dataset with 10,988 answers in Hindi
and 1,955 in Marathi to 32 questions in 8
different topics of science (§ 3)

• Benchmark of various state-of-the-art
methods for automated assessment of
free-text answers by children (§ 4)

2 Prior Art

There are numerous standard ASAG datasets
publicly available for the research community to
experiment with: Beetle and SciEntsBank(SEB) -
released as part of SRA corpus (Dzikovska et. al,
2013), CSD (Mohler and Mihalcea 2009), X-CSD
(Mohler et. al, 2011), Powergrading (PG) (Basu et.
al, 2013) and ASAP (Higgins et al., 2014). The
total no of prompts in these Datasets are in the
range of 10 (ASAP) to 135 (SEB). While some
annotated dataset (PG; Beetle) have 2-way labels
(correct/incorrect), a few (CSD; X-CSD; ASAP)
have scores on an ordinal scale within a range, e.g.
0-5, SEB has a more complex 5-way labels.
Though there are numerous ASAG datasets

available, all these are in English and none are
available for Indian languages. To the best of our
knowledge, this is the first comprehensive corpus
with reasonable size for Hindi and Marathi.
 Numerous approaches have been tried before for
ASAG. Burrows et al., (2015) and Roy et al.,
(2015) do a comprehensive review of ASAG
systems. Mohler et al. (2011) show that answers
can be accurately graded by using semantic
measures. Rodrigues and Araújo (2012) propose
word matching between (user answer, model
answer) pair. Roy et al. (2016) propose an
unsupervised ASAG technique using sequential
pattern mining. Sultan et al. (2016) train a
supervised model based on semantic similarity
features. Supervised methods include neural
architectures by Riodan et al. (2017) where
performance and optimal parameter settings vary
across prompts, a joint-multidomain deep learning
architecture by Saha et al. (2019) which learns
generic and domain-specific aspects. Lun et al.
(2020) introduce data augmentation strategies and
show that this combined with latest BERT model
brings significant gain.

For benchmarking on our dataset, we prefer
unsupervised methods like sentence level semantic

Question
in Hindi

Question in
Marathi

English
Translation (ETL)

Correct
Answers in
Hindi

English
Translation

Correct
Answers in
Marathi

English
Translation

एक
वय&क
मनु*य के
कंकाल का
वजन
लगभग
2कतना
होता है?

एका 7ौढ
:य;ती=या
सांगा?याचे
वजन अंदाजे
2कती असते?

What is the
approximate weight
of an adult human
skeleton?

एक वे&ट
मनु*य के
कंकाल का
वजन लगभग
10 2कलोDाम
होता है

The skeleton of a
n adult human we
ighs about 10 kil
ogram

10 2कDॅ 10 kg

१० 2कDा 10 Kilogram दहा 2कलो
Dॅम

Ten
Kilogram

लगभग 10

2कलोDाम

Approximately 10
Kilogram

चाँद पर
कोई 2कसी
कL आवाज
;यN नहOं
सुन
सकते?

अंतराळवीर
चंQावर
एकमेकांचे
आवाज का
ऐकू शकत
नाहOत?

Why can't anyone
hear someone's
voice on the moon?

वायुमंडल नहOं
है

No atmosphere वातावरण न
सते

There is no
atmosphere

;यN2क वहां पर
वायु नहOं है

Because there is
no air

Wतथे हवा
नाहO

There is no
air

वायु मंडल का
अनुपि&थती के
कारण

Because of the
absence of
atmosphere

कारण Wतथे
हवा नाहO

Because
there is no air

वायुमणडल ना
होने से कारण

Due to lack of air

Table 1: Samples demonstrating that same answer can be written in multiple ways

431

similarity and sequential pattern mining due to
their generalizability and suitability for
deployment in an unseen-question setting. We
intentionally do not benchmark supervised ML
approaches that require a large corpus of labeled
answers for training as they get limited to a
particular question pool and are hard to generalize.

3 ScAA Data Creation

We curate Science Answer Assessment (ScAA)
dataset in Hindi and Marathi language comprising
of 8 science topics with 4 questions per topic, i.e. a
total of 32 parallel question-model answer pairs in
Hindi and Marathi. The dataset is created via three
stages: Question and model answer curation, User
answer collection, User answer evaluation.
 The questions were selected from Grade 8 level
Science topics: Adaptation, Circulatory System,
Eye and Vision, Heat, Simple Machine, Skeletal
System, Sound, Water Chemistry. The users here
are children in the age group of 8-14 years from 3
states of India: Uttar Pradesh, Rajasthan and
Maharashtra.

3.1 Data Collection and Statistics

The data is crowdsourced via an Android app
developed by Pratham to enable children to take
assessments anytime they want. This Android
Assessment App3 is available on play store since
November 2019 with 10,000+ downloads.
Children could either type the answer directly
using the phone keyboard or use Speech-to-Text
(STT) service4 and then edit it. We identify the
issues in the data collected via this process and pre-
processing methods in section 3.2.
 Over a period of 8 months, the app helped
collect ~50,000 answers from 11,476 children to 32
science questions from 3 states of India. The ScAA
dataset was created by selecting a subset of these
answers and getting each answer evaluated as
correct or incorrect by two human annotators. The
Cohen’s Kappa κ score indicating level of
agreement between two annotators was 0.75.
ScAA consists of answers where both human
evaluators matched in their markings. Detailed
statistics are listed in Table 2.

3 Pratham Online Assessment App:
https://play.google.com/store/apps/details?id=com.
pratham.assessment&hl=en_IN&gl=US

3.2 Noise Types and Data Processing

Since any child could give the assessment
whenever they like without adult supervision
through phone interface, this led to presence of
noise in the dataset. The option of submitting the
answer through STT service brought in its own
errors as well. We preprocess the noise and clean it
before benchmarking. The ScAA dataset that we
present lists the original noisy as well as
preprocessed answers for the benefit of NLP
community. Table 3 lists various noise types we
found in the data and how we processed them.

4https://developer.android.com/reference/android/s
peech/package-summary
* https://pypi.org/project/indic-transliteration/
** https://pypi.org/project/googletrans/

Noise Type Example Processing

Transliterated Text ह?ZडयN से appears
as Haddiyon se in
user answer

Transliterated
it using Indic
Transliterate*

Translated Text ह?ZडयN से appears
as bones in user
answer

Translated it
using Google
Translate**

Code Mixed
Language

bol our सॉकेट ke
madat sa

Translated/Tra
nsliterated the
English words

Special symbols
and characters

|\£\%£`¡$°©$¶¶`= Removed
Special
symbols &
extra spaces

URLs हि#योसेंhttps://faq.
whatsapp.com/gen
eral/26000015?lg
=en&lc=IN&eea=
0

Removed
these URLs

Emoji Characters 😹😹😹😹😹 Removed the
emojis

Phonetically
Similar words
with different
meanings

‘ऊजा,’ (energy)
recorded as ‘उड
जा’ (fly) by STT
service

Not processed

Table 3: Noise types in the data and processing

 Hindi Marathi
Total Questions 32 32
total answers 10988 1955
total unique answers 7205 1435
total correct answers 3843 488
Average # unique correct
answers per question

41 7

Average answer length (in
words)

15 15

Table 2: Statistics of Evaluated Dataset

432

4 Automated Short Answer Assessment

We model the assessment of user answers against
reference answers as a similarity task. Each (user
answer, model answer) pair is assigned a similarity
score using the various state-of-the-art methods for
assessment of free-text answers described in this
section. We use random score assignment as
baseline. User and model answers are tokenized
into their constituent words using indicNLP
tokenizer (Kunchukuttan et al., (2020)).

1. Jaccard Similarity: We calculate the
number of words from user answer
appearing in the model answer sentence.
This is normalized w.r.t the total words
present in the given answers (1), where 𝐽 is
the jaccard similarity score between C, the
set of words in user answer and I, the set of
words in model answer.

 𝐽 = ("	∩	%)
("	 ⋃ 	%)

 (1)

2. Word based Semantic Similarity: Answer
sentences are represented by taking average
of their word embeddings. We then
calculate cosine similarity between them.
The word embeddings used are:

Indic NLP: Pre-trained word embeddings
available for 1.1B Hindi tokens trained
using FastText on corpus crawled from
news websites (Kunchukuttan et al., (2020))

fastText: Pre-trained word embeddings for
Hindi, trained on Wikipedia and Common
Crawl datasets consisting of 1.8B tokens
(Grave et al., (2018))

3. Sentence Similarity using S-BERT:
Sentence-BERT (Reimers and Gurevych,
(2019)) finetunes a pre-trained BERT
network using Siamese and triplet network
and adds a pooling operation to the output
of BERT to derive a sentence vector.
Cosine similarity is used to compare the
generated user and model answer vectors.

4. Sequential Pattern Matching: (Roy et. al
(2016)) define a method to extract
commonly occurring patterns p using
support sup(p) to quantify the notion of
commonalities from user answers and
lexical diversity via type-token ratio TTR
(eq 2). The score Sc(si) for user answer s is
calculated using this TTR and sup(p) as

described in (eq 3). While this doesn’t need
a model answer, note that this method is
most effective for batch mode as it banks
on pattern mining from repeating answers
and hence does not work well for real-time
ASAG.

 TTR(d) = #)*+,*-.,	/0,,12-+	34	51-6,7)
#/0,,12-+	34	51-6,7)

 (2)

Sc(s) =∑ sup	(𝑝)51-(/)/∈+* ∗ 	𝑇𝑇𝑅(𝑙𝑒𝑛(𝑝)) (3)

5 Results and Analysis

We now benchmark the ASAG methods
described earlier on ScAA taking only the unique
answers for evaluation (Table 4). The resulting
data has 20% correct answers for Hindi and 16%
for Marathi. We evaluate the models based on
cost, the number of wrong assessments the
similarity scores result in as compared to the
actual ground truth (eq 4). We convert all scores
to binary by selecting the best threshold t (table 5)
for each method that minimizes this cost c and
marking scores above t as 1 (correct), else 0. FP,
FN, TP, TN are number of false positives, false
negatives, true positives and true negatives in
data.

 c = (FP+FN) / (TP+FP+FN+TN) (4)

 Note that while on full ScAA with repeating
answers PatternMatch-Repeat is comparable to S-
BERT, its use is suitable in batch mode to extract
answer patterns. It therefore renders itself unusable
in apps, where the requirement is for real time
evaluation for single (user answer, model answer)
pair.

Similarity Measure Hindi Data Marathi Data

Baseline 0.50 0.50
Jaccard 0.76 0.75

indicNLP 0.80 0.80
fastText 0.78 0.69
S-BERT 0.86 0.82

PatternMatch-Unique 0.80 0.73
PatternMatch-Repeat 0.87 0.81

Table 4: ROC AUC for various approaches

Similarity Measure Hindi Data Marathi Data

Baseline 0.999 0.999
Jaccard 0.158 0.251

indicNLP 0.747 0.788
fastText 0.793 0.801
S-BERT 0.700 0.905

PatternMatch 0.245 0.539

Table 5: Threshold t for various approaches

433

5.1 Error Analysis and Discussion

We now show some examples where S-BERT,
IndicNLP and Jaccard based similarity measures
make assessment errors in Table 6. Row 1 shows
an example where the child’s answer is incorrect,
but Jaccard Similarity assigns it a high score due to
matching word “तरंग / waves”. IndicNLP
incorrectly assigns high similarity among number
names while S-BERT incorrectly assigns a high
similarity score to word pair (“संवहन/convection”,

“वा&पन/Evaporation”) perhaps because they appear
in similar context (rows 2 and 3).
 S-BERT additionally marks a correct answer as
incorrect for Hindi and Marathi in rows 4 and 5,
while all the other methods mark the answer
correctly. More S-BERT errors on Marathi answers
are shown in rows 6 and 7. Rows 5 and 7 depict a
contrast in evaluation by S-BERT where the model
answer and child’s answer are similar in words, but
not in meaning, which it fails to capture properly.
This shows its sensitivity to the input training data
and absence of generalization to sentences that
may unseen earlier.
 The error analysis and examples showcase that
while state-of-the-art models like S-BERT give
best performance, they are far from being fit for
deployment as the errors in assessment can directly
affect students’ learning engagement. Additionally,
they need high latency and good compute power
for assessment. A critical requirement for us is to
keep the methods simple for low resource settings
to cater to rural children in remote areas with
limited internet access and Hindi/Marathi as the
primary medium of instruction.

6 Conclusion

In this paper we present ScAA, a dataset of
children's free-text answers to 32 questions of
grade 8 level Science topics in Hindi and Marathi
along with their user answers. This dataset is
intended to facilitate research in automatic
assessment of short answers in Indian languages.
We benchmark the performance of various state-
of-the-art ASAG methods on ScAA and observe
that even though BERT based model performs
best, it makes errors in assessment that can affect
students’ learning engagement, thus leaving scope
for improvement before such techniques can be
deployed in real world and presenting a strong case
for more research in this area. We believe that this
dataset will be useful for the research community
working on automated short answer assessment for
Indian languages and aid in solving a very practical
problem for society at scale.

References
Basu, Sumit, Chuck Jacobs, and Lucy Vanderwende.

"Powergrading: a clustering approach to amplify
human effort for short answer grading."
Transactions of the Association for Computational
Linguistics 1 (2013): 391-402.

Burrows, Steven, Iryna Gurevych, and Benno Stein.
"The eras and trends of automatic short answer
grading." International Journal of Artificial
Intelligence in Education 25, no. 1 (2015): 60-117.

Dzikovska, Myroslava O., Rodney D. Nielsen, Chris
Brew, Claudia Leacock, Danilo Giampiccolo, Luisa
Bentivogli, Peter Clark, Ido Dagan, and Hoa Trang
Dang. "SemEval-2013 Task 7: The Joint Student

Child’s Answer / ETL Model Answer / ETL Human Jaccard indicNLP S-BERT
मु1खया तरंग / Head waves

िवद्युत् चु:कीय तरंग /
electromagnetic waves

0 1 0 0

पचास 2कलो / Fifty Kilo दस 2कD / Ten Kg 0 0 1 0

संवहन / Convection वा*पन / Evaporation 0 0 0 1

धूल के कण आंसुओं के साथ बाहर

Wनकल आते है / Dirt particles
get released with tears

धूल कण आशु के साथ म̀ बाहर चले आते

है / Dirt particles get released with
tears

1 1 1 0

कारण तेथे वातावरण नाहO /
Because there’s no atmosphere

कारण चंQावर वातावरण नाहO / Because
there’s no atmosphere on moon

1 1 1 0

बल / force बलभुजा / arm 0 0 0 1
Bकाश साचे परावतEत / reflecting
light mold

Bकाशाचे परावत,न / reflection of light 0 0 0 1

Table 6: Errors by Jaccard, indicNLP and S-BERT in marking. Columns 3,4,5,6 show marking by various methods

434

Response Analysis and 8th Recognizing Textual
Embodiment Challenge." In Second Joint
Conference on Lexical and Computational
Semantics (* SEM): Seventh International
Workshop on Semantic Evaluation (SemEval 2013),
vol. 2. Association for Computational Linguistics,
2013.

E. Grave, P. Bojanowski, P. Gupta, A. Joulin, and T.
Mikolov. 2018. Learning Word Vectors for 157
Languages. In Proceedings of LREC 2018, 15th
conference on International Language Resources
and Evaluation.

Hao-Chuan Wang, Chun-Yen Chang, and Tsai-Yen Li.
2008. Assessing Creative Problem-solving with
Automated Text Grading. Computers and
Education, 51(4):1450–1466.

Higgins, Derrick, Chris Brew, Michael Heilman,
Ramon Ziai, Lei Chen, Aoife Cahill, Michael Flor
et al. "Is getting the right answer just about choosing
the right words? The role of syntactically-informed
features in short answer scoring." arXiv preprint
arXiv:1403.0801 (2014).

Horbach, Andrea, and Manfred Pinkal. "Semi-
supervised clustering for short answer scoring." In
Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018). 2018.

Kunchukuttan, A., Kakwani, D., Golla, S.,
Bhattacharyya, A., Khapra, M.M. and Kumar, P.,
2020. AI4Bharat-IndicNLP Corpus: Monolingual
Corpora and Word Embeddings for Indic
Languages. arXiv preprint arXiv:2005.00085.

Kumar, Sachin, Soumen Chakrabarti, and Shourya
Roy. "Earth Mover's Distance Pooling over Siamese
LSTMs for Automatic Short Answer Grading." In
IJCAI, pp. 2046-2052. 2017.

Lun, Jiaqi, Jia Zhu, Yong Tang, and Min Yang.
"Multiple Data Augmentation Strategies for
Improving Performance on Automatic Short
Answer Scoring." In AAAI, pp. 13389-13396. 2020.

Mieskes, Margot, and Ulrike Pado. "Work Smart-
Reducing Effort in Short-Answer Grading." In
Proceedings of the 7th Workshop on NLP for
Computer Assisted Language Learning
(NLP4CALL 2018) at SLTC, Stockholm, 7th
November 2018, no. 152, pp. 57-68. Linköping
University Electronic Press, 2018.

Mohler, Michael, and Rada Mihalcea. "Text-to-text
semantic similarity for automatic short answer
grading." In Proceedings of the 12th Conference of
the European Chapter of the ACL (EACL 2009), pp.
567-575. 2009.

Mohler, Michael, Razvan Bunescu, and Rada
Mihalcea. "Learning to grade short answer

questions using semantic similarity measures and
dependency graph alignments." In Proceedings of
the 49th annual meeting of the association for
computational linguistics: Human language
technologies, pp. 752-762. 2011.

Pérez, Diana, Alfio Massimiliano Gliozzo, Carlo
Strapparava, Enrique Alfonseca, Pilar Rodríguez,
and Bernardo Magnini. "Automatic Assessment of
Students' Free-Text Answers Underpinned by the
Combination of a BLEU-Inspired Algorithm and
Latent Semantic Analysis." In FLAIRS conference,
pp. 358-363. 2005.

Piyush Patil, Sachin Patil, Vaibhav Miniyar and Amol
Bandal.2018. Subjective Answer Evaluation Using
Machine Learning in International Journal of Pure
and Applied Mathematics, Volume 118 No. 24 2018

Ramachandran, Lakshmi, Jian Cheng, and Peter Foltz.
"Identifying patterns for short answer scoring using
graph-based lexico-semantic text matching." In
Proceedings of the Tenth Workshop on Innovative
Use of NLP for Building Educational Applications,
pp. 97-106. 2015.

Rodrigues, Fátima & Araújo, Lília. (2012). Automatic
Assessment of Short Free Text Answers. 4th
International Conference on Computer Supported
Education. 2.

Reimers, Nils, and Iryna Gurevych. "Sentence-bert:
Sentence embeddings using siamese bert-
networks." arXiv preprint arXiv:1908.10084
(2019).

Riordan, Brian, Andrea Horbach, Aoife Cahill, Torsten
Zesch, and Chungmin Lee. "Investigating neural
architectures for short answer scoring." In
Proceedings of the 12th Workshop on Innovative
Use of NLP for Building Educational Applications,
pp. 159-168. 2017.

Roy, Shourya, Sandipan Dandapat, Ajay Nagesh, and
Yadati Narahari. "Wisdom of students: A consistent
automatic short answer grading technique." In
Proceedings of the 13th International Conference
on Natural Language Processing, pp. 178-187.
2016.

Roy, Shourya, Y. Narahari, and Om D. Deshmukh.
2015. A Perspective on Computer Assisted
Assessment Techniques for Short Free-Text
Answers. In Proceedings of the International
Conference on Computer Assisted Assessment
(CAA), pages 96–109. Springer.

Sultan, Md Arafat, Cristobal Salazar, and Tamara
Sumner. "Fast and easy short answer grading with
high accuracy." In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pp. 1070-1075. 2016.

435

Sahu, Archana, and Plaban Kumar Bhowmick.

"Feature Engineering and Ensemble-Based
Approach for Improving Automatic Short-Answer
Grading Performance." IEEE Transactions on
Learning Technologies 13, no. 1 (2019): 77-90.

Saha, Swarnadeep, Tejas I. Dhamecha, Smit
Marvaniya, Peter Foltz, Renuka Sindhgatta, and
Bikram Sengupta. "Joint Multi-Domain Learning
for Automatic Short Answer Grading." arXiv
preprint arXiv:1902.09183 (2019).

Wang, Tianqi, Tomoya Mizumoto, Naoya Inoue, and
Kentaro Inui. "Identifying Current Issues in Short
Answer Grading." ANLP-2018 (2018).

Zhang, Yuan, Rajat Shah, and Min Chi. "Deep
Learning+ Student Modeling+ Clustering: A Recipe
for Effective Automatic Short Answer Grading."
International Educational Data Mining Society
(2016).

436

Proceedings of the 17th International Conference on Natural Language Processing, pages 437–443
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Exploring Pair-Wise NMT for Indian Languages
Kartheek Akella∗

CVIT, IIIT-H
sukruthkartheek@gmail.com

Sai Himal Allu*

CVIT, IIIT-H
saihimal.allu@gmail.com

Sridhar Suresh Ragupathi*
CVIT, IIIT-H

srsridhar.98@gmail.com

Aman Singhal
CVIT, IIIT-H

amansinghalml@gmail.com

Zeeshan Khan
CVIT, IIIT-H

zeeshank606@gmail.com

Vinay P. Namboodiri
University of Bath
vpn22@bath.ac.uk

C V Jawahar
CVIT, IIIT-H

jawahar@iiit.ac.in

Abstract

In this paper, we address the task of
improving pair-wise machine translation
for specific low resource Indian languages.
Multilingual nmt models have demon-
strated a reasonable amount of effective-
ness on resource-poor languages. In this
work, we show that the performance of
these models can be significantly improved
upon by using back-translation through a
filtered back-translation process and subse-
quent fine-tuning on the limited pair-wise
language corpora. The analysis in this pa-
per suggests that this method can signifi-
cantly improve a multilingual models’ per-
formance over its baseline, yielding state-
of-the-art results for various Indian lan-
guages.

1 Introduction
Neural machine translation (nmt) algorithms,
as is common for most deep learning tech-
niques, work best with vast amounts of data.
Various authors have argued that their perfor-
mance would be limited for low resource lan-
guages (Östling and Tiedemann, 2017), (Gu
et al., 2018), (Kim et al., 2020). One way to
bridge this gap is through the use of multilin-
gual nmt algorithms to bypass the data limi-
tations of individual language pairs ((Johnson
et al., 2017), (Aharoni et al., 2019), (Vázquez
et al., 2019)). The use of such a model
has been demonstrated recently by (Philip
et al., 2021). In this paper, we investigate the

∗*Equal Contribution. Sridhar worked on Tamil
and Urdu, Himal worked on Gujarati, Kartheek worked
on Malayalam and Marathi, Aman worked on Hindi
and Punjabi and Zeeshan worked on Odiya. Himal
was responsible for drafting this paper.

problem of improving pair-wise nmt perfor-
mance further over existing multilingual base-
lines. We specifically analyze the use of back-
translation and fine-tuning to this effect. Our
results suggest that it is possible to improve
the performance of individual pairs of lan-
guages for various Indian languages. The per-
formance of these language pairs is evaluated
over standard datasets, and we observe con-
sistent improvements over the two main base-
lines: an nmt system trained pair-wise from
scratch using the corpora available for the pair
of languages, a multilingual nmt model that
uses many different languages.

2 Previous Work
The problem of multilingual nmt has at-
tracted significant research attention in the re-
cent past. (Dong et al., 2015) proposed the
first multilingual model with a one-to-many
mapping of languages, whereas (Ferreira et al.,
2016) shared a single attention network for all
language pairs. Recent works like (Conneau
and Lample, 2019), (Conneau et al., 2020)
which are an extension of (Liu et al., 2019)
and (Devlin et al., 2019) have improved upon
the initial formulation of the multilingual nmt
problem. Works like (Currey et al., 2017),
(Shah and Barber, 2018), (Li and Eisner, 2019)
and (Hewitt and Liang, 2019) use monolingual
data to supplement their parallel corpora to
build an nmt system. On the flip side (Lam-
ple et al., 2018), (Wang et al., 2018), (Artetxe
et al., 2018) study the unsupervised paradigm
using only monolingual corpora.

Within the context of Indian languages,
(Chandola and Mahalanobis, 1994) and (Dave

437

et al., 2001) were one of the first works
to explore a rule-based approach for trans-
lation from Hindi to English whereas (Patel
et al., 2018), (Barman et al., 2014), (Saini and
Sahula, 2018) and (Choudhary et al., 2018)
have explored this problem through the prism
of nmt. (Philip et al., 2019) and (Madaan
and Sadat, 2020) extend the concept of multi-
lingual nmt to the setting of Indian languages.
Due to the recent efforts undertaken by the
authors of Kakwani et al. (2020), Indian lan-
guages are now better represented in terms
of available monolingual corpora. These re-
sources set up a fertile ground for exploitation
by semi-supervised and unsupervised nmt ap-
proaches, which are consistent with the setting
we study in this work.

3 Method

Consider a setting in which we have limited
pair-wise corpora between a pair of languages,
and we would like to obtain improved perfor-
mance. We go about achieving this through
the following procedure. First, we train a mul-
tilingual model on several languages. Next,
we use existing monolingual corpora through
back-translation (bt), and then we fine-tune
the model using available pair-wise corpora.
We show that this particular procedure in-
deed improves over the alternative approach
of training a pair-wise nmt system using the
available corpora. For the first step, we use the
multilingual nmt model provided publicly by
(Philip et al., 2021). We now provide details
regarding the other two stages.

3.1 Back Translation
In nmt literature, bt is an effective approach
that allows nmt to pivot from a fully su-
pervised setting to a semi-supervised setting.
When supplemented with other objectives (au-
toencoder denoising (Artetxe et al., 2018),
cross-translation (García et al., 2020)), bt has
demonstrated high efficacy in a fully unsu-
pervised nmt setting as well. In the semi-
supervised paradigm, which we study in this
work, our object of interest is to generate a
meaningful learning signal from monolingual
resources of a particular language that allows
a reasonable nmt model to exploit these re-
sources to improve its performance on lan-

Figure 1: SIM stands for a similarity heuristic. We
use sentence wise bleu scores in our work

guage pairs which include that specific lan-
guage.

Filtering Mechanism
Using a reasonable nmt model, bt can lever-
age monolingual resources to generate no-
table amounts of low-quality synthetic paral-
lel data. If low-quality parallel corpora can
be filtered through some means such that er-
roneous translation pairs are eliminated, we
can obtain a strong learning signal from such
a filtered corpus. To design such a filtering
mechanism, we draw inspiration from genera-
tive modelling literature, precisely the idea of
cyclic consistency (Zhu et al., 2017). Briefly,
the idea of cyclical consistency within the con-
text of computer vision relates to minimizing
the discrepancy between an image from do-
main X and the image obtained after trans-
forming it to a domain Y and then convert-
ing it back to the domain X. We adopt this
approach to build our filtering mechanism, in
which we first use our reasonable nmt model
to generate intermediate English (en) trans-
lations for the sentences in the monolingual
corpus of some language (xx). As illustrated
in fig 1, we then use these intermediate En-
glish translations to back-translate it into xx
and then evaluate the sentence wise bleu (Pa-
pineni et al., 2002) scores for each such transla-
tion as a measure of similarity. Only sentences
that cross an empirically chosen threshold are
retained to ensure that the generated transla-
tions are of good quality to obtain a reasonably
high-quality synthetic parallel dataset. We re-
fer to this filtering scheme as xx-en-xx.

We initialise our nmt model using the
weights from the multilingual nmt model pro-

438

Pre-filt #pairs Post-filt #pairs
hi 4M 140K
pa 58K 7K
mr 178K 58K
gu 370K 39K
ta 88K 34K
ur 400K 105K
ml 178K 52K
od 221K 64K

Table 1: Monolingual corpora utilized

vided by the authors of (Philip et al., 2021).
The authors train a Transformer (Vaswani
et al., 2017) model on 10 Indian languages
namely (notation in brackets), Hindi (hi), Tel-
ugu (te), Tamil (ta), Malayalam (ml), Urdu
(ur), Bangla (bn), Gujarati (gu), Marathi (mr)
and Odia (od) in addition to English (en).
They make two chief architectural decisions in
this regard. One they develop a shared vocabu-
lary over all languages of interest, giving equal
representation to each language in the vocab-
ulary (equal number of tokens from each lan-
guage). The second, they share the encoder-
decoder parameters of the Transformer model
across all possible language pairs, a decision
which encourages the model to learn a shared
embedding space for all languages of interest.
The low resource nature of these languages is
primarily addressed through two techniques:
namely, Transfer Learning and Backtransla-
tion (Sennrich et al., 2016). This design choice
allows us to use the same nmt model for the
xx-en and the en-xx directions of the xx-en-
xx setting with a consistent amount of effec-
tiveness. We reason that an en-xx-en filtering
scheme would result in a compounding of er-
rors problem due to the superior performances
offered by the multilingual nmt model in the
xx-en direction in contrast to the en-xx di-
rection. In such a case, populating our filtered
corpus would require selecting a lower value
of the threshold, which would compromise the
quality of translation pairs, thereby leading to
a weak supervisory signal.

4 Experimental Setup
4.1 Training Details
We make use of the Transformer-Base, a part
of Fairseq library (Ott et al., 2019), which

hi pa gu mr ta ml ur od
iitb 1.5M - - - - - - -
cvit-pib 195K 27K 29K 81K 87K 32K 45K -
ufal - - - - 167K - - -
ilci 49K 49K 49K - 49K 30K 49K -
odcorp1.0 - - - - - - - 27K
odcorp2.0 - - - - - - - 97K

1.75M 76K 79K 81K 303K 62K 94K 124K

Table 2: Parallel corpora utilized

is built with 6 encoder-decoder layers, each
having 512 hidden units and a singular atten-
tion head as our nmt model. We initialise
our model with the weights of the multilin-
gual nmt model provided by the authors of
(Philip et al., 2021). We also utilise the Senten-
cePiece (Kudo and Richardson, 2018) models
of (Philip et al., 2021) to build our vocabulary.

For all languages of interest, we carry out
filtering of the back-translated corpus by first
evaluating the mean of sentence-wise bleu
scores for the cyclically generated translations
and then selecting a value slightly higher than
the mean as our threshold. Sentences that
cross this threshold are then included along
with their corresponding translations in our fil-
tered corpus. We supplement the training of
our nmt model on a filtered back-translated
corpus with two rounds of finetuning on a
relevant parallel corpus: a pre-training phase
and a post-training phase before carrying out
the final evaluation. We reason that a pre-
training step enhances the possibility of gener-
ating a high-quality synthetic filtered corpus
from the related monolingual corpora by pro-
viding a more robust prior nmt model for the
bt routine. A post-training step ensures that
the nmt model is subjected to a more reliable
supervisory signal before the final evaluation
is carried out. We train all our models using
AdamW (Loshchilov and Hutter, 2019) opti-
mizer until a local minimum is achieved.

4.2 Datasets

For Hi, Od, and Ta, we use the iit-b cor-
pus, OdiEnCorp-v1.0, and PMIndia Corpus
(Haddow and Kirefu, 2020) respectively. For
the rest of the languages, we utilise the rele-
vant monolingual corpora provided by the au-
thors of (Kakwani et al., 2020). We use only

439

State of the Art nmt (Different Attempts)
PAIRS Test-Set Top-4 (Prev. Attempts) Rand-init m-nmt1 Filt-BT

En-Hi mkb 15.652 16.232 21.052 24.482 13.28 16.93 16.67
En-Pa ilci 23.051 10.67 21.36 23.52
En-Mr mkb 8.792 8.842 8.972 9.652 2.77 9.84 9.89
En-Gu mkb 9.732 10.132 11.242 11.702 2.63 12.92 14.37
En-Ta mkb 4.332 4.432 4.532 4.942 0.78 4.86 5.69
En-Ta ufal 11.732 12.512 12.742 13.052 0.78 7.80 19.07
En-Ml mkb 5.002 5.172 5.422 6.322 1.59 2.65 6.40
En-Ur mkb 22.161 3.90 22.16 24.76
En-Od odiencorpv2 7.932 9.352 9.852 11.072 5.29 0.96 10.84

Table 3: Comparison of our nmt results with others publicly available on wat leader board 2. For results
that were not available on wat leaderboard (Pa,Ur), we compare it with results from the paper (Philip
et al., 2021). We find that initialisation using a multlilingual model1 is highly effective for nmt in contrast
to initialising randomly and training only on the respective language

a part of these monolingual corpora in our ex-
periments, the statistics of which we present
in Table 1. Our pre-training and post-training
routines dictate the need for a parallel cor-
pus for all our languages of interest. Due to
the relative lack of availability of large high-
quality parallel corpora for our language pairs
of interest, we collate available resources to
obtain a final parallel corpus, the details of
which are presented in Table 2. In addition to
cvit-pib (Siripragada et al., 2020) and ilci
(Jha, 2010) datasets, we also utilise iit-b Hi-
En corpus (Kunchukuttan et al., 2018) for Hi,
ufal EnTamv2.0 (Ramasamy et al., 2012)
for Ta and OdiEnCorp 1.0 and 2.0 (Parida
et al., 2020) for Od. For evaluation we use the
cvit-mkb (Siripragada et al., 2020) dataset
for the languages in mkb. We evaluate on the
ilci dataset for Pa, OdiEncorp-v2.0 (Parida
et al., 2020) for Od and ufal EnTamv2.0 (Ra-
masamy et al., 2012) for Tamil.

5 Results and Discussions

We report bleu scores on all the test sets spec-
ified. We refer to our approach as Filt-BT in
Table 3 and contrast our results with a ran-
domly initialised model trained from scratch
with the same conditions (Rand-Init), the mul-
tilingual model that we use as our prior nmt
model (m-nmt) 1 and the top 4 publicly avail-

1Philip et al. (2021)

able results on the wat leaderboard 2 3. Since
Pa and Ur do not have an entry on the leader-
board, we instead make a comparison with the
results reported in (Philip et al., 2021), which
are the present sota results to the best of our
knowledge.

The first comparison highlights the bene-
fits of warm-starting our nmt model from a
m-nmt model, whereas the second compari-
son helps us ascertain the efficacy of filtered
bt and as such, we report consistent gains
over both these baselines for all the language
pairs. In all the language pairs barring Odia,
we demonstrate the superior performances of
a prior multilingual model in contrast to a spe-
cialized model trained from scratch, validating
our claim that initialization using a multilin-
gual model is highly effective for nmt in con-
trast to initializing randomly and training only
on the respective language. Typically, we ob-
serve that using high threshold values for filter-
ing leads to the filtered corpus getting biased
by selecting comparatively shorter sentences.
To maintain a healthy mix of both types of
sentences, we use a threshold value slightly
higher than the mean of the sentence-wise
bleu scores which we find in our experiments
empirically provides for a more balanced high
quality (in terms of translation quality) cor-
pus thereby guaranteeing a better supervisory
signal.

2http://lotus.kuee.kyoto-u.ac.jp/WAT/
WAT2020/

3We do not include results from model-ensembling
approaches

440

For Ta and Ur, we notice a massive boosts in
performance (11.88 and 10.49 bleu points re-
spectively) over our multilingual baseline, with
significant gains, also being noticed for Ml and
Gu. The m-nmt model, which we use to ini-
tialize our nmt model, has been trained on
OdiEnCorpv1.0, whereas our Rand-Init model
has been trained using both versions of the
dataset. We ascribe the former’s inferior per-
formance compared to the latter on Odia to
the domain mismatch between both these ver-
sions, something which the latter model does
not have to face.

We select a subset of the monolingual data
to maintain consistency with our computing
resources. For 200K sentences, we train on a
1080ti nvidia gpu and found that back trans-
lation took about 3 hours. We decided that it
would be an adequate sample size to test the
validity of our approach. Since only a subset of
monolingual data provided by (Kakwani et al.,
2020) is used, we fully expect these results to
trend upwards if the entire corpora were to be
utilised. We indicate the sota performance
for each language in bold. As such, we achieve
sota performances on Pa, Gu, Ml, Mr, Ta and
Ur.

6 Summary and Directions
Our explorations in the applicability of Neural
Machine Translation for Indian languages lead
to the following observations (i) Multilingual
models are a promising direction to address
data scarcity and the variability of resources
across languages (ii) adapting a multilingual
model for a specific pair can provide superior
performances. We believe these solutions can
further benefit from the availability of mono-
lingual resources and noisy parallel corpora.

References
Roee Aharoni, Melvin Johnson, and Orhan Firat.

2019. Massively multilingual neural machine
translation. In Proceedings of the 2019 Con-
ference of the North American Chapter of the
Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long
and Short Papers), pages 3874–3884, Minneapo-
lis, Minnesota. Association for Computational
Linguistics.

Mikel Artetxe, Gorka Labaka, Eneko Agirre, and
Kyunghyun Cho. 2018. Unsupervised neural ma-

chine translation. In Proceedings of the Sixth
International Conference on Learning Represen-
tations.

Anup Barman, Jumi Sarmah, and Shikhar Sarma.
2014. Assamese WordNet based quality en-
hancement of bilingual machine translation sys-
tem. In Proceedings of the Seventh Global Word-
net Conference, pages 256–261, Tartu, Estonia.
University of Tartu Press.

Anoop Chandola and Abhijit Mahalanobis. 1994.
Ordered rules for full sentence translation: A
neural network realization and a case study for
hindi and english. Pattern Recognit., 27:515–
521.

Himanshu Choudhary, Aditya Kumar Pathak, Ra-
jiv Ratan Saha, and Ponnurangam Kumaraguru.
2018. Neural machine translation for English-
Tamil. In Proceedings of the Third Conference
on Machine Translation: Shared Task Papers,
pages 770–775, Belgium, Brussels. Association
for Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman
Goyal, Vishrav Chaudhary, Guillaume Wenzek,
Francisco Guzmán, Edouard Grave, Myle Ott,
Luke Zettlemoyer, and Veselin Stoyanov. 2020.
Unsupervised cross-lingual representation learn-
ing at scale. In Proceedings of the 58th Annual
Meeting of the Association for Computational
Linguistics, pages 8440–8451, Online. Associa-
tion for Computational Linguistics.

Alexis Conneau and Guillaume Lample. 2019.
Cross-lingual language model pretraining. In
H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, edi-
tors, Advances in Neural Information Processing
Systems 32, pages 7059–7069. Curran Associates,
Inc.

Anna Currey, Antonio Valerio Miceli Barone,
and Kenneth Heafield. 2017. Copied monolin-
gual data improves low-resource neural machine
translation. In Proceedings of the Second Con-
ference on Machine Translation, pages 148–156,
Copenhagen, Denmark. Association for Compu-
tational Linguistics.

Shachi Dave, Jignashu Parikh, and Pushpak Bhat-
tacharyya. 2001. Interlingua-based english–
hindi machine translation and language diver-
gence. Machine Translation, 16(4):251–304.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of deep bidirectional transformers for language
understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the
Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long
and Short Papers), pages 4171–4186, Minneapo-
lis, Minnesota. Association for Computational
Linguistics.

441

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu,
and Haifeng Wang. 2015. Multi-task learning
for multiple language translation. In Proceed-
ings of the 53rd Annual Meeting of the Asso-
ciation for Computational Linguistics and the
7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers),
pages 1723–1732, Beijing, China. Association for
Computational Linguistics.

Daniel C. Ferreira, André F. T. Martins, and Mar-
iana S. C. Almeida. 2016. Jointly learning to
embed and predict with multiple languages. In
Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2019–2028, Berlin,
Germany. Association for Computational Lin-
guistics.

X. García, P. Forêt, Thibault Sellam, and
Ankur P. Parikh. 2020. A multilingual view
of unsupervised machine translation. ArXiv,
abs/2002.02955.

Jiatao Gu, Hany Hassan, Jacob Devlin, and Vic-
tor O.K. Li. 2018. Universal neural machine
translation for extremely low resource languages.
In Proceedings of the 2018 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages
344–354, New Orleans, Louisiana. Association
for Computational Linguistics.

Barry Haddow and Faheem Kirefu. 2020. Pmindia
– a collection of parallel corpora of languages of
india.

John Hewitt and Percy Liang. 2019. Designing and
interpreting probes with control tasks. In Pro-
ceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages
2733–2743, Hong Kong, China. Association for
Computational Linguistics.

Girish Nath Jha. 2010. The TDIL program and
the Indian langauge corpora intitiative (ILCI).
In Proceedings of the Seventh conference on
International Language Resources and Evalua-
tion (LREC’10), Valletta, Malta. European Lan-
guages Resources Association (ELRA).

Melvin Johnson, Mike Schuster, Quoc V. Le,
Maxim Krikun, Yonghui Wu, Zhifeng Chen,
Nikhil Thorat, Fernanda Viégas, Martin Wat-
tenberg, Greg Corrado, Macduff Hughes, and
Jeffrey Dean. 2017. Google’s multilingual neural
machine translation system: Enabling zero-shot
translation. Transactions of the Association for
Computational Linguistics, 5:339–351.

Divyanshu Kakwani, Anoop Kunchukuttan,
Satish Golla, Gokul N.C., Avik Bhattacharyya,

Mitesh M. Khapra, and Pratyush Kumar. 2020.
IndicNLPSuite: Monolingual Corpora, Evalua-
tion Benchmarks and Pre-trained Multilingual
Language Models for Indian Languages. In
Findings of EMNLP.

Yunsu Kim, Miguel Graça, and Hermann Ney.
2020. When and why is unsupervised neural
machine translation useless? In Proceedings of
the 22nd Annual Conference of the European As-
sociation for Machine Translation, pages 35–44,
Lisboa, Portugal. European Association for Ma-
chine Translation.

Taku Kudo and J. Richardson. 2018. Sentence-
piece: A simple and language independent sub-
word tokenizer and detokenizer for neural text
processing. In EMNLP.

Anoop Kunchukuttan, Pratik Mehta, and Push-
pak Bhattacharyya. 2018. The IIT Bombay
English-Hindi parallel corpus. In Proceedings
of the Eleventh International Conference on
Language Resources and Evaluation (LREC-
2018), Miyazaki, Japan. European Languages
Resources Association (ELRA).

Guillaume Lample, Alexis Conneau, Ludovic De-
noyer, and Marc’Aurelio Ranzato. 2018. Unsu-
pervised machine translation using monolingual
corpora only. In International Conference on
Learning Representations (ICLR).

Xiang Lisa Li and Jason Eisner. 2019. Special-
izing word embeddings (for parsing) by infor-
mation bottleneck. In Proceedings of the 2019
Conference on Empirical Methods in Natural
Language Processing and the 9th International
Joint Conference on Natural Language Process-
ing (EMNLP-IJCNLP), pages 2744–2754, Hong
Kong, China. Association for Computational
Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,
Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
2019. Roberta: A robustly optimized BERT pre-
training approach. CoRR, abs/1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decou-
pled weight decay regularization.

Pulkit Madaan and Fatiha Sadat. 2020. Multilin-
gual neural machine translation involving Indian
languages. In Proceedings of the WILDRE5–
5th Workshop on Indian Language Data: Re-
sources and Evaluation, pages 29–32, Marseille,
France. European Language Resources Associa-
tion (ELRA).

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. 2019. fairseq: A fast, exten-
sible toolkit for sequence modeling. In Proceed-
ings of NAACL-HLT 2019: Demonstrations.

442

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. Bleu: a method for auto-
matic evaluation of machine translation. In Pro-
ceedings of the 40th Annual Meeting of the As-
sociation for Computational Linguistics, pages
311–318, Philadelphia, Pennsylvania, USA. As-
sociation for Computational Linguistics.

Shantipriya Parida, Satya Ranjan Dash, Ondřej
Bojar, Petr Motlicek, Priyanka Pattnaik, and
Debasish Kumar Mallick. 2020. OdiEnCorp
2.0: Odia-English parallel corpus for machine
translation. In Proceedings of the WILDRE5–
5th Workshop on Indian Language Data: Re-
sources and Evaluation, pages 14–19, Marseille,
France. European Language Resources Associa-
tion (ELRA).

Raj Patel, Prakash Pimpale, and Sasikumar
Mukundan. 2018. Machine translation in indian
languages: Challenges and resolution. Journal
of Intelligent Systems.

Jerin Philip, Vinay P. Namboodiri, and C. V.
Jawahar. 2019. A baseline neural machine trans-
lation system for indian languages.

Jerin Philip, Shashank Siripragada, Vinay P. Nam-
boodiri, and C. V. Jawahar. 2021. Revisiting
low resource status of indian languages in ma-
chine translation (pre-print available on arxiv).
In Proceedings of ACM India Joint International
Conference on Data Science Management of
Data, Bangalore, India.

Loganathan Ramasamy, Ondřej Bojar, and Zdeněk
Žabokrtský. 2012. Morphological processing
for english-tamil statistical machine translation.
In Proceedings of the Workshop on Machine
Translation and Parsing in Indian Languages
(MTPIL-2012), pages 113–122.

S. Saini and V. Sahula. 2018. Neural machine
translation for english to hindi. In 2018 Fourth
International Conference on Information Re-
trieval and Knowledge Management (CAMP),
pages 1–6.

Rico Sennrich, Barry Haddow, and Alexandra
Birch. 2016. Improving neural machine trans-
lation models with monolingual data. In Pro-
ceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume
1: Long Papers), pages 86–96, Berlin, Germany.
Association for Computational Linguistics.

Harshil Shah and David Barber. 2018. Gener-
ative neural machine translation. In S. Ben-
gio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Ad-
vances in Neural Information Processing Sys-
tems 31, pages 1346–1355. Curran Associates,
Inc.

Shashank Siripragada, Jerin Philip, Vinay P. Nam-
boodiri, and C V Jawahar. 2020. A multilingual
parallel corpora collection effort for Indian lan-
guages. In Proceedings of The 12th Language Re-
sources and Evaluation Conference, pages 3743–
3751, Marseille, France. European Language Re-
sources Association.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. In Advances in neural in-
formation processing systems, pages 5998–6008.

Raúl Vázquez, Alessandro Raganato, Jörg Tiede-
mann, and Mathias Creutz. 2019. Multilingual
NMT with a language-independent attention
bridge. In Proceedings of the 4th Workshop on
Representation Learning for NLP (RepL4NLP-
2019), pages 33–39, Florence, Italy. Association
for Computational Linguistics.

Wei Wang, Taro Watanabe, Macduff Hughes, Tet-
suji Nakagawa, and Ciprian Chelba. 2018. De-
noising neural machine translation training with
trusted data and online data selection. In Pro-
ceedings of the Third Conference on Machine
Translation: Research Papers, pages 133–143,
Belgium, Brussels. Association for Computa-
tional Linguistics.

Jun-Yan Zhu, T. Park, Phillip Isola, and A. Efros.
2017. Unpaired image-to-image translation us-
ing cycle-consistent adversarial networks. 2017
IEEE International Conference on Computer Vi-
sion (ICCV), pages 2242–2251.

Robert Östling and Jörg Tiedemann. 2017. Neural
machine translation for low-resource languages.

443

Proceedings of the 17th International Conference on Natural Language Processing, pages 444–452
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Only text? only image? or both? Predicting sentiment of internet memes

Pranati Behera, Mamta, Asif Ekbal
Department of Computer Science and Engineering

Indian Institute of Technology Patna, India
pranati5079@gmail.com, {mamta 1921cs11, asif}@iitp.ac.in

Abstract

Nowadays, the spread of Internet memes on
online social media platforms such as Insta-
gram, Facebook, Reddit, and Twitter is very
fast. Analyzing the sentiment of memes can
provide various useful insights. Meme senti-
ment classification is a new area of research
that is not explored yet. Recently SemEval
provides a dataset for meme sentiment classi-
fication. As this dataset is highly imbalanced,
we extend this dataset by annotating new in-
stances and use a sampling strategy to build
a meme sentiment classifier. We propose a
multi-modal framework for meme sentiment
classification by utilizing textual and visual
features of the meme. We found that for meme
sentiment classification, only textual or only
visual features are not sufficient. Our proposed
framework utilizes textual as well as visual fea-
tures together. We propose to use the atten-
tion mechanism to improve meme classifica-
tion performance. Our proposed framework
achieves macro F1 and accuracy of 34.23%
and 50.02%, respectively. It increases the ac-
curacy by 6.77% and 7.86% compared to only
textual and visual features, respectively.

1 Introduction

The rapid growth of users on social media plat-
forms leads to new ways of spreading information.
Meme nowadays has become one of the most pop-
ular words for social media. A meme is an idea,
the way in which a person behaves in response to a
particular situation or a manner that spreads from
one person to another within a culture. Spread-
ing of memes on social media platforms such as
Facebook, Instagram, Reddit, and Twitter is very
fast.

Sentiment analysis is a growing field of Natural
Language Processing (NLP), aiming to identify the
polarity of opinion. Sentiment can be positive, neg-
ative or neutral (Pang and Lee, 2005). Sentiment

analysis has a vast number of applications in real
life, including the product’s recommendation to
a user based on opinions provided by other users
(Pang et al., 2002), in political uses (Bakliwal et al.,
2013), etc. Memes play an important role in han-
dling various political battles or public relations on
social media platforms.

The most common practice in sentiment analysis
is finding the sentiment of textual content crawled
from Twitter, product reviews, hotel reviews, etc.
Existing literature has mostly addressed the prob-
lem of sentiment analysis primarily using textual
contents (Xu et al., 2019; Edara et al., 2019; Med-
hat et al., 2014; . et al., 2020). But with the growing
social media, users are expressing their opinions
through text and the image. Hence, researchers
nowadays are also giving attention to sentiment
analysis in multi-modal content (You et al., 2016;
Ortis et al., 2020; Man et al., 2019). Spreading of
memes is also very fast, but meme analysis is yet
to be explored. Recently, SemEval-2020 proposed
a task to detect the meme’s polarity, which can fall
into three predefined classes: positive, negative, or
neutral (Sharma et al., 2020). This is the very first
attempt towards the meme sentiment analysis.

To analyze the sentiment of memes, the text-only
approaches may not be sufficient. For example,
consider the meme given in Figure 1, if the only
textual content is considered, then the sentence ‘FI-
NALLY GETS JOB INTERVIEW’ seems to have
a neutral sentiment (no explicit positive words are
used). However, if we also consider the visual in-
formation of meme, as shown in Figure 1, then we
can say overall sentiment is positive. Hence, to
analyze memes, both text and visual features have
their own importance.

In this paper, we work on the SemEval-2020
Task-8 dataset to detect the sentiment of memes.
But this dataset is imbalanced. Hence we extend
this dataset by adding more training instances for

444

Figure 1: Meme example

balancing purposes and then propose a multi-modal
framework based on deep neural networks to clas-
sify the sentiment of the meme into one of the
predefined classes, namely positive, negative, and
neutral. We use a multi-modal framework with at-
tention applied to both image and text to find out
important regions and important words. Thereafter,
to combine the image and textual modality, we use
a fully connected layer that tries to find the relation
between textual and visual features and finally pro-
duces a combined feature vector. We evaluate the
proposed approach using accuracy and Macro F1
score on the test set of the SemEval-2020 dataset.
We get the macro F1 of 34.23%, and accuracy of
50.02%, respectively, which is higher than the Se-
mEval baseline, i.e., Macro F1 of 0.21%.

The rest of the paper is organized as follows.
Section 2 describes the related work. Section 3
describes the methodology for classification. Sec-
tion 4 describes the data collection, annotation, and
experimental setup. Section 5 describes the results
and detailed error analysis. Section 6 concludes the
paper and describes future research plans.

2 Related work

This section describes the works on sentiment anal-
ysis for text as well as for multi-modal content.
(Murty and Allu) proposed an approach for find-
ing the sentiment analysis on text reviews by using
Long Short Term Memory. (Agarwal et al., 2011)
proposed the framework to classify the sentiment
of tweets into positive, negative and neutral class
using prior polarity scoring, which is based on the
prior polarity of words. (Li et al., 2019) proposed
a sentiment-feature-enhanced deep neural network

(SDNN) to detect the sentiment of text by deep
neural network integrated with sentiment linguis-
tic knowledge via attention mechanism. (Mozetič
et al., 2016) proposed a framework for textual sen-
timent analysis using lexicon based and machine
learning based approach. Sentiment is predicted
from the set of sentiment-bearing words identified
in the text using lexicons. (Ghiassi and Lee, 2018)
proposed a set of domain transferable Twitter lexi-
cons, obtained from tweets for the task of sentiment
analysis. (Kumar and Jaiswal, 2017) proposed a
model to detect the sentiment of images using Con-
volutional neural network. They used Flicker im-
ages dataset to train their model and Twitter images
dataset for testing. (Akhtar et al., 2020) proposed
a stacked ensemble model for predicting the de-
gree of intensity for sentiment and emotion. They
used multi-layer perceptron network to combine
outputs of feature based models and deep learn-
ing models. (Poria et al., 2018) explored different
deep-learning based architectures for multi-modal
sentiment classification. They used deep convo-
lutional neural network (CNN) to extract features
from the visual and text modalities. (Jiang et al.,
2020) proposed a fusion-extraction network model
for multi-modal sentiment analysis. Their proposed
model learned two types of representations, visual-
specific textual representations and textual-specific
visual representations using interactive information
fusion mechanism.

Above mentioned works are either for text or
multi-modal content. Meme classification has not
been explored much in detail. So we proposed a
framework for meme classification by utilizing text
written on it and image features.

3 Methodology

This section represents our proposed methodology
in detail. We develop a multi-modal neural network
that learns from the two modalities, viz. textual
and visual. For text modality, our model takes as
input the embedding representation of each word
present in the OCR extracted text. Further, we
use Convolutional Neural Network (CNN) to learn
textual features, and then we apply attention to
the output of CNN to extract the most relevant
features for classification. We use the pretrained
model VGGNet to extract the visual features for
image modality, and then we apply attention to
the extracted features to detect important visual
features for classification. Finally, both the features

445

Figure 2: Proposed architecture

are fused with the help of a fully connected layer.
The overall architecture of our proposed model is
shown in Figure 2.

3.1 Textual features
In this section, we discuss the textual features, how
they are given as input to our system, and how to
apply attention to the features extracted.

3.1.1 Embedding Layer
The embedding layer takes the input as a sequence
of words present in the sentence. For each word w
present in the sentence, a lookup matrix is created
to obtain its embedding representation. Lookup ma-
trix can be initialized using pretrained word embed-
ding vectors (Bojanowski et al.; Pennington et al.,
2014). In our work, the pre-trained vector repre-
sentations provided by Glove (Pennington et al.,
2014) are used. It captures syntactic and semantic
relations among the words. The embedding of each
word w is then given as an input to the CNN to
learn the text representation. Equation 1 shows the
sequence of words present in sentence where wi is
ith word present in the sentence and L is length of
sentence.

Wi = w1
i , w

2
i ,w

j
i , ...w

L
i (1)

3.1.2 Convolutional Neural Network (CNN)
The convolutional neural network automatically
learns the features with the help of convolutional
filters. Convolutional filters capture the semantic
and syntactic features of a given sentence. CNN
has been used in a wide variety of tasks (Rios and
Kavuluru, 2015), (Kim, 2014). The CNN consists
of convolutional layers. Convolutional layers are
followed by non-linear layers that contain the Relu
activation function, followed by the pooling layers.
For our task, we use 3 convolutional layers. The
three convolutional layers contain 128 filters of

sizes 2, 3, and 4 each. Word embedding vectors of
a sentence are given as input to CNN to learn the
n-gram features. Equation 2 shows the CNN output
for a sentence after convolving different size filters
on the word embedding matrix of the sentence.

Hi = h1i , h
2
i ,h

j
i , ...h

L
i (2)

Where Hi represents the final feature vector for a
sentence.

3.1.3 Attention for text
In NLP related tasks, some words in the sentence
are more important for the task compared to the
other words in the same sentence. To capture this
phenomena, attention model for the text has been
proven beneficial for many NLP related tasks i.e.,
text summarization, machine translation (Luong
et al., 2015; Bahdanau et al., 2014), textual senti-
ment analysis(Corpora, 2000; Chen et al., 2016),
etc. Attention models calculate the attention score
αj
i which lies in the range of 0 and 1. Attention

score is assigned to feature representation of each
wj
i i.e., hji based on its importance, which is calcu-

lated as follows

αj
i =

exp(pji)∑L
j=1 exp(p

j
i)

(3)

Where,
pji = θ(Mhji + b) (4)

θ refers to nonlinear activation function (tanh).
The weight matrix M and bias b are the network
parameters and hji is the feature representation of
word wj

i (CNN output). α is calculated for all the
words in the sentence. The attended text feature
vector can be calculated as a weighted sum of all
the words present in a sentence, as shown in Equa-
tion 5.

Zk
i =

∑

1<=j<=L

αj
ih

j
i (5)

Attention process for text is illustrated Figure 3.

3.2 Visual Features
The image with size 224*224 is used as the input to
the pre-trained model VGG-19 to extract features
of the image. We use the output of conv5*4 layer
of VGG-19 as the region features which consist
of 196 regions, and each region is represented in
512 dimensions. Thus region features are having
dimensions of (196*512). The output of VGG-19 is
further passed to a dense layer that has 250 hidden

446

Figure 3: Attention for text

neurons. The output of this dense layer is passed to
the attention layer to find out the important regions
for classification.

3.2.1 Attention for Image
Image attention has been proven to be beneficial
for many vision-related tasks (Zhou et al., 2019).
We apply the attention over the image regions (out-
put of dense layer) to find out the most important
regions. Equation 6 shows the sequence of region
maps for ith image.

Ri = r1i , r
2
i ,r

j
i , ...r

C
i (6)

where, C is the number of regions and each region
is now represented in D (250) dimension.

Attention score βji is calculated for each region,
signifying the region importance. It lies in the
range between 0 and 1. If a region is more im-
portant for classification, then value of βji will be
more. Attention score βji is calculated as shown in
Equation 7

βji =
exp(pji)∑D
j=1 exp(p

j
i)

(7)

Where,
pji = φ(Mrji + b) (8)

The weight matrix M and bias b are the parameters
to be learned. φ is a nonlinear activation function
and we use tanh function. Finally, image features
are calculated as weighted sum over all regions as
shown in Equation 9.

Uk
i =

∑

1<=j<=L

βji r
j
i (9)

The architecture of the attention for image is
illustrated in Figure 4.

Figure 4: Attention for image

Type Positive Negative Neutral Total
Train 4155 629 2218 7002
Test 1109 173 593 1875

Table 1: SemEval dataset

3.2.2 Fusion of Text and Image features
Finally, the attended image features vector and text
features vector are passed to a fully connected layer
containing hidden neurons. This layer tries to find
out the relation between image and text features
and finally combines both.

3.3 Output Layer

The output of dense layer, i.e., the combined fea-
ture vector of image and text is finally passed to the
output layer, which contains softmax as an activa-
tion function. The output layer maps the combined
feature vector to a probability score. This probabil-
ity score helps to classify the tweet into one of its
predefined categories.

4 Dataset and Experiment

In this section, we discuss about the dataset used
for the experiment, data collection, data annotation,
and experimental details.

4.1 Dataset

We use the SemEval-2020 task 8 dataset1 for sen-
timent analysis of memes. This dataset contains
8877 memes annotated for 3 classes, viz., positive,
negative, and neutral. The dataset is divided into
2 parts, training, and test. The distribution of the
dataset is shown in Table 1.

As shown in Table 1, the data set is highly imbal-
anced. There are very less number of instances in

1https://competitions.codalab.org/competitions/20629

447

Dataset Positive Negative Neutral
9277 4109 2375 2811

Table 2: Class-wise distribution

Type Positive Negative Neutral
Train 2557 1907 1875
Development 443 295 343
Test 1109 173 593

Table 3: Data statistics

the negative class. So we crawl some data to make
it balanced.

4.2 Data Collection and Annotation
We collect the memes from Reddit. After data
collection, we extract the text written on memes
using a python library known as python-tesseract.
Python-tesseract is an optical character recognition
(OCR) tool for python. After extracting text with
Python-tesseract, we manually verify the output
to correct the wrong instances. Then we conduct
manual annotations for memes. Three annotators
with post-graduate level knowledge in English are
employed for annotations. Annotators are asked to
write the overall polarity of the tweet for 3 classes,
viz., neutral, negative, and positive. Initially, to
build an understanding of the class labels, we pro-
vide some tweets to the annotators with gold labels.

We added the newly annotated instances for
negative class to the training part of the SemEval
dataset. After merging, we divide it into two parts,
train and validation. The test set is the same as pro-
vided in the original SemEval dataset. We down-
sample the positive class data for the balancing pur-
pose. Class wise distribution of combined dataset
is shown in Table 2. Train-dev-test distribution is
shown in Table 3. 2

4.3 Data Pre-processing
We perform the following steps to pre-process the
text written memes.

• Convert all the characters of text into lower-
case.

• Tokenize the sentence into sequence of words.

• Sentences with length less than maxlen are
padded with zeros and greater than length

2The annotated dataset is available from the authors upon
request.

maxlen are truncated.

4.4 Experimental Setup
We implement our model using python based Keras
library 3. We train our system for the 50 epochs and
we save the checkpoints after every epoch to find
the best performing model. We set the maximum
sentence length to 80. We use batch size of 16 and
ReLu activation function at the hidden layers of
the network. We use optimizer Adam (Kingma and
Ba, 2014) to optimize the weights of the network
with a learning rate of 0.001. We use the softmax
activation function at the last layer and categori-
cal cross-entropy as the loss function. To prevent
overfitting (Hawkins, 2004), dropout (Srivastava
et al., 2014) of rate 0.5 is used at hidden layers. To
find optimal values of hyper-parameters, we use
the grid search.

4.5 Baseline models
We define the following baseline models.

• Baseline 1 (Textual model): Baseline 1 uses
only textual information (text written on
meme) for classification. We use the textual
component without attention from the archi-
tecture shown in Figure 2.

• Baseline 2 (Visual model): Baseline 2 uses
only visual information for classification. We
use the image component without attention
from the architecture shown in Figure 2.

• Baseline 3 (Textual model with attention):
Baseline 3 uses only textual information and
applies attention to the output of CNN to ex-
tract the most important words for classifica-
tion as shown in Figure 2.

• Baseline 4 (Visual model with attention):
Baseline 4 uses only visual information by
extracting region features from VGG and ap-
ply attention over the regions to find out rele-
vant regions for classification. Architecture is
shown in Figure 2.

• Baseline 5 (Visual and textual without atten-
tion): Baseline 5 uses both textual as well
as visual information for classification. We
apply the architecture, as shown in Figure 2
by removing the attention layer from both im-
age and text where image and textual features

3https://keras.io/

448

Model Macro F1 Score Accuracy
Textual Model 31.42 % 43.25%
Visual Model 32.07% 42.16%
Textual Model With Attention 33.17% 44.34%
Visual Model With Attention 33.01% 42.98%
Visual And Textual Without Attention 33.22% 47.72%
SemEval Baseline 21.76 -
Proposed 34.23% 50.02%

Table 4: Evaluation results of different modalities

are concatenated and then passed to the fully
connected layer.

• Baseline 6: Baseline 6 is provided by
SemEval-2020 Task 8 which utilizes textual
and image features.

• Final model: Our proposed model uses textual
and visual information for classification by
applying attention to text as well as image.
Figure 2 describes our final architecture.

5 Evaluation Results

In this section, we discuss the detailed experimen-
tal results. We use accuracy and macro F1 score
to evaluate the performance of our system. Table
4 shows the performance of our proposed model
and comparison to the baseline models. The tex-
tual model (Baseline 1) yields the macro F1 and
accuracy of 31.42% and 43.25%, respectively. Vi-
sual model (baseline 2) yields the macro F1 and
accuracy of 32.07% and 42.16%, respectively. The
model using only textual features with attention
component (baseline 3) yields the macro F1 and
accuracy of 33.17% and 44.34%, respectively. The
visual model with attention (i.e., Baseline 4) yields
macro F1 and accuracy of 33.01% and 42.98%
,respectively. Concatenation of textual and visual
features (Baseline 5) without applying attention to
image and textual features yields the macro F1 and
accuracy of 33.22% and 47.72%, respectively. Re-
ported macro F1 of SemEval baseline (Baseline 6)
is 21.76%. Our proposed model obtains the macro
F1 and accuracy of 34.23% and 50.02%, respec-
tively. Our proposed system outperforms the other
baselines, which indicates that multi-modal infor-
mation actually helps to improve the effectiveness
of the system. All the reported results are statis-
tically significant as we have performed pairwise
Welch’s t-test (Welch, 1947) at 5% significant level.

Class Negative Neutral Positive
Negative 17 43 113
Neutral 63 139 391
Positive 116 211 782

Table 5: Confusion matrix

5.1 Error Analysis
In this section, we present a detailed error analysis.
Table 6 shows the example cases to establish the
need for image as well textual model for sentiment
classification of memes.

Column name is same as image name.

• Columns a shows the case where the textual
model (Baseline 1) performs misclassification,
but the visual model (Baseline 2) correctly
predict the class.

• Column b shows the case where the visual
model (Baseline 2) performs misclassifica-
tion, but the visual model with attention model
(Baseline 4) predict it correctly.

• Column c describes the case where the visual
model (Baseline 2) is wrong, but the textual
model (Baseline 1) performs correct classifi-
cation.

• Column d shows the case where the textual
model (Baseline 1) performs misclassification,
but the textual model with attention (Baseline
3) performs correct classification.

• Column e shows the case when all the above-
mentioned models perform misclassification,
but the model which combine image and text
through dense layer (Baseline 5) performs cor-
rect classification.

• Column f shows the case where all the base-
line models fail, but our proposed model per-
forms correct classification.

449

[a] [b]

[c] [d]

[e] [f]

[g] [h]

Figure 5: Qualitative analysis

Model a b c d e f
Actual Neutral Positive Positive Neutral Neutral Positive
Baseline 1 Negative Negative Positive Positive Positive Negative
Baseline 2 Neutral Neutral Neutral Positive Positive Negative
Baseline 3 Negative Negative positive Neutral Positive Negative
Baseline 4 Neutral Positive Neutral Positive Negative Neutral
Baseline 5 Negative Neutral Neutral Positive Neutral Neutral
Proposed Neutral Positive Positive Neutral Neutral Positive

Table 6: Predictions of different models

450

Model g h
Actual Negative Neutral
Proposed Methodology Neutral Negative

Table 7: Qualitative error analysis of proposed model

These cases establish the effectiveness of our pro-
posed approach. Further, we analyzed the output of
our proposed model, both quantitatively and quali-
tatively. Confusion matrix is shown in the Table 5.
It shows that the majority of negative class memes
and neutral class got confused with positive class,
and the majority of positive class memes got con-
fused with neutral class. In Table 7, we show the
cases where our proposed model performs misclas-
sification. The column name is same as the image
name. For image g, the proposed model misclas-
sifies it to the neutral class, but the actual label is
negative. A possible reason could be the presence
of a happy face in the image. For image h, the
predicted sentiment is negative, but the actual label
is neutral. A possible reason could be the presence
of a sad face in the image.

6 Conclusion

In this paper, we have proposed a multi-modal
framework for meme sentiment classification by
utilizing textual and visual information of memes.
We use the SemEval-2020 task data and also an-
notated our own dataset to make this dataset bal-
anced. We found that only textual information or
only visual information is not sufficient to analyze
a meme’s sentiment. Our proposed framework uti-
lizes textual and visual features and finally fuses
both the information through a fully connected
layer. Our proposed framework achieved the macro
F1 and accuracy of 34.23% and 50.02%, respec-
tively. Our proposed framework increases the accu-
racy by 6.77% and 7.86% compared to only textual
and visual features, respectively. In the future, we
are planning to explore other fusion methods to
incorporate textual and visual features. We would
also explore contextual embeddings for the text
part of meme classifications.

References
Mamta ., Asif Ekbal, Pushpak Bhattacharyya, Shikha

Srivastava, Alka Kumar, and Tista Saha. 2020.
Multi-domain tweet corpora for sentiment analysis:
Resource creation and evaluation. In Proceedings of
the 12th Language Resources and Evaluation Con-

ference, pages 5046–5054, Marseille, France. Euro-
pean Language Resources Association.

Apoorv Agarwal, Boyi Xie, Ilia Vovsha, Owen Ram-
bow, and Rebecca J Passonneau. 2011. Sentiment
analysis of twitter data. In Proceedings of the
workshop on language in social media (LSM 2011),
pages 30–38.

Md Shad Akhtar, Asif Ekbal, and Erik Cambria. 2020.
How intense are you? predicting intensities of emo-
tions and sentiments using stacked ensemble. IEEE
Computational Intelligence Magazine, 15(1):64–75.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Akshat Bakliwal, Jennifer Foster, Jennifer van der Puil,
Ron O’Brien, Lamia Tounsi, and Mark Hughes.
2013. Sentiment analysis of political tweets: To-
wards an accurate classifier. Association for Com-
putational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. Enriching word vectors with sub-
word information. Transactions of the Association
for Computational Linguistics, 5:P10008.

Hongshen Chen, Yue Zhang, and Qun Liu. 2016. Neu-
ral network for heterogeneous annotations. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 731–
741.

Very Large Corpora. 2000. Empirical methods in natu-
ral language processing.

Deepak Chowdary Edara, Lakshmi Prasanna Vanukuri,
Venkatramaphanikumar Sistla, and Venkata Kr-
ishna Kishore Kolli. 2019. Sentiment analysis and
text categorization of cancer medical records with
lstm. Journal of Ambient Intelligence and Human-
ized Computing, pages 1–17.

Manoochehr Ghiassi and S Lee. 2018. A domain trans-
ferable lexicon set for twitter sentiment analysis us-
ing a supervised machine learning approach. Expert
Systems with Applications, 106:197–216.

Douglas M Hawkins. 2004. The problem of overfitting.
Journal of chemical information and computer sci-
ences, 44(1):1–12.

Tao Jiang, Jiahai Wang, Zhiyue Liu, and Yingbiao Ling.
2020. Fusion-extraction network for multimodal
sentiment analysis. In Pacific-Asia Conference on
Knowledge Discovery and Data Mining, pages 785–
797. Springer.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

451

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Akshi Kumar and Arunima Jaiswal. 2017. Image sen-
timent analysis using convolutional neural network.
In International Conference on Intelligent Systems
Design and Applications, pages 464–473. Springer.

Wenkuan Li, Peiyu Liu, Qiuyue Zhang, and Wenfeng
Liu. 2019. An improved approach for text sentiment
classification based on a deep neural network via
a sentiment attention mechanism. Future Internet,
11(4):96.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025.

A Man, Yuanyuan Pu, Dan Xu, Wenhua Qian, Zheng-
peng Zhao, and Qiuxia Yang. 2019. Multi-feature
fusion for multimodal attentive sentiment analysis.
In MMAsia, pages 43–1.

Walaa Medhat, Ahmed Hassan, and Hoda Korashy.
2014. Sentiment analysis algorithms and applica-
tions: A survey. Ain Shams engineering journal,
5(4):1093–1113.

Igor Mozetič, Miha Grčar, and Jasmina Smailović.
2016. Multilingual twitter sentiment classifica-
tion: The role of human annotators. PloS one,
11(5):e0155036.

Gorti Satyanarayana Murty and Shanmukha Rao Allu.
Text based sentiment analysis using lstm.

Alessandro Ortis, Giovanni Maria Farinella, Giovanni
Torrisi, and Sebastiano Battiato. 2020. Exploiting
objective text description of images for visual senti-
ment analysis. Multimedia Tools and Applications,
pages 1–24.

Bo Pang and Lillian Lee. 2005. Seeing stars: Ex-
ploiting class relationships for sentiment categoriza-
tion with respect to rating scales. In Proceedings of
the 43rd annual meeting on association for compu-
tational linguistics, pages 115–124. Association for
Computational Linguistics.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up?: sentiment classification using
machine learning techniques. In Proceedings of the
ACL-02 conference on Empirical methods in natural
language processing-Volume 10, pages 79–86. Asso-
ciation for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Soujanya Poria, Navonil Majumder, Devamanyu Haz-
arika, Erik Cambria, Alexander Gelbukh, and Amir
Hussain. 2018. Multimodal sentiment analysis: Ad-
dressing key issues and setting up the baselines.
IEEE Intelligent Systems, 33(6):17–25.

Anthony Rios and Ramakanth Kavuluru. 2015. Convo-
lutional neural networks for biomedical text classi-
fication: application in indexing biomedical articles.
In Proceedings of the 6th ACM Conference on Bioin-
formatics, Computational Biology and Health Infor-
matics, pages 258–267.

Chhavi Sharma, Deepesh Bhageria, William Paka,
Scott, Srinivas P Y K L, Amitava Das, Tan-
moy Chakraborty, Viswanath Pulabaigari, and Björn
Gambäck. 2020. SemEval-2020 Task 8: Memotion
Analysis-The Visuo-Lingual Metaphor! In Proceed-
ings of the 14th International Workshop on Semantic
Evaluation (SemEval-2020), Barcelona, Spain. As-
sociation for Computational Linguistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning
research, 15(1):1929–1958.

Bernard L Welch. 1947. The generalization ofstu-
dent’s’ problem when several different population
variances are involved. Biometrika, 34(1/2):28–35.

Guixian Xu, Yueting Meng, Xiaoyu Qiu, Ziheng Yu,
and Xu Wu. 2019. Sentiment analysis of comment
texts based on bilstm. Ieee Access, 7:51522–51532.

Quanzeng You, Liangliang Cao, Hailin Jin, and Jiebo
Luo. 2016. Robust visual-textual sentiment analysis:
When attention meets tree-structured recursive neu-
ral networks. In Proceedings of the 24th ACM in-
ternational conference on Multimedia, pages 1008–
1017.

Jinfei Zhou, Yaping Zhu, and Hong Pan. 2019. Im-
age caption based on visual attention mechanism. In
Proceedings of the 2019 International Conference
on Image, Video and Signal Processing, pages 28–
32.

452

Proceedings of the 17th International Conference on Natural Language Processing, pages 453–459
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Towards Bengali Word Embedding: Corpus Creation, Intrinsic and
Extrinsic Evaluations

Md. Rajib Hossain and Mohammed Moshiul Hoque
Department of Computer Science & Engineering, Chittagong University

of Engineering and Technology, Chittagong-4349 Bangladesh
rajcsecuet@gmail.com, moshiul 240@cuet.ac.bd

Abstract
Distributional word vector representation or
word embedding has become an essential in-
gredient in many natural language processing
(NLP) tasks such as machine translation, doc-
ument classification, information retrieval and
question answering. Investigation of embed-
ding model helps to reduce the feature space
and improves textual semantic as well as syn-
tactic relations. This paper presents three
embedding techniques (such as Word2Vec,
GloVe, and FastText) with different hyperpa-
rameters implemented on a Bengali corpus
consists of 180 million words. The perfor-
mance of the embedding techniques is evalu-
ated with extrinsic and intrinsic ways. Extrin-
sic performance evaluated by text classifica-
tion, which achieved a maximum of 96.48%
accuracy. Intrinsic performance evaluated
by word similarity (e.g., semantic, syntac-
tic and relatedness) and analogy tasks. The
maximum Pearson (r̂) correlation accuracy of
60.66% (Ssr̂) achieved for semantic similari-
ties and 71.64% (Syr̂) for syntactic similari-
ties whereas the relatedness obtained 79.80%
(Rsr̂). The semantic word analogy tasks
achieved 44.00% of accuracy while syntactic
word analogy tasks obtained 36.00%.

1 Introduction

Word embedding is a distributional vector repre-
sentation of words in which syntactic and seman-
tic interpretations are derived from the enormous
amount of unlabeled texts. Recently, the word em-
bedding is considered as a powerful tool due to
its many applications in NLP, thus, gained much
attention by NLP experts. This is a growing up
research issue for well-resourced language like En-
glish, where an embedding algorithm generates
a model (Devlin et al., 2019). However, it is a
very complicated task to adopt an embedding algo-
rithm (of any language) directly for the resource-
constrained languages such as Bengali due to the
scarcity of resources. As a result, the low-resource

language is trail end in NLP tools development.
Bengali is the most popularly communicated lan-
guage of Bangladesh while second most commu-
nicated of the 22 official languages of India which
makes Bengali is the 7th most spoken language in
the world (Hossain and Hoque, 2019). However,
due to the shortage of resources, the development
of NLP tools are striving. Bengali speaking peo-
ple are suffering to access modern NLP tools that
might be affected their sustainable use of language
technologies. Therefore, Bengali word embedding
is an essential prerequisite to developing any Ben-
gali language based NLP tools.

There are two well-known evaluation methods
used extensively to evaluate embedding techniques
such as extrinsic and intrinsic (Zhelezniak et al.,
2019a). Extrinsic evaluation refers to downstream
tasks like as machine translation (MT) (Banik
et al., 2020), and Part of speech (POS) tagging
(Priyadarshi and Saha, 2020). Intrinsic evaluation
goals to evaluate the quality of language processing
tasks, such as semantic and syntactic word simi-
larity (Pawar and Mago, 2018), Word relatedness
(Gladkova and Drozd, 2016), and Word analogy
(Schluter, 2018). Unavailability of standard Ben-
gali embedding corpus and inadequacy of resources
are antecedents that make such a model generation
and evaluation very challenging. Moreover, there
is no generalized embedding model available to
date for Bengali downstream tasks. Thus, the pro-
posed work introduces a Bengali embedding model
generation and evaluation techniques with differ-
ent hyperparameters settings. Specifically, the key
contributions of this work are:

• Acquire raw monolingual Bengali corpora
with 180 million words where the unique
words are 13 million.

• Construct and annotates the intrinsic and ex-
trinsic evaluation datasets as well as evaluate
the annotation purity.

453

• Generate ninety embedding models with the
combination of three different algorithms
(such as Word2Vec, GloVe,and FastText) and
variations of model parameters.

• Examine the influence of hyperparameters on
the embedding models performance.

As far as we are aware, the proposed work is the
first attempt to generate large-scale embedding
models evaluates with intrinsic and extrinsic evalu-
ators.

2 Related Work

Distributional word vector representation or em-
bedding model generation is a well-established re-
search agenda in NLP domain. There are plenty
of research works have been carried out on word
embedding in high-resource languages, but it re-
mains as a barrier for low resource languages.
The first intrinsic evaluation datasets introduced
in RG-65 (Rubenstein and Goodenough, 1965)
which contains 65 contextual synonymy pairs.
The WordSimilarity-353 introduced by (Finkelstein
et al., 2001) and the dataset contains 353 words pair
with 13 different subjects. In recent time, three
embedding model evaluation datasets have been
introduced: SimLex-999 (Hill et al., 2015), Se-
mEval 2017 (Camacho-Collados et al., 2017), and
MEN (Bruni et al., 2014). An Italian language
embedding model has developed in (Di Gennaro
et al., 2020), which achieved 53.74% overall analo-
gies accuracy for 19, 791 texts. Moreover, this
work achieved a semantic analogies accuracy of
59.20% for 8, 915 texts and syntactic accuracy of
48.80% for 10, 876 texts. However, this work con-
sidered only 3COSADD similarity score and not
consider the word relatedness and extrinsic evalua-
tions. Ercan and Yıldız (2018) devised a Turkish
word similarity and relatedness system that pro-
duced Turkish embedding dataset derived from En-
glish word similarity and relatedness datasets (e.
g. WordSimilarity-353, MEN, and SimLex-999).
This work achieved spearman score (ρ) of 0.667
for WordSimilarity-353, 0.68 for MEN and 0.67
for SimLex-999 respectively. The developed em-
bedding model was not evaluated with extrinsic
evaluation (Chiu et al., 2016).

Although most of the current works on embed-
ding model, resource creation and evaluations con-
ducted for the high-resource languages (e.g., En-
glish, Germany, and French) there are few compre-

hensive research conducted on low resource lan-
guages such as Assamese, Gujarati, Hindi, Kan-
nada, and so on (Kumar et al., 2020) and Turkish
(Ercan and Yıldız, 2018). Kumar et al. (2020) in-
troduced the pre-trained word embedding models
for Indian languages. The proposed system gener-
ates 14 Indian local language embeddings with 8
different approaches, including 436 models. Em-
bedding models are evaluated by extrinsic evalua-
tors and archived more than 90.00% accuracy for
UPOS, and XPOS tagging using universal depen-
dency treebank datasets (Nivre et al., 2016). The
NER tagging accuracy about 95.00% with FastText
embedding. Kumar et al. (2020) aimed to solve 14
Indian languages NLP problems, but the generated
models are not considered intrinsic evaluations. To
best of our knowledge, only single research was
conducted concerning Bengali word embedding us-
ing Word2Vec (Sadman et al., 2019). However, this
work considered only intrinsic evaluations with a
self-build dataset. Our approach considered ninety
embedding models based on GloVe, FastText and
Word2Vec models and measured the performance
using intrinsic and extrinsic evaluators.

3 Methodology

The principal aim of our research is to investigate
the affect of intrinsic and extrinsic evaluations on
Bengali word embedding models. Thus, the pro-
posed scheme comprises of three main parts: cor-
pus creation, word embedding model development,
and evaluation. Figure 1 illustrates the abstract
view of our work.

Figure 1: Abstract process of evaluations for Bengali
word embedding.

3.1 Corpus Creation
We collected Bengali texts from various online
sources and distributed these into two sets: word

454

embedding corpus (E) and embedding model eval-
uation corpus (Ev). We used a Python crawler
to crawl data. We collected 910, 720 Bengali text
files over a twenty-four month period (September
10, 2018, to September 11, 2020) which are for-
warded to data preprocessing step. Initially, the
non-Bengali alphabets and digits are removed from
the text files. In the next, preprocessing step re-
moved HTML tags, hashtags, URLs, punctuation
and white spaces. Finally, the duplicate texts are
deleted from the archive. The preprocessing step
produced of 882, 352 usable text, and removed
28, 368 blank size text documents from the initial
dataset due to various preprocessing operations.
These usable preprocessed data are randomly dis-
tributed into two sets; one set for embedding model
evaluation (100, 000 texts) and another set for word
embedding corpus (782, 352 texts). The embed-
ding corpus (We) (i.e., total 180, 081, 093 words)
is fed to the embedding techniques.

Embedding model evaluation corpus (Ev) is a
combination of intrinsic (Id) and extrinsic datasets
(Ed). In order to perform an extrinsic evaluation,
out of 100, 000 text documents, a total of 60, 000
documents are randomly selected. This dataset was
labelled manually followed by majority voting to
assign the suitable label. Two linguistic experts
are assigned to annotated each data into one of the
six pre-defined categories such as Accident (At),
Crime (Ce), Entertainment (Et), Health (Hh), Pol-
itics (Ps) and, Sports (Sp). Among 60, 000 text
documents, both experts have been agreed upon
54, 858 text labels. The developed corpus (Ed)
achieved a Kappa score (K) is 78.53%, which in-
dicates a reasonable agreement between annotators
for downstream task. To perform intrinsic evalua-
tions of the embedding models four different sub
datasets are used for conducting four measures:
semantic word similarity (Ss), syntactic word sim-
ilarity (Sy), relatedness (Rr), and analogy tasks
(At). Intrinsic datasets and corresponding kappa
score are shown in Table 1. Here, Ss, Sy and Rs

Datasets No. of samples Kappa score (%)
Ss 100 71.55
Sy 100 65.30
Rs 100 75.13
At 100 56.90

Table 1: Embedding model datasets and kappa score.

datasets are substantial agreement where as At is

moderate agreement.

3.2 Word Embedding Model Development
We consider three well-known embedding tech-
niques for Bengali corpus including Word2Vec,
GloVe, and FastText. To realize the effect of hy-
perparameters, we have considered embedding di-
mension (size), minimum word frequency count
(min count), contextual windows size (window)
and number of iteration (epoch) for each of the
embedding technique.

Word2Vec (skip-gram and CBOW):
Word2Vec (Mikolov et al., 2013a) technique takes
We as the input and produce the embedding model
Em using gensim library (Řehůřek and Sojka,
2010). Two versions of Word2Vec pre-trained mod-
els such as Skip-gram and continuous bag of words
(CBOW) are used with similar hyperparameters
for tuning: size : {50, 100, 150, 200, 250, 300},
window : {5, 10, 15}, min count : {2} and
epochs : 30 respectively. There are 36 embedding
models (e.g., 18 for CBOW and 18 for skip-gram)
generated for We using Word2Vec technique.

GloVe: GloVe (Pennington et al., 2014) tech-
nique generated 18 embedding models (Em) for
the embedding corpus We. Different hyperpa-
rameters are used to optimize the model such as
size : {50, 100, 150, 200, 250, 300}, min count :
{2}, X MAX : 95, epochs : 30 and window :
{5, 10, 15} respectively. The remaining hyperpa-
rameters remains the same as default settings. Fi-
nally, the eighteen embedding models (Em) are
evaluated by the evaluators.

FastText (skip-gram and CBOW): Fast-
Text embedding technique (Bojanowski
et al., 2017), takes We as input and gen-
erates a embedding model (Em) as output
using gensim library (Řehůřek and Sojka,
2010). Different values of hyperparameters
are used to achieve optimize performance
such as size : {50, 100, 150, 200, 250, 300},
window : {5, 10, 15}, min count : {2} and
epochs : 30 respectively. Our approach produced
of 36 models (e.g., 18 for FastText-skip-gram and
18 for FastText-CBOW) that are evaluated using
evaluators.

4 Results and Discussion

Intrinsic evaluations are performed for a total of
ninenty (e.g., Word2Vec=36, GloVe=18 and Fast-

455

Semantic (%) Syntactic (%) Relatedness (%)
Model size window Ssρ̂ Ssr̂ Syρ̂ Syr̂ Rsρ̂ Ryr̂

300 15 60.02 60.66 69.54 70.62 79.20 79.72
GloVe 250 10 56.33 57.77 70.41 70.66 79.22 79.80

250 5 56.93 57.90 69.87 71.64 79.20 78.33
FastText (SG) 250 10 53.64 53.38 39.47 38.31 68.28 67.54

150 10 56.78 55.18 37.78 36.03 66.63 65.84
Word2Vec (SG) 250 5 44.31 45.10 31.78 30.51 56.43 57.41
FastText (Grave
et al., 2018)

300 - 49.41 49.78 5.93 -1.55 47.23 43.91

Table 2: Performance of embedding models concerning semantic, syntactic and relatedness word similarity.

Text=36) embedding models. Among these, the
results of best four embedding models presented
for extrinsic and intrinsic evaluators.

4.1 Intrinsic evaluation results

The word similarity (semantic and syntactic) score
is calculated by Cosine similarity (C). The model
performance can be calculated from the spearman
(ρ̂) and pearson (r̂) correlations (Zhelezniak et al.,
2019b). The well-known word analogy solver,
3COSADD (Mikolov et al., 2013b) is used to solve
the analogy tasks. Three similarity measures are
used to evaluate word similarity and analogy tasks
analysis. In order to maintain consistency, we per-
formed training for all models with our developed
corpus.

Word similarity: Table 2 shows the intrinsic
evaluations performance of the embedding mod-
els. Annotators word similarity rates are range
from 0 − 10 whereas the cosine similarity score
normalized by ten times. All values in Table 2
are normalized by hundreds times. Maximum
semantic correlation values are Ssρ̂ = 60.02%
and Ssr̂ = 60.66% for GloVe (size = 300 and
window = 15) technique. Highest syntactic corre-
lation is Syρ̂ = 70.41% for GloVe (size = 250
and window = 10) where as Syr̂ = 71.64%
for GloVe (size = 250 and window = 5) tech-
niques. The Rs highest correlations, Rsρ̂=79.22%

and Ryr̂=79.80% have been achieved using GloVe
(size = 250 and window = 10) technique. There
are eight semantic words pair are not able to pro-
cess by Em where as four syntactic words pair
are not able to process by Em of all techniques.
Relatedness words pair are fully processed by all
embedding techniques.

Word analogy results: The semantic analogy re-
sults are shown in Table 3, while Table 4 denotes
the syntactic analogy tasks performance based on
our corpus. Due to unavailability of Bengali se-
mantic and syntactic analogy datasets, we have
been developed At datasets were 50 analogy words
used for semantic and another fifty used to perform
syntactic analogy tasks. GloVe (size = 300 and
window = 15) technique has achieved maximum
accuracy of 38.00% (Add) and 44.00% (Mull) for
semantic analogy tasks. Minimum semantic anal-
ogy tasks accuracy is obtained by FastText (Grave
et al., 2018) embedding model. The maximum

Semantic analogy tasks accuracy (%)
Model size window Add Mull
GloVe 300 15 38.00 44.00
FastText (SG) 250 10 30.00 34.00
Word2Vec(SG) 250 5 26.00 30.00
FastText
(Grave et al.,
2018)

300 - 20.00 26.00

Table 3: Analogy tasks performance summary for se-
mantic datasets.

syntactic analogy tasks accuracy are 30.00% (Add)
and 36.00% achieved by GloVe (size = 300 and
window = 15) Em, while 20.00% (Add) and
24.00% (Mull) from FastText (Grave et al., 2018)
embedding model.

4.2 Extrinsic evaluation results

The Ed is a Bengali text classification dataset
which partitioned into the three sets: training
(39, 079), validation (6, 000) and testing (9, 779).
The text classifier model trained with a multi-kernel
CNN architecture (Kim, 2014). The performance
of the text classifier model assesses with extrinsic

456

Syntactic analogy tasks accuracy (%)
Model size window Add Mull
GloVe 300 15 30.00 36.00
FastText (SG) 250 10 26.00 28.00
Word2Vec(SG) 250 5 20.00 26.00
FastText
(Grave et al.,
2018)

300 - 20.00 24.00

Table 4: Analogy tasks performance for syntactic
datasets.

evaluators including accuracy (A), micro average
F1-score, average precision (Ap), average recall
(Ar) and confusion matrix (CM) (Wu et al., 2020).
The evaluators evaluated the embedding models
(Em) downstream task (e.g., text classification) per-
formance (in Tables 5 and 6). Table 5 shows the
summary of text classification performance.

Models size/window F1-score(%) A(%)
Word2Vec 250/10 93.43 93.87
GloVe 200/10 96.03 96.48
FastText 200/15 95.57 95.71

Table 5: Extrinsic evaluation for text classification.

The GloVe model achieved the highest accuracy
of 96.48%. For clarity, we presented only the re-
sults of best four embedding models out of ninety
models. Table 6 depicts the confusion matrix of
GloVe model (size = 200 and window = 10)
for text classification performance. The maximum
correctly predicted class is Politics and incorrectly
predicted class is Crime. The highest misclassifica-
tion occurred for Crime and Accident pair.

CM At Ce Et Hh Ps Sp
At 1636 43 1 3 3 2
Ce 62 1468 2 10 27 3
Et 1 4 1603 12 8 16
Hh 1 5 16 1593 12 9
Ps 3 15 3 11 1570 6
Sp 1 6 43 4 12 1565

Table 6: Confusion matrix of text classification task.

Figure 2 shows few example scores for semantic,
syntactic and relatedness words pair score obtained
from GloVe model and human annotators. GloVe
and FastText (SG) models accuracy are consider-
able for semantic and relatedness similarities. In
the case of extrinsic evaluations, the performance

Figure 2: Word pair similarity scores, the Cosine sim-
ilarity score is normalized by 10 times and annotators
score is ranging between 1 to 10.

of GloVe and FastText embedding models are sig-
nificant for the text classification task.

5 Conclusion and Future Work

In this work, we have been generated about ninety
embedding models for the Bengali language. These
models have developed using the combinations
of three embedding techniques (such as GloVe,
Word2Vec, and FastText) and various hyperparam-
eters. All models have evaluated by extrinsic and
intrinsic evaluators on our developed corpus. The
performance of an embedding model significantly
depends on the hyperparameters, corpus and na-
ture of the model. Although GloVe model per-
formed better than Word2Vec and FastText, there
is no generalized embedding model for intrinsic
and extrinsic NLP tasks. The embedding models
are highly corpus oriented, and hyperparameters
also vary from one task to another. In the future,
the existing Bengali corpus can be extended for
embedding model generation to alleviate the out-
of-vocabularies problems. The context-dependent
feature represents technique (such as BERT, ElMo
and XLNet) will be investigated to find suitable em-
bedding technique for Bengali. In addition to that,
more analogy tasks can be considered to assess the
performance of different embedding models with
various intrinsic and extrinsic evaluators.

References
Debajyoty Banik, Asif Ekbal, and Pushpak Bhat-

tacharyya. 2020. Statistical machine translation
based on weighted syntax–semantics. Sādhanā,
45:1–12.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and

457

Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Elia Bruni, Nam Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. Journal of Ar-
tificial Intelligence Research, 49(1):1–47.

Jose Camacho-Collados, Mohammad Taher Pilehvar,
Nigel Collier, and Roberto Navigli. 2017. SemEval-
2017 task 2: Multilingual and cross-lingual semantic
word similarity. In Proceedings of the 11th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2017), pages 15–26, Vancouver, Canada. Associa-
tion for Computational Linguistics.

Billy Chiu, Anna Korhonen, and Sampo Pyysalo. 2016.
Intrinsic evaluation of word vectors fails to predict
extrinsic performance. In Proceedings of the 1st
Workshop on Evaluating Vector-Space Representa-
tions for NLP, pages 1–6, Berlin, Germany. Asso-
ciation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Giovanni Di Gennaro, Amedeo Buonanno, Antonio
Di Girolamo, Armando Ospedale, Francesco A. N.
Palmieri, and Gianfranco Fedele. 2020. An analysis
of word2vec for the italian language. Smart Innova-
tion, Systems and Technologies, pages 137–146.

Gökhan Ercan and Olcay Taner Yıldız. 2018. An-
lamVer: Semantic model evaluation dataset for Turk-
ish - word similarity and relatedness. In Proceed-
ings of the 27th International Conference on Com-
putational Linguistics, pages 3819–3836, Santa Fe,
New Mexico, USA. Association for Computational
Linguistics.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Ey-
tan Ruppin. 2001. Placing search in context: The
concept revisited. In Proceedings of the 10th In-
ternational Conference on World Wide Web, page
406–414, New York, NY, USA. Association for
Computing Machinery.

Anna Gladkova and Aleksandr Drozd. 2016. Intrinsic
evaluations of word embeddings: What can we do
better? In Proceedings of the 1st Workshop on Eval-
uating Vector-Space Representations for NLP, pages
36–42, Berlin, Germany. Association for Computa-
tional Linguistics.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learning
word vectors for 157 languages. In Proceedings of

the Eleventh International Conference on Language
Resources and Evaluation (LREC-2018), Miyazaki,
Japan. European Languages Resources Association
(ELRA).

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
SimLex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics, 41(4):665–695.

Md. Rajib Hossain and Mohammed Moshiul Hoque.
2019. Automatic bengali document categorization
based on deep convolution nets. In Emerging
Research in Computing, Information, Communica-
tion and Applications, pages 513–525, Singapore.
Springer Singapore.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1746–1751,
Doha, Qatar. Association for Computational Lin-
guistics.

Saurav Kumar, Saunack Kumar, Diptesh Kanojia, and
Pushpak Bhattacharyya. 2020. “a passage to India”:
Pre-trained word embeddings for Indian languages.
In Proceedings of the 1st Joint Workshop on Spoken
Language Technologies for Under-resourced lan-
guages (SLTU) and Collaboration and Computing
for Under-Resourced Languages (CCURL), pages
352–357, Marseille, France. European Language Re-
sources association.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013b. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 746–751, Atlanta,
Georgia. Association for Computational Linguistics.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal dependencies v1: A multilingual
treebank collection. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC 2016), pages 1659–1666, Por-
torož, Slovenia. European Language Resources As-
sociation (ELRA).

Atish Pawar and Vijay Mago. 2018. Calculating
the similarity between words and sentences using
a lexical database and corpus statistics. CoRR,
abs/1802.05667.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference

458

on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532–1543, Doha, Qatar. Asso-
ciation for Computational Linguistics.

Ankur Priyadarshi and Sujan Kumar Saha. 2020. To-
wards the first maithili part of speech tagger: Re-
source creation and system development. Computer
Speech Language, 62:101054.

Herbert Rubenstein and John B. Goodenough. 1965.
Contextual correlates of synonymy. Commun. ACM,
8(10):627–633.

Nafiz Sadman, Akib Sadmanee, Md. Iftekhar Tan-
veer, Md. Ashraful Amin, and Amin Ahsan Ali.
2019. Intrinsic evaluation of bangla word embed-
dings. In 2019 International Conference on Bangla
Speech and Language Processing (ICBSLP), pages
1–5. IEEE.

Natalie Schluter. 2018. The word analogy testing
caveat. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 242–246,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Di Wu, Mengtian Zhang, Chao Shen, Zhuyun Huang,
and Mingxing Gu. 2020. Btm and glove similarity
linear fusion-based short text clustering algorithm
for microblog hot topic discovery. volume 8, pages
32215–32225. IEEE Access.

Vitalii Zhelezniak, Aleksandar Savkov, April Shen, and
Nils Hammerla. 2019a. Correlation coefficients and
semantic textual similarity. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 951–962, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Vitalii Zhelezniak, Aleksandar Savkov, April Shen, and
Nils Hammerla. 2019b. Correlation coefficients and
semantic textual similarity. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 951–962, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Radim Řehůřek and Petr Sojka. 2010. Software frame-
work for topic modelling with large corpora. In Pro-
ceedings of LREC 2010 workshop New Challenges
for NLP Frameworks, pages 46–50, Valletta, Malta.
University of Malta.

459

Proceedings of the 17th International Conference on Natural Language Processing, pages 460–469
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Annotated Corpus of Tweets in English from Various Domains for
Emotion Detection

Soumitra Ghosh1, Asif Ekbal1, Pushpak Bhattacharyya1, Sriparna Saha1,
Vipin Tyagi2, Alka Kumar2, Shikha Srivastava2, Nitish Kumar2

1Indian Institute of Technology Patna, India
{1821cs05, asif, sriparna, pb}@iitp.ac.in

2Centre for Development of Telematics (C-DOT, India)
{vipin, alkakm, shikha, nitish}@cdot.in

Abstract

Emotion recognition is a very well-attended
problem in Natural Language Processing
(NLP). Most of the existing works on emotion
recognition focus on the general domain and
in some cases to specific domains like fairy
tales, blogs, weather, Twitter etc. But emo-
tion analysis systems in the domains of secu-
rity, social issues, technology, politics, sports,
etc. are very rare. In this paper, we cre-
ate a benchmark setup for emotion recognition
in these specialised domains. First, we con-
struct a corpus of 18,921 tweets in English
annotated with Paul Ekman’s six basic emo-
tions (Anger, Disgust, Fear, Happiness, Sad-
ness, Surprise) and a non-emotive class Oth-
ers. Thereafter, we propose a deep neural
framework to perform emotion recognition in
an end-to-end setting. We build various mod-
els based on Convolutional Neural Network
(CNN), Bi-directional Long Short Term Mem-
ory (Bi-LSTM), Bi-directional Gated Recur-
rent Unit (Bi-GRU). We propose a Hierarchi-
cal Attention-based deep neural network for
Emotion Detection (HAtED). We also develop
multiple systems by considering different sets
of emotion classes for each system and report
the detailed comparative analysis of the results.
Experiments show the hierarchical attention-
based model achieves best results among the
considered baselines with accuracy of 69%.

1 Introduction

Online social media provides a platform for people
to share their perspectives on various issues with
their close ones or in the public forum. Twitter is
a very popular and heavily used platform among
the most social media users. The USA and India
are the 1st and 3rd leading countries based on num-
ber of twitter users as of July 20201. Twitter data

1https://www.statista.com/statistics/242606/number-of-
active-twitter-users-in-selected-countries/

serves as a rich source for text analysis tasks as this
type of data is not very long, yet very rich in emo-
tion content. This type of communication is free
from barriers of age, race, culture, gender, etc. In
recent times, understanding people’s opinion and
sentiment have been the need of the hour to meet
various purposes, such as real-time trending, better
customer service, winning elections, etc. Particu-
larly in Indian context, we often hear stories how
a single social-media post has changed the life of
an individual or an organization in a positive2 or
negative way.
Sentiment analysis or opinion mining deals with the
automatic identification and extraction of the un-
derlying subjective information from text. It is of-
ten synonymously described as ’polarity detection’
which is concerned with classifying an instance of
data as ’positive’, ’negative’ or ’neutral’. Contrary
to sentiment analysis, the emotional analysis relies
on a more fine-grained analysis of the subjectivity
information. It deals with the deeper analysis of hu-
man emotions and sensitivities. Emotion analysis
goes a step further into a person’s motives and im-
pulses. It gives valuable and exact insights that are
easily transformed into actions. It is usually based
on a wide spectrum of moods rather than a couple
of static categories. Inside positive sentiment, it
detects specific emotions like happiness, pride, sat-
isfaction, thankfulness or excitement, depending on
how it is configured. Similarly, negative sentiment
may span a variety of emotions like anger, sadness,
fear, hopelessness, blame, etc. Usually, sentiment
or emotion analysis works better on subjective texts
(texts having emotions or feelings) than objective
ones (statements or facts).
In this work, we focus on building a corpus of
emotion-annotated tweets from the relevant topics

2How social-media revived a helpless old couple running
an eatery ’baba ka dhaba’: https://www.instagram.
com/p/CGDAHGxlGTv/

460

of interest of recent times (i.e. social issues, tech-
nology, cyber-security etc.) that are quite a buzz
among today’s online social platform users. Most
of the available corpora for emotion are from the
domains limited to blogs, weather, elections, fairy
tales and some more. There are some available
corpora in the general domain too, but they mostly
cover tweets from politics, world news, sports, etc.
At the present, hardly any corpora cover diverse do-
mains. We consider Paul Ekman’s (Ekman, 1992)
basic emotions (Anger, Disgust, Fear, Happiness,
Sadness, Surprise) for the emotion labelling task.
A non-emotive label Others is also introduced for
tweets which do not fall within the scope of Ek-
man’s basic emotions (Ekman, 1992).

For effective usage of the dataset, we develop
multiple single-task models for emotion classifi-
cation. We develop CNN, Bi-GRU and Bi-LSTM
based deep learning models for the emotion classi-
fication task. We propose a Bi-GRU based frame-
work with hierarchical attention (Yang et al., 2016)
mechanism to extract important information from
each sentence in a tweet effectively. We also de-
velop a couple of models on a sub-set of emotion
classes (4 classes and 6 classes) and perform a com-
parative analysis with the developed systems with
7 classes. The proposed hierarchical attention sys-
tem for 7 classes attains superior results than the
considered baselines with an overall test accuracy
of 69% for the emotion classification task.

The rest of the paper is organized as follows. In
section 2, we discuss some of the existing work
and corpora concerning emotion analysis. Various
aspects of resource creation, challenges and anal-
ysis are discussed in Section 3. Next, we discuss
the methodologies we implement in Section 4. In
Section 5, we discuss the implementation details,
results and qualitative error analysis. Finally, we
conclude in Section 6 and acknowledge the funding
agency for this work in Section 7.

2 Background

In the past decades, several annotated corpora have
been created for emotion recognition from texts.
Various annotation schemes were introduced to
serve the specific purpose for which the corpus
is created. (Scherer and Wallbott, 1994) collected
questionnaires answered by people with different
cultural backgrounds to form The International Sur-
vey on Emotion Antecedents and Reactions (ISEAR)
dataset. People reported on their emotional events.

The dataset contains a total of 7,665 sentences
from reports by approximately 3,000 respondents.
Sentences are annotated with single labels, chosen
from the set of following labels: joy, fear, anger,
sadness, disgust, shame, and guilt. The Affective
Text task (Strapparava and Mihalcea, 2007) in Se-
mEval 2007 was proposed to focus on the emo-
tion classification of news headlines extracted from
news web sites. Given a set of predefined six emo-
tion labels (Paul Ekman’s basic emotions (Ekman,
1992)), classify the titles with the appropriate emo-
tion label and/or with a valence indication (posi-
tive/negative). (Aman and Szpakowicz, 2007) pub-
lished a dataset of blog content consisting of 5,205
sentences from 173 blogs. Each instance is anno-
tated with an emotion label from Ekman’s basic
emotions (Ekman, 1992) and also with an intensity
score for that emotion. (Alm, 2008) researched
the text-based emotion prediction problem in the
literature domain. The author provided an anno-
tated corpus of 15,302 sentences from 176 stories
annotated from among the following seven emo-
tion classes (angry, disgusted, fearful, happy, sad,
positive surprise, and negative surprise).

Crowdflower’s dataset, The Emotion in Text3, is
a noisy single-labelled crowd-sourced annotated
corpus of tweets. It primarily follows Plutchik’s
8 basic emotions (Plutchik, 2001) in addition to
another 3 emotions (love, confusion and no emo-
tion). The Electoral-Tweets dataset, published by
(Mohammad et al., 2015), targets the domain of
elections (2012 US Presidential election). It con-
sists of over 100,000 crowdsourced responses to
two detailed online questionnaires (the questions
targeted emotions, purpose, and style in electoral
tweets). (Ghazi et al., 2015) published the Emotion-
Stimulus dataset to predict the cause of emotion
in the text. The dataset consists of 820 sentences
which are annotated both with emotions (one la-
bel per sentence) and their causes, and 1,549 sen-
tences which are marked only with their emotion.
Ekman’s basic emotions (Ekman, 1992) with an
added class Shame have been used for the annota-
tion. The Hashtag Emotion Corpus, also known as
Twitter Emotion Corpus (TEC), was published by
(Mohammad and Kiritchenko, 2015), and consists
of 21,051 tweets. This resource was created to un-
derstand if emotion-word hashtags can successfully
be used as emotion labels. Ekman’s basic emotions

3https://data.world/crowdflower/
sentiment-analysis-in-text

461

(Ekman, 1992) have been considered for the anno-
tation process. Tweets were scraped that contained
hashtags in the form #emotion corresponding to Ek-
man’s (Ekman, 1992) 6 basic emotions (like #anger,
#disgust).

DailyDialogs is a dataset of dialogs published by
(Li et al., 2017) spanning over a variety of topics
and better structured than any social media data.
The SSEC corpus (Schuff et al., 2017) is an an-
notation of the SemEval 2016 Twitter stance and
sentiment corpus (Mohammad et al., 2017) with
Plutchik’s emotion labels (Plutchik, 2001). The
authors studied the relation between emotion anno-
tation and the other annotation layers like stance
and sentiment. The EmoInt dataset published by
(Mohammad and Bravo-Marquez, 2017) for evalu-
ation of the WASAA-2017 Shared Task of Emotion
Intensity (EmoInt) contains 7,097 tweets annotated
with a pair of emotion tag and intensity score of
the corresponding emotion. The annotation was
done via crowdsourcing with primarily (but not
limited to) one among the following 4 emotions
anger, joy, sadness, and fear and their respective
intensity score ranging between 0 to 1. The Affect
in Tweets Dataset of the SemEval 2018 Task 1 (Mo-
hammad et al., 2018) was introduced to determine
the intensity of both emotion and sentiment as well
as multi-label emotion classification of tweets.

Recent works have shown the effectiveness of
multi-task systems by learning several correlated
tasks simultaneously (Akhtar et al., 2019; Ma-
jumder et al., 2019; Akhtar et al., 2020).

3 Corpus Creation

In this section we briefly describe the data creation
process starting from the collection, pre-processing,
annotation and inter-annotator reliability.

3.1 Data Collection
We use the Twython 4 python library (wrapper)
to extract tweets from Twitter’s Standard search
API 5. Tweets were extracted using certain domain-
specific keywords (terror, cyber-security, technol-
ogy) and their combinations between the time in-
terval January 2018 and August 2019. Several hun-
dred thousand tweets were collected initially. This
was filtered using various lexicons to increase the
coverage of the affect oriented tweets. Irrelevant

4https://pypi.org/project/twython/
5https://developer.twitter.com/en/

docs/tweets/search/api-reference/
get-search-tweets

(questions, requests, poems) and code-mixed in-
stances were removed. Before using the corpus
for our experiments, we perform some basic pre-
processing to remove noise from the data (remov-
ing URLs 6, mentions, non-ASCII characters, punc-
tuations except ’.’, ’!’ and ’?’, conversion to lower-
case, etc). Smileys are replaced by their meanings
(for example: :-(as sad, <3 as Love). Frequently
used contractions are replaced by their full versions
(for example: can’t as cannot, he’s as he is). Each
tweet is sentence tokenized considering ’.’, ’!’ and
’?’ as the sentence delimiters.

3.2 Data Annotation
The entire dataset is manually annotated by three
annotators with the single-labelling scheme at the
document level, that is, a tweet can have at most
one emotion label. Some pre-annotated instances
from each category of emotion were prepared to
be shared with the annotators to facilitate the an-
notation process. Here, we use Ekman’s (Ekman,
1992) basic emotions that have been widely used
among several emotion classification tasks so far.
In addition to these 6 basic emotions (Anger, Dis-
gust, Fear, Joy, Sadness, Surprise), we introduce a
non-emotive class Others to mark those instances
that do not fall in the above emotion categories. A
few annotation samples are shown in Table 1.

3.3 Inter-Annotator Agreement
We measure the agreement among different annota-
tors using Cohen’s Kappa Statistic (Cohen, 1960)
for the emotion task. The average agreement at-
tained over the entire dataset was 0.74 which indi-
cates that the annotations are of fair quality. High-
est individual agreement attained was for the class
Joy (0.87) followed by Others (0.83). Lowest at-
tained agreement score (0.62) was for the Surprise
class. This may be attributed to two reasons: the
very low number of instances in the surprise class
and the presence of both positive and negative types
of surprise instances.

3.4 Corpus Analysis
Looking into the content of the corpus, we observe
that certain words frequently occur in instances
across all the emotion classes. For understand-
ing the role of a certain entity (or event) as a
contributing factor towards generating a particu-
lar kind of emotion, we observe some frequently

6We use Beautifulsoup to remove URLs:
https://pypi.org/project/beautifulsoup4/

462

Actual tweet Emotion

Tropical Cyclone Mona to Hit Fiji Islands on Saturday January 5,

2019 https://t.co/nwknedBFba Others

@congressdotgov Louis Farrakhan promotes terrorism and racism. Why

doesn’t anyone talk about him calling white people Satan? Anger

@WillieHarveyJr @CycloneFB Thanks for being a CYCLONE!!!

Honored to have you! Joy

Crime will not go WAY DOWN because of a border wall, sir. There is

crime from US CITIZENS EVERYDAY. https://t.co/HOg4EfEfnP Sadness

Table 1: Samples of annotated tweets from our dataset

occurring words (like terrorism, technology, crime,
etc.) and their frequencies of occurrences among
all the emotion classes. It is found that although
some words tend to occur across all the emotion
classes, their frequencies of distribution differ con-
siderably based on the type of word and the nature
of the emotion. Words like terrorism, weapons oc-
cur more frequently in classes like anger, disgust,
fear than in joy, sadness, others classes. The anno-
tated dataset has a very highly skewed distribution
of instances over the 7 classes that we consider.
There are four severely under-represented classes,
namely (disgust, fear, sadness and surprise) and
one over-represented class (others).

4 Methodologies

We develop various deep learning-based multi-task
models for automatic detection of emotion and
its intensity. As base learning techniques, we
use Convolution Neural Network (CNN) (Kim,
2014), Long Short Term Memory (LSTM) network
(Hochreiter and Schmidhuber, 1997) and Gated Re-
current Unit (GRU) network (Cho et al., 2014). We
build three separate multi-task models (CNN based,
Bi-GRU based and Bi-LSTM based) on top of
pre-trained word embedding (GloVe 7 (Pennington
et al., 2014)). The embedding layer is initialized
with the pre-trained weights and is learned during
the training in accordance with our dataset. We em-
ploy word attention (Bahdanau et al., 2014) mech-
anism to focus on the informative words in a doc-
ument (tweet) and obtain an aggregated represen-
tation(document vector) which is passed through
two fully-connected layers (100 neurons in each

7http://nlp.stanford.edu/data/
wordvecs/glove.840B.300d.zip

layer) and an output layer (with 7 neurons, one for
each class) with Softmax activation. We use the
categorical cross-entropy as the loss function.

4.1 Convolution Neural Network (CNN)

In the past few years, CNN has produced some
break-through results in various NLP tasks. CNN
relies heavily upon two operations for extract-
ing features: convolution (produce feature maps)
and pooling (dimension reduction). (Kim, 2014);
(Akhtar et al., 2016); (Singhal and Bhattacharyya,
2016) have used CNN in different sentiment anal-
ysis tasks. Our CNN based classification system
employs 3 convolution layers in parallel with 100
filters of sizes 2, 3 and 4 respectively. The output
of the layers is added (merged) to produce a single
output of the same shape as the individual layer’s
output. Max pooling operation (poolsize = 2) is
performed on the convoluted output which is fur-
ther passed through an attention layer (Bahdanau
et al., 2014) to get an aggregated representation
(document vector) of the informative words in a
document (tweet). Lastly, the output from the at-
tention layer is passed through two fully connected
layers (with 100 neurons in each layer) with ReLu
activation (Glorot et al., 2011) and an output layer
(with 15 neurons, one for each class) with Softmax
activation.

4.2 Bidirectional Long Short Term Memory
Network (Bi-LSTM)

LSTMs (Hochreiter and Schmidhuber, 1997) are
well known for their ability to preserve long term
dependencies in the text, thus eliminating the van-
ishing gradient problem. LSTM employs 3 gates
(forget, input and output) for regulating the amount

463

of information it wants to retain in its cell state
(memory). Bi-LSTMs have shown promising re-
sults for several applications. Bi-LSTMs run the
inputs in both forward and backward passes (pos-
itive time direction and negative time direction)
generating two hidden states which, when com-
bined, preserve information from both past and fu-
ture. We use a Bi-LSTM layer having 256 neurons
with Tanh recurrent-activation and 25% dropout
and recurrent-dropout. The encoded representa-
tion from the Bi-LSTM layer is passed through
the word attention (Bahdanau et al., 2014) layer
which is further passed through 2 fully connected
layers (with 100 neurons in each layer) with ReLu
activation (Glorot et al., 2011) and an output layer
(with 7 neurons, one for each class) with Softmax
activation.

4.3 Bidirectional Gated Recurrent Unit
(Bi-GRU)

Unlike LSTMs where 3 gates are involved, GRUs
has 2 gates (update and reset gate) to control the
amount of information it wants to retain, making it
simpler and faster internally than LSTMs. Bidirec-
tional GRUs takes into account the use of informa-
tion from both the past time steps and future time
steps to make decisions about the present state. Un-
like LSTMs, GRUs (Cho et al., 2014) do not have
any explicit cell state (memory) but still handle the
vanishing gradient problem and learn long-term de-
pendencies by the help of its gates mechanism. We
use a Bidirectional GRU layer having 256 neurons.
Word attention (Bahdanau et al., 2014) is applied
on the encoded output (from the GRU layer) which
is further passed through 2 fully connected layers
(with 100 neurons in each layer) with ReLu ac-
tivation (Glorot et al., 2011) and an output layer
(with 7 neurons, one for each class) with Softmax
activation.

4.4 Hierarchical Attention Based Deep
Neural Framework for Emotion
Detection (HAtED)

In recent works, Hierarchical attention (Bahdanau
et al., 2014) based deep learning systems have
gained popularity because of their good and con-
sistent performance in various classification tasks
when compared to the existing state-of-the-art tech-
niques. In this work, we try to exploit the advan-
tages of such an approach to improve upon our
attention mechanism by focusing on words (at the
sentence level) as well as sentences (at document

level).
HAtED focuses on each sentence in a tweet in-

dividually resulting in sentence vectors which are
further attended upon to produce a document vector.
The intuition is to focus upon important words in a
sentence as well as important sentences in a docu-
ment (tweet) for a particular emotion. For encoding
of the sentences, we leverage Bi-GRU (256 neu-
rons) based word encoder. Without making major
changes to the basic architecture of the hierarchical
attention framework as in the original work (Yang
et al., 2016), we tweaked the last few layers to
solve our objective. We pass the document vector
through a dense layer (100 neurons with ReLU ac-
tivation) followed by an output layer (7 neurons
with Softmax activation). We use categorical cross-
entropy loss function for the classification task.

Besides HAtED, we also develop two separate
Hierarchical Attention-based models considering
various sets of emotion classes. They are as fol-
lows:

• HAtED4-C: We develop HAtED4-C follow-
ing the same architecture as HAtED but con-
sidering a sub-set of the 7 classes as consid-
ered in HAtED. We take motivation from the
WASSA-2017 shared task (Mohammad and
Bravo-Marquez, 2017) on Emotion Intensity
and consider instances from the following 4
emotion classes in our dataset: Anger, Fear,
Joy, Sadness. Leaving out two of the severely
under-represented classes to build HAtED4-C

helps us to get a better approximation of the
effectiveness of our proposed approach as the
negative impact of having unbalanced dataset
is considerably reduced.

• HAtED6-C: In this setting, we do not con-
sider the Others class and train our model on
Ekman’s 6 Basic Emotion Classes (Ekman,
1992) which are as follows Anger, Disgust,
Fear, Joy, Sadness, Surprise. Overall archi-
tecture is similar to that of HEtED with only
change being the number of neurons in the
output layer (6 neurons).

All the models described in section 4 are trained
and tuned independently. Training of models is
done through backpropagation using the Adam op-
timizer (Kingma and Ba, 2014). We employ 25%
Dropout (Srivastava et al., 2014) in all the fully
connected layers to prevent over-fitting.

464

Emotion Train Test Val Total
Anger 2475 688 275 3438

Disgust 865 241 97 1207
Fear 445 123 49 617
Joy 2911 809 323 4043

Sadness 647 180 72 899
Surprise 242 67 27 336
Others 6033 1677 671 8381

Table 3: Distribution of instances over respective emo-
tion classes.

5 Experiments

5.1 Experimental Settings

Dataset: For our experiments, we split our curated
dataset into three parts: train, validation and test
sets in a 70:20:10 ratio, respectively. As mentioned
earlier, the dataset is highly skewed with several
under-represented classes (disgust, fear, sadness,
surprise). The data distribution over the various
emotion classes is shown in Table 3.

Implementation: We use the Python-based
libraries Keras and Scikit-learn for the implemen-
tation. We use 300-dimension GloVe (Pennington
et al., 2014) pre-trained embeddings to initialize
the embedding layer in our models which are
further learned during training on our data to
obtain emotion-enriched word representations.
First, we develop three basic deep-learning models
(CNN, Bi-GRU and Bi-LSTM) which have been
extensively used in various classification tasks on
textual data. Considering these models as baselines,

we build three hierarchical attention based Bi-GRU
systems for the emotion classification task. Two of
these three systems are built for 4 (HAtED4-C) and
6 (HAtED6-C) emotion classes, respectively. The
third one (HAtED) is a hierarchical attention based
emotion detection system for 7 classes.

Evaluation metrics: As our dataset is unbal-
anced, we consider the macro-average measure of
precision (P), recall (R) and F1-scores as our evalu-
ating metrics for the emotion detection task. In this
case, we also compute the overall test accuracy.

5.2 Results and discussion

Table 2 and table 4 show the per-class precision,
recall, F1-score and accuracy values for all the im-
plemented models. Scores for classes with fewer
instances (Disgust, Fear, Sadness, Surprise) are not
at par with that of the better-represented classes
with (Anger, Joy, Others). The 4-class model
(HAtED4-C) achieves better scores compared to
its 6-class (HAtED6-C) and 7-class (HAtED) vari-
ants for those classes. This may be attributed to the
lower degree variance in data because of the smaller
number of classes. The hierarchical attention-based
systems outperformed the base learning systems
(i.e. CNN, Bi-GRU and Bi-LSTM) in terms of the
various metrics considered. Overall performance
of the models on the test set is shown in Table 5.
We compare and evaluate the performance of those
systems which are built on 7-classes (i.e. CNN, Bi-
GRU, Bi-LSTM and HAtED). HAtED outperforms
the other models (for 7 classes) with a test accuracy
of 69% and macro-average F1-score of 0.46. Per-
formance of CNN is better than the HAtED model
in terms of precision. Results of the HAtED4-C and

CNN Bi-LSTM Bi-GRU
Emotion P R F1 A P R F1 A P R F1 A

Anger 0.55 0.69 0.61 0.69 0.45 0.75 0.59 0.75 0.56 0.66 0.61 0.66
Disgust 0.29 0.01 0.02 0.01 0.60 0.01 0.03 0.01 0.26 0.16 0.20 0.16

Fear 0.75 0.03 0.05 0.03 0.64 0.06 0.11 0.06 0.41 0.17 0.24 0.17
Joy 0.80 0.75 0.77 0.75 0.79 0.79 0.79 0.79 0.79 0.78 0.79 0.78

Sadness 0.27 0.02 0.03 0.02 0.00 0.00 0.00 0.00 0.31 0.11 0.16 0.11
Surprise 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Others 0.67 0.84 0.75 0.84 0.71 0.80 0.75 0.80 0.71 0.82 0.76 0.82

Table 2: Per-class Precision (P), Recall (R), F1-score (F1) and Accuracy (A) values for the CNN, Bi-LSTM and
Bi-GRU models

465

HAtED4-C HAtED6-C HAtED
Emotion P R F1 A P R F1 A P R F1 A

Anger 0.81 0.85 0.83 0.85 0.64 0.87 0.74 0.87 0.66 0.78 0.71 0.78
Disgust - - - - 0.42 0.15 0.22 0.15 0.35 0.28 0.31 0.28

Fear 0.44 0.38 0.41 0.38 0.57 0.39 0.46 0.39 0.38 0.15 0.22 0.15
Joy 0.88 0.91 0.90 0.91 0.89 0.89 0.89 0.89 0.78 0.81 0.79 0.81

Sadness 0.62 0.45 0.52 0.45 0.44 0.49 0.46 0.49 0.32 0.11 0.11 0.11
Surprise - - - - 0.25 0.01 0.03 0.01 0.00 0.00 0.00 0.00
Others - - - - - - - - 0.73 0.79 0.76 0.79

Table 4: Per-class Precision (P), Recall (R), F1-score (F1) and Accuracy (A) values for the Hierarchical attention
based Bi-GRU systems. ’-’ indicates no score corresponding to a particular metric for a specific emotion class as
that particular system do not consider that emotion class during training.

HAtED6-C models show that less variance in data
(fewer number of classes) enhances the decisive
power of the models for the classes it is built upon.

We observe from 5 that when we consider a
fewer number of classes during training our sys-
tem (HAtED4-C), reducing the negative impact of
severely under-represented classes (disgust, sur-
prise), the scores for all the metrics improves re-
markably when compared to HAtED. The scores
from the HAtED6-C model shows that leaving out
the Others class has also resulted in improving the
scores of HAtED system. In other words, the intro-
duction of Others class leads to an increase in mis-
classifications by the HAtED system. This effect
is quite similar to the situation of having Neutral
class in training for a Sentiment classification task
which eventually leads to performance degradation
of the sentiment classifier.

5.3 Qualitative Analysis
We perform a detailed qualitative analysis of the
results from the models that we developed. Table
6 (correct classifications) and Table 7 (incorrect
classifications) show some samples of predictions
by the HAtED model. Indeed, implicit tweets (i.e.
instances not having any explicit mention of affect
information) are the major sources of errors. For
example:

• Tweet: @Ru NRD Truueee. They said they
got involved to fight terrorism and ISIS but
we all know why they are really involved.
Actual: Disgust; Predicted: Joy.

Tweets having multiple emotions (say, anger as
well as disgust) seems to hinder the models’ overall
performance.

Models P R F1 Acc.
(Considering 7 classes)

Baselines
CNN 0.47 0.33 0.32 0.66

Bi-GRU 0.43 0.38 0.39 0.67
Bi-LSTM 0.46 0.34 0.32 0.67

Proposed
HAtED 0.46 0.46 0.46 0.69

Considering 4 classes
HAtED4-C 0.68 0.64 0.66 0.81

Considering 6 classes)
HAtED6-C 0.53 0.46 0.46 0.71

Table 5: macro-average Precision, Recall, F1-score val-
ues and Accuracy scores on the test set are shown in the
table. Values in bold signify the best attained scores for
the respective metrics among the 7-class models.

• Tweet: @nimish4fk @RatanSharda55
@kushal mehra @vivekagnihotri Why are
you surprised? Congress is the power that
created naxalism in india and used it to grab
and retain power.
Actual: Disgust; Predicted: Anger.

It is observed that certain instances from joy and
others class are misclassified as belonging to some
negative emotion class. This is primarily due to the
presence of word(s), in such instances, which have
mostly occurred in negative contexts in the overall
dataset.

6 Conclusion

In this work, we have proposed a benchmark
deep learning setup for emotion detection. The

466

Tweet Act Emo Pred Emo

’Criminals are evolving their social engineering tactics in an

attempt to trick even the most savvy individuals Stay alert Anger Anger

to the latest scam strategies to avoid becoming a victim’

’Cyclone Penny re-forms and could still about face toward

Queensland coast’ Fear Fear

’DrumFit is a fun way to blend technology and physical education

at Bear Bytes Tech Expo’ Joy Joy

’#Cyberattacks Skyrocketed in 2018. Are You Ready for 2019?

Meet the premier #cyber industry at #ISDEF2019! Others Others

https://t.co/KUghSb2foD’

Table 6: Samples of correct predictions from the HAtED model. Act Emo and Pred Emo means Actual Emotion
and Predicted Emotion respectively.

Tweet Act Emo Pred Emo

’For those who are thinking Casteism doesn’t exist and saying

don’t divide Hindus Wake up, u were already divided by the Anger Disgust

Varna system made by Upper caste’

’When your college finally gets a MS cyber security program!!!’ Joy Others

’Schools Volcano Explosion Experiment Goes Horrifically

Wrong In India’ Fear Disgust

’I still remember when Arsenal lost 4-0 to Chelsea on my

birthday. Terrorism.’ Sadness Anger

Table 7: Samples of incorrect predictions from the HAtED model.

corpus introduced in this work has been built
from diverse domains of tweets carrying various
emotions. We have built baseline models with
CNN, Bi-GRU and Bi-LSTM. The performance
of the Bi-GRU variant has improved significantly
when we leveraged the effectiveness of hierarchical
attention mechanism in HAtED. Comparison of
results has demonstrated that the HAtED model
outperforms the baselines by a fair margin (69%
test accuracy on the emotion classification task)
showing the efficacy of our approach.

Scarcity of instances in some emotion classes have
resulted in low per-class performances for those
classes showing the scope of improvement for
our proposed system. We intend to extend the
dataset with the goal to get a balanced distribution
of instances over all the classes. We would also

like to address the present problem in a multi-label
multi-class setting since it was observed that a
considerable amount of tweets have shown the
presence of more than one emotion. With the
intuition that sentiment may play a positive role
in assisting the emotion classification task, we
are eager to build a parallel multi-task system for
automatic emotion (primary task) and sentiment
detection (secondary task).

References
Md Shad Akhtar, Asif Ekbal, and Erik Cambria. 2020.

How intense are you? predicting intensities of emo-
tions and sentiments using stacked ensemble. IEEE
Computational Intelligence Magazine, 15(1):64–75.

Md Shad Akhtar, Ayush Kumar, Asif Ekbal, and Push-
pak Bhattacharyya. 2016. A hybrid deep learning
architecture for sentiment analysis. In Proceedings

467

of COLING 2016, the 26th International Confer-
ence on Computational Linguistics: Technical Pa-
pers, pages 482–493.

Shad Akhtar, Deepanway Ghosal, Asif Ekbal, Pushpak
Bhattacharyya, and Sadao Kurohashi. 2019. All-in-
one: Emotion, sentiment and intensity prediction us-
ing a multi-task ensemble framework. IEEE Trans-
actions on Affective Computing.

Ebba Cecilia Ovesdotter Alm. 2008. Affect in* text and
speech. Citeseer.

Saima Aman and Stan Szpakowicz. 2007. Identifying
expressions of emotion in text. In International Con-
ference on Text, Speech and Dialogue, pages 196–
205. Springer.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. arXiv preprint arXiv:1409.1259.

Jacob Cohen. 1960. A coefficient of agreement for
nominal scales. Educational and psychological mea-
surement, 20(1):37–46.

Paul Ekman. 1992. An argument for basic emotions.
Cognition & emotion, 6(3-4):169–200.

Diman Ghazi, Diana Inkpen, and Stan Szpakowicz.
2015. Detecting emotion stimuli in emotion-bearing
sentences. In International Conference on Intelli-
gent Text Processing and Computational Linguistics,
pages 152–165. Springer.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Deep sparse rectifier neural networks. In Pro-
ceedings of the fourteenth international conference
on artificial intelligence and statistics, pages 315–
323.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang
Cao, and Shuzi Niu. 2017. Dailydialog: A manually
labelled multi-turn dialogue dataset. arXiv preprint
arXiv:1710.03957.

Navonil Majumder, Soujanya Poria, Haiyun Peng,
Niyati Chhaya, Erik Cambria, and Alexander Gel-
bukh. 2019. Sentiment and sarcasm classification
with multitask learning. IEEE Intelligent Systems,
34(3):38–43.

Saif M Mohammad and Felipe Bravo-Marquez. 2017.
Wassa-2017 shared task on emotion intensity. arXiv
preprint arXiv:1708.03700.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalua-
tion (SemEval-2018), New Orleans, LA, USA.

Saif M. Mohammad and Svetlana Kiritchenko. 2015.
Using hashtags to capture fine emotion cate-
gories from tweets. Computational Intelligence,
31(2):301–326.

Saif M Mohammad, Parinaz Sobhani, and Svetlana
Kiritchenko. 2017. Stance and sentiment in tweets.
ACM Transactions on Internet Technology (TOIT),
17(3):26.

Saif M Mohammad, Xiaodan Zhu, Svetlana Kir-
itchenko, and Joel Martin. 2015. Sentiment, emo-
tion, purpose, and style in electoral tweets. Informa-
tion Processing & Management, 51(4):480–499.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Robert Plutchik. 2001. The nature of emotions: Hu-
man emotions have deep evolutionary roots, a fact
that may explain their complexity and provide tools
for clinical practice. American scientist, 89(4):344–
350.

Klaus R Scherer and Harald G Wallbott. 1994. Evi-
dence for universality and cultural variation of differ-
ential emotion response patterning. Journal of per-
sonality and social psychology, 66(2):310.

Hendrik Schuff, Jeremy Barnes, Julian Mohme, Sebas-
tian Padó, and Roman Klinger. 2017. Annotation,
modelling and analysis of fine-grained emotions on
a stance and sentiment detection corpus. In Pro-
ceedings of the 8th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Me-
dia Analysis, pages 13–23.

Prerana Singhal and Pushpak Bhattacharyya. 2016.
Borrow a little from your rich cousin: Using em-
beddings and polarities of english words for mul-
tilingual sentiment classification. In Proceedings
of COLING 2016, the 26th International Confer-
ence on Computational Linguistics: Technical Pa-
pers, pages 3053–3062.

468

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning
research, 15(1):1929–1958.

Carlo Strapparava and Rada Mihalcea. 2007. Semeval-
2007 task 14: Affective text. In Proceedings of the
Fourth International Workshop on Semantic Evalua-
tions (SemEval-2007), pages 70–74.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 conference of the North
American chapter of the association for computa-
tional linguistics: human language technologies,
pages 1480–1489.

469

Proceedings of the 17th International Conference on Natural Language Processing, pages 470–474
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

PhraseOut: A Code Mixed Data Augmentation Method for Multilingual
Neural Machine Translation

Binu Jasim
IIIT Hyderabad
binujasim.t

@research.iiit.ac.in

Vinay P Namboodiri
IIT Kanpur
vinaypn

@cse.iitk.ac.in

C.V. Jawahar
IIIT Hyderabad

jawahar
@iiit.ac.in

Abstract
Data Augmentation methods for Neural
Machine Translation (NMT) such as back-
translation (BT) and self-training (ST) are
quite popular. In a multilingual NMT system,
simply copying monolingual source sentences
to the target (Copying) is an effective data
augmentation method. Back-translation aug-
ments parallel data by translating monolingual
sentences in the target side to source language.
In this work we propose to use a partial back-
translation method in a multilingual setting.
Instead of translating the entire monolingual
target sentence back into the source language,
we replace selected high confidence phrases
only and keep the rest of the words in the
target language itself. (We call this method
PhraseOut). Our experiments on low resource
multilingual translation models show that
PhraseOut gives reasonable improvements
over the existing data augmentation methods.

1 Introduction

Data augmentationmethods are popular in the field
of computer vision. For example, it is a common
practice to obtain extra training data by flipping
and cropping images. Consistency regularization
refers to the idea that a model should output the
same label to an augmented example as the original
example which in turn encourages distributional
smoothness in the model (Berthelot et al., 2019).
Consistency regularization has been used to obtain
state of the art results in automatic speech recogni-
tion (S. Park et al., 2019) by randomly striking out
horizontal and vertical portions of speech spectro-
gram. But for textual data, which is discrete, con-
sistency regularization techniques are not easily ap-
plicable since changing a singleword could change
the entire meaning of a sentence. This work pro-
poses a data augmentation method for textual data
which doesn’t change its original meaning and en-
courage consistency regularization.

Some of the existing approaches to data augmen-
tation in Neural Machine Translation (NMT) are
based on word replacements such as word dropout
(Sennrich et al., 2016a; Gal and Ghahramani,
2016). A recent approach, termed SwitchOut
(Wang et al., 2018) claims that randomly replac-
ing words in the source and target sentences by
words uniformly sampled from the respective vo-
cabularies can improve neural machine translation.
There are also attempts to inject artificial noise in
the clean data according to the distribution of types
of actual noise to make NMT systems more robust
(Vaibhav et al., 2019).
Another approach to data augmentation is to

make use of monolingual data. The most pop-
ular example is back-translation (Sennrich et al.,
2016b) where a reverse translation model is em-
ployed to translate large amounts of target mono-
lingual data back into source language. This
(noisy) source and original target pair is added as
additional parallel data and is shown to be useful
while attempting to obtain state of the art results in
machine translation (Edunov et al., 2018).
Multilingual NMT whereby sharing a single

model between several languages has become a
standard paradigm in NMT including industrial
applications such as Google Translate (Johnson
et al., 2017). Multilingual NMT has several advan-
tages over training individual translation models
for each language pair including faster inference,
enabling zero shot machine translation and supe-
rior performance (Aharoni et al., 2019). A multi-
lingual NMTmodel is particularly beneficial when
training to translate low resource languages (Neu-
big and Hu, 2018).
The main contribution of this work is to show

that a phrase based data augmentation strategy con-
sistently provides improvement especially in low-
resource language settings. We show that this is
also useful in code-mixed translation settings.

470

2 Existing Data Augmentation Methods
for NMT

Let (X ,Y) denote the available parallel corpus.
Our task is to find augmented parallel sentences
(x̂, ŷ) from the same distribution where the paral-
lel data is sampled from.
After acquiring synthetic parallel data, it is ap-

pended to the available parallel data. An encoder-
decoder based NMT model is trained to maximize
the usual MLE objective as follows:

N∑

n=1

T (n)∑

t=1

log pθ(y
(n)
t |x(n), y

(n)
<t) (1)

Below we discuss several existing data aug-
mentation techniques to generate synthetic parallel
data.

Copying Monolingual Data (Copying): The
monolingual target sentences are copied as the
source sentence as well to create a synthetic paral-
lel corpus to train (Currey et al., 2017; Burlot and
Yvon, 2018). This is shown to improve the target
side language fluency as it could learn from large
amounts of monolingual sentences. This method is
suitable for a multi-lingual setting as the encoder
has to deal with sentences in more than one lan-
guage. Note that we can combine word dropout
with Copying.

Word Dropout: Dropping words from the
source as well as target sentences (with a probabil-
ity, say 0.1) has shown to improve the performance
of NMT systems (Sennrich et al., 2016a). This
could help learn the sentence representation better
as in a denoising autoencoder (Vincent et al.,
2008).

SwitchOut: This method proposes to replace
a word (with a fixed probability, similar to the
dropout probability) with another word from the
vocabulary, chosen uniformly (Wang et al., 2018).
SwitchOut is applied to both the source and the tar-
get sentences. Note that SwitchOut doesn’t make
use of any additional monolingual data. It per-
forms augmentations only on the parallel data.
The paper report high variance in performance,

because of which they run experiments 7 times and
report the median performance. The performance
was shown to be better than word dropout. Yet we
find that data augmentation by Copying is much
better than SwitchOut. Hence if extra monolingual

data is available, then SwitchOut is of no practical
significance.

Back Translation (BT): Along with the origi-
nal NMT system, maintain a translation system in
the reverse direction. Then each monolingual sen-
tence is translated into the source sentence. This
noisy source and good target pair can be used as
a synthetic training data (Sennrich et al., 2016b).
This has been shown to improve machine transla-
tion significantly to achieve new state-of-the-art re-
sults (Edunov et al., 2018). Yet Back Translation
is of limited benefit if the initial reverse model is
of poor quality (Wang et al., 2018).

Self Training (ST) Forward translate monolin-
gual data using the same model to obtain target
sentence. This source and noisy target pair can be
used as synthetic augmented data along with paral-
lel data (He et al., 2020). Self training gives similar
performance improvements as BT.
In this work we don’t compare against ST since

it uses monolingual data in the source side while
BT as well as other methods use monolingual data
in the target side.

3 PhraseOut

We propose to use a partial back-translation tech-
nique in amulti-lingual setting. We do the augmen-
tation only in the source side and keep the target
sentence as it is similar to back-translation. The
augmented sentence ŷ is obtained by replacing a
randomly chosen phrase from the target sentence
y with a source language phrase. Hence we hope
that both y and ŷ are close in the semantic space
and hence the distributional smoothness is main-
tained. This augmented sentence is copied as the
source sentence.
PhraseOut is described in Algorithm 1. Using

the available parallel data, we learn a phrase map-
ping table. A phrase alignment tool like mgiza1
can be used for this. Next we augment target mono-
lingual sentences if phrases in that sentence is
present in the phrase table and replace that phrase
with the corresponding source phrase. This essen-
tially creates a code mixed source sentence. We
hope that this could help bring the word embed-
ding of similar words in different languages to be
aligned. The augmented data generated by Phrase-
Out is concatenated with the original parallel data
for further training or finetuning.

1https://github.com/moses-smt/mgiza

471

initialization;
(X ,Y): Available parallel data ;
Ỹ: Monolingual data in the target domain ;

Learn a phrase table P using (X ,Y) ;
foreach sentence ỹ in Ỹ do

Let N denote all ngrams in ỹ (n<=4) ;
foreach ñy ∈ N chosen randomly do

if ñy ∈ P then
Find corresponding source
phrase ñx from P ;
x̃← Replace ñy with ñx in ỹ
Append (x̃, ỹ) to (X ,Y) ;
break

end
end

end
Algorithm 1: PhraseOut is a data augmenta-
tionmethod suited for amultilingual neuralma-
chine translation

4 Experimental Setup

4.1 Datasets

We experiment on many to one multilingual trans-
lation from Indian languages to English. We use
the WAT 2018 dataset (Nakazawa et al., 2018) for
our experiments. It has English translations of
several Indian languages. We chose Hindi (hi),
Bengali (bn), Malayalam (ml), Tamil (ta) and Tel-
ugu (te). The training data size is shown in 1
We use English sentences from the book corpus,

a subset of the IIT-B dataset (Kunchukuttan et al.,
2018) as our monolingual corpus.
We use moses tokenizer 2 to tokenize English

and Indic nlp library 3 for tokenizing Indian lan-
guages.

Train Size Dev Size Test Size

bn-en 362,240 1250 1750
hi-en 125,953 1500 2000
ml-en 395,047 1500 2000
ta-en 66,537 1500 2000
te-en 68,573 1500 2000
iitb - - 2507

Table 1: Dataset Description

2https://github.com/moses-smt/mosesdecoder/
blob/master/scripts/tokenizer/tokenizer.perl

3https://github.com/anoopkunchukuttan/indic_
nlp_library

4.2 Phrase Table Generation
We use Moses (Koehn et al., 2007) to learn phrase
tables. The phrase alignment is learned by mgiza
and the phrase tables are generated by moses 4.
Bad phrase table entries are removed by filtering
by a probability threshold to ensures that good
quality phrase translations are extracted out. In
order to filter, we multiply the phrase translation
probability in both directions and lexical weighting
probability (Koehn et al., 2003) in both the direc-
tions together and keep the entry only if the mul-
tiplied probability is above 1e − 12. A snippet of
such a phrase table is shown in 2.

Peter speaking softly पीटर धीर बोले
Peter taught me पीटर ने मुझे सखाया
Peter पीटर
Petersburg , Russia पीटसबग , स
Petersburg , पीटसबग
Peth . पेठ ।
Peth पेठ
Petition ? याचीका ?
Petition याचीका

Table 2: A snippet from the phrase table learned using
the parallel corpus

4.3 Models and Experimental Procedures
We use the transformer architecture from the
fairseq framework 5. and take an ensemble of last
10 checkpoints for testing.
We use SentencePiece (Kudo, 2018) subword to-

kenization. A joint subword vocabulary of 16,000
is used for the source side Indian languages and
8,000 is used for the target side English.
5 Results

We provide evaluations that compare several mono
lingual augmentation methods, the effect of mono-
lingual data size and the comparison with back-
translation.

5.1 Copying vs PhraseOut
We use 200K monolingual sentences and compare
mono-lingual augmentation (Copying) against
PhraseOut. Note that PhraseOut is applied to aug-
ment all 5 language pairs. As shown in the table,
PhraseOut gives around 1 BLEU point improve-
ment Copying.

4http://www.statmt.org/moses/
5https://github.com/pytorch/fairseq

472

Lang Baseline Copying Switch
Out

PhraseOut

wat-hi 30.30 31.14 30.51 32.06
wat-bn 20.39 20.86 20.44 21.07
wat-ml 17.68 19.04 17.66 20.62
wat-ta 20.99 21.60 21.59 21.64
wat-te 27.74 28.44 28.36 29.76
iitb-hi 8.70 9.52 9.32 9.90

Table 3: Results on the WAT 2018 Test Set (Tokenized
BLEU score)

5.2 Effect of Monolingual Data Size

We vary monolingual data size from 50K, 100K,
200K to 500K used for PhraseOut. The results on
the IITB test set for the Hindi to English translation
is shown below.

Size Baseline 50K 100K 200K 500K

iitb-hi 8.70 9.25 9.68 9.90 10.09

Table 4: Results on IITB Test Set: Monolingual data
size vs BLEU score

As shown in the table, the performance of
PhraseOut increases with more monolingual data,
but the improvement becomes lesser as monolin-
gual data size is further increased.

5.3 Back Translation for Data Augmentation

Back-translation requires a reasonably goodmodel
to begin with, since generating too poor syn-
thetic sentences could even deteriorate perfor-
mance. With the amount of training data we use,
BT with NMT doesn’t produce good synthetic
source sentences. Hence we train SMT (moses) in
the reverse direction (i.e. English to Hindi) using
theWAT2018 hi-en parallel data and agument 50K
back-translatedmonolingual sentences to the paral-
lel data. We obtain a BLEU score of 8.78 which is
only slightly better than the baseline.

5.4 Qualitative Analysis: Translation of Code
Mixed Text

Code mixed text is abundant in social media, es-
pecially in non-native English speaking countries
such as India. A qualitative comparison of transla-
tion of a code mixed text is shown in Table 5.
The baseline multi-lingual NMT system is brit-

tle and breaks when it has to translate a code mixed

Source I am sure minister ने अपने hired
writer को बोला होगा "कुछ अ छा
लखो"

Reference I am sure the minister would
have told his hired writer to
”Write Something Good”

Multilingual
NMT

I am sure minister hired writer ”
”

PhraseOut I am sure minister has told his
hired speech to write the good
note

Table 5: Translating social media text

text. On the other hand, a multi-lingual system
trained with PhraseOut augmentation is more ro-
bust to code mixed input and outputs a reasonable
translation.

6 Related Works

Recently a few works have explored the utility of
code mixed (also called code switched) augmenta-
tions. (Song et al., 2019) proposes word replace-
ments as in PhraseOut for the purpose of lexicon
induction. They perform data augmentation on the
parallel data and don’t use any monolingual data.
Recently code switched pretraining (Yang et al.,
2020) (Lin et al.) has shown to work favorably
against popular cross lingual pretraining methods.
But all these methods use unsupervised dictio-

nary induction (Artetxe et al., 2018) to obtain par-
allel word translations. But unsupervised dictio-
nary induction performs quite poorly for distant
language pairs such as English to Indian languages
(Khatri et al., 2020).

7 Conclusion and Future Work

We propose a simple yet useful data augmenta-
tion technique suitable for a multilingual NMT set-
ting, called PhraseOut. Our experiments confirm
that PhraseOut is effective in improving the per-
formance of multilingual NMT systems. The im-
provement in performance could be attributed to
better regularization from code mixing.
Training using code mixed data could be useful

for improving the robustness of NMT systems. So-
cial media text usually contains code mixed data.
One future direction of research is to see how
PhraseOut can improve robustness in this kind of
a setting.

473

References
Roee Aharoni, Melvin Johnson, and Orhan Firat. 2019.
Massively multilingual neural machine translation.
In NAACL.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2018.
A robust self-learning method for fully unsupervised
cross-lingual mappings of word embeddings. In
ACL.

David Berthelot, Nicholas Carlini, Ian Goodfellow,
Nicolas Papernot, Avital Oliver, and Colin Raf-
fel. 2019. Mixmatch: A holistic approach
to semi-supervised learning. arXiv preprint
arXiv:1905.02249.

Franck Burlot and Francois Yvon. 2018. Using mono-
lingual data in neural machine translation: a system-
atic study. InWMT.

Anna Currey, Antonio Valerio Miceli Barone, and Ken-
neth Heafield. 2017. Copied monolingual data im-
proves low-resource neural machine translation. In
WMT.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. In EMNLP.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In NIPS.

Junxian He, Jiatao Gu, Jiajun Shen, and Marc’Aurelio
Ranzato. 2020. Revisiting self-training for neural se-
quence generation. In ICLR.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2017. Google’s
multilingual neural machine translation system: En-
abling zero-shot translation. In ACL.

Jyotsana Khatri, Rudra Murthy, and Pushpak Bhat-
tacharyya. 2020. A study of efficacy of cross-lingual
word embeddings for indian languages. In CoDS
COMAD.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open source
toolkit for statistical machine translation. In ACL.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In
NAACL.

Taku Kudo. 2018. Subword regularization: Improving
neural network translation models with multiple sub-
word candidatesn. In ACL.

Anoop Kunchukuttan, PratikMehta, and Pushpak Bhat-
tacharyya. 2018. The IIT Bombay English-Hindi
Parallel Corpus. In LREC.

Zehui Lin, Xiao Pan, Mingxuan Wang, Xipeng Qiu,
Jiangtao Feng, Hao Zhou, and Lei Li. Pre-training
multilingual neural machine translation by leverag-
ing alignment information.

Toshiaki Nakazawa, Katsuhito Sudoh, Shohei Hi-
gashiyama, Chenchen Ding, Raj Dabre, Hideya
Mino, Isao Goto, Win Pa Pa, Anoop Kunchukuttan,
and Sadao Kurohashi. 2018. Overview of the 5th
workshop on asian translation. InWAT.

Graham Neubig and Junjie Hu. 2018. Rapid adaptation
of neural machine translation to new languages. In
EMNLP.

Daniel S. Park,WilliamChan, YuZhang, Chung-Cheng
Chiu, Barret Zoph, Ekin D. Cubuk, and Quoc V. Le.
2019. Specaugment: A simple data augmenta-
tion method for automatic speech recognition. In
arXiv:1904.08779v1.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Edinburgh neural machine translation sys-
tems for wmt 16. In WMT.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Improving neural machine translation mod-
els with monolingual data. In ACL.

Kai Song, Yue Zhang, Heng Yu, Weihua Luo, Kun
Wang, and Min Zhang. 2019. Code-switching for
enhancing nmt with pre-specified translation. In
NAACL.

Vaibhav, Sumeet Singh, Craig Stewart, and Graham
Neubig. 2019. Improving robustness of machine
translation with synthetic noise. In NAACL.

P Vincent, Hugo Larochelle, Yoshua Bengio, , and P.A.
Manzago. 2008. Extracting and composing robust
features with denoising autoencoders. In ICML.

Xinyi Wang, Hieu Pham, Zihang Dai1, and Graham
Neubig. 2018. Switchout: an efficient data augmen-
tation algorithm for neural machine translation. In
EMNLP.

Zhen Yang, Bojie Hu, Ambyera Han, Shen Huang, and
Qi Ju. 2020. Csp: Code-switching pre-training for
neural machine translation. In EMNLP.

474

Proceedings of the 17th International Conference on Natural Language Processing, pages 475–480
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

CLPLM: Character Level Pretrained Language Model for Extracting
Support Phrases for Sentiment Labels

Raj Ratn Pranesh
Birla Institute of Technology

Mesra, India
raj.ratn18@gmail.com

Sumit Kumar
Birla Institute of Technology

Mesra, India
sumit.atlancey@gmail.com

Ambesh Shekhar
Birla Institute of Technology

Mesra, India
ambesh.sinha@gmail.com

Abstract

In this paper, we have designed a character-
level pre-trained language model for extract-
ing support phrases from tweets based on the
sentiment label. We also propose a character-
level ensemble model designed by properly
blending Pre-trained Contextual Embeddings
(PCE) models- RoBERTa, BERT, and AL-
BERT along with Neural network models-
RNN, CNN and WaveNet at different stages
of the model. For a given tweet and associated
sentiment label, our model predicts the span
of phrases in a tweet that prompts the particu-
lar sentiment in the tweet. In our experiments,
we have explored various model architectures
and configuration for both single as well as en-
semble models. We performed a systematic
comparative analysis of all the model’s per-
formance based on the Jaccard score obtained.
The best performing ensemble model obtained
the highest Jaccard scores of 73.5, giving it
a relative improvement of 2.4% over the best
performing single RoBERTa based character-
level model, at 71.5(Jaccard score).

1 Introduction

Sentiment analysis has been a trendy topic for the
last some decades. Whether its a graphical image
or textual data, all types of an entity consists of
something that conveys the sentiment.

With the recent development in machine-
learning methods, new innovative and powerful
models have developed in the field on natural lan-
guage processing such heavy pretrained language
models.

We designed a novel character-level pretrained
language model framework which utilizes the trans-
formers and character-level language models to
extract sentiment phrases. The proposed model
works in four steps- (i) token-level span predic-
tion using transformer model, (ii) converting token-
level representation to character-level representa-

tion, (iii) precise character-level span prediction
using character-level neural network model, and
(iv) retrieving selected sentiment phrases. We also
proposed an ensemble character-level model that
surpassed the single transformer models. Despite
of being a simple idea, ensemble learning has al-
ways been successful in several tasks(Zhang and
Ma, 2012). We conducted extensive performance
analysis of various models and systematically pre-
sented our results in the paper.

The primary challenge was in the dataset. As
shown in the table 2, for the word such as likeeee,
the selected sentiment phrase can be like or likee
or likeee or likeeee. So, by predicting the start
and end tokens would not get us to the exact senti-
ment text span. So, we needed to consider the start
and end characters to predict the correct sentiment
phrase span. It motivated us to utilize the strong
contextual understating of transformers and precise
character-level text processing of character-level
neural network models for span detection based on
different sentiments. Through this study we aim
at generating some insights about what exactly a
person was thinking while generating any textual
content. For example, if a user complains or trolls
about a product then there is a need to understand
the core reason that dissatisfies that customer about
the product. Therefore extracting the phrases that
trigger the sentiment can play a significant role in
better understanding of the user-generated content.

2 Proposed Transformer Language
Models

In this section, we have sequentially discussed and
elaborated on the design of the proposed character
level pre-trained language models. We first talked
about the architecture and working of single Pre-
trained Contextual Embeddings (PCE) based char-
acter model. Then we talked about the construction

475

and functioning of the character level ensemble
model.

2.1 Character Level Transformer Model

The architecture of a character level pre-trained
language model divided into two levels. In the ex-
periment, we used 5-fold cross-validation(4-fold
data for training and 1-fold for testing) for each
PCE model for comparative analysis, but the over-
all design and workflow were usual in every single
PCE model. So we have provided a generalized
pipeline that is compatible with all PCE models.

2.1.1 Level 1
At phase 1, we will discuss the transformer’s ar-
chitecture and training procedure along with the
conversion of token level predictions to character
level predictions. Following are the steps involved
in phase 1:

Language Model Processing: We separately
used following Pre-trained Contextual Embedding
(PCE) models to build Level 1 model: BERT-
base-uncased(Devlin et al., 2018a), BERT-large-
uncased-WWM(Devlin et al., 2018a), ALBERT-
large-v2, ALBERT-base-v2(Lan et al., 2019),
RoBERTa-base(Liu et al., 2019) and RoBERTa-
large. All the pre-trained models were fine-tuned1

on SQuAD2.0(Rajpurkar et al., 2018) dataset. The
training data was consist of two components-
tweet text(t) and sentiment label(s). For an
input in the PCE model, the data was struc-
tured by concatenating t and s with separator to-
ken and classification token added at the begin-
ning. So for BERT and ALBERT the input se-
quence was [CLS]s[SEP]t[SEP] whereas for
RoBERTa it was <s>s</s></s>t</s>. We ex-
tracted AvgPool by performing average pooling
and MaxPool by performing max-pooling over
the output values from hidden states at the same
index of each (n-1) layer(except the embedding
layer). The AvgPool and MaxPool were con-
catenated together to form a combined linear vec-
tor which was then passed to two fully connected
layers, one of size 1024 with tanh activation and
next one of size 128. Followed by a multi-sample
dropout(Inoue, 2019) layer and finally a softmax
activation layer. The model outputs the probabil-
ities of tokens for being start and end of the sen-
timent phrases span in the tweets. Custom loss

1Pre-trained models are available at
https://huggingface.co/models

as described here 3.3 was used by modifying the
cross-entropy loss. The Jaccard score was calcu-
lated on test data to measure the performance of
the trained model using the test data as described
here 3.1.

Character Level Prediction: Once the trans-
former finished training we had five train models
weight because of 5-fold cross-validation. We took
the mean start/end token level predictions of all
five models on the whole dataset(train+test)b. To
make the token level predictions compatible with
character-level neural network model we converted
the token level start/end predictions to character
level start/end predictions. This is done by firstly
removing the padding and sentiment label tokens
and then assigning each of the characters in the
tweet their respective token probabilities received
from the transformer(PCE) model.

2.1.2 Level 2

Character Level Neural Network: We de-
signed three character-level neural network models
for processing the character level probabilities, and
during the experiment3 each model was tested sep-
arately. As shown in figure 1, all three models take
three inputs: start/end char probabilities, character
stream(character level tokens of input tweet), and
sentiment label. The models working are described
sequentially. (i) In recurrent neural network (RNN)
model, we parallelly passed the start/end char prob-
abilities(2 features) through a BiLSTM layer of
size 32 along with the characters and sentiment
label were through separate embedding layers of
each size 32. The three outputs were then concate-
nated and passed through two BiLSTM layers with
a size of 64 each. The output from two BiLSTM
were then concatenated with skip connection and
passed through a fully connected layer(size=64)
and multi-sample dropout(Inoue, 2019)(p=0.5). Fi-
nally, a softmax layer that outputs the character
level start and end probabilities. (ii) In convolu-
tional neural networks(CNN) model the start/end
char probabilities(2 features) were passed into a 1D
convolution layer with batch normalization and the
characters and sentiment label were through sepa-
rate embedding layers of each size 32. All three out-
puts were concatenated and passed through four 1D
convolution layer of size 64 with batch normaliza-
tion, followed by a fully connected layer(size=64)
and multi-sample dropout(Inoue, 2019)(p=0.5) and
finally a softmax layer. (iii) In the WaveNet

476

model, similar to CNN model the start/end prob-
ability vector, character vector and sentiment vec-
tor after concatenation were passed through three
WaveBlocks(size=64) with batch normalization,
followed by a fully connected layer(size=64) and
multi-sample dropout(Inoue, 2019)(p=0.5) and fi-
nally a softmax layer.

Retrieving Prediction: The final step in extract-
ing sentiment phrases from the tweet was to convert
the character-level start/end probabilities received
from the character-level neural network model into
the start/end indexes which represent the span of
the selected phrases. Once we have the start
index and end index, our model outputs the
selected phrases between the start index and
end index. During training, we found that
sometimes the start index > end index,
means that our model was unable to extract any
phrases so in output we return the entire tweet as
the selected phrase. During training custom loss
3.3was used, and Jaccard scores3.1 was calculated
over test data.

2.2 Character Level Ensemble Model

For building the ensemble model, we stacked to-
gether with a set of pre-trained language models
and character-level neural network models together
blended in such a manner that it outperformed
all the baseline single character-level model. As
shown in figure2 ensemble design is similar to char-
acter level transformer model and divided into fol-
lowing two levels:

2.2.1 Level 1
At level 1, we trained each character level
transformer model separately following the prior
method and stacked the predictions to form a sin-
gle start/end character level prediction. Following
were the steps:

Ensemble Language Model Processing: After
training each character level transformer model
using 5-fold cross-validation, we had five trained
model weights from each transformer model. We
predicted a mean token level start/end probabilities
using all five model weights and stored them.

Character Level Prediction: As described in
the above character level transformer model, we
converted the stored token level start/end proba-
bilities from each transformer model into char-
acter level start/end probabilities which were

then stacked and concatenated together to form
character-level ensemble probabilities(CharE1).
While concatenating, we made sure that the proba-
bilities corresponding to the same tweet were com-
bined together.

2.2.2 Level 2
At level 2, the character-level neural network en-
semble comes in play. The character-level en-
semble model was trained using a 5-fold cross-
validation method. Following are the steps involved
in level 2:

Character Level Ensemble Neural Network:
At this step, we created an ensemble of character-
level neural networks using three models: RNN,
CNN, and WaveNet. Each of the three char-
acter level neural network parallelly receives
three inputs: (i) character-level ensemble start/end
probability(CharE1), (ii) character stream, and
(iii) sentiment label. Each outputs the character-
level start/end probabilities which were then again
concatenated and averaged to form a final character-
level ensemble start/end probability(CharE2)

Retrieving Prediction: As discussed above
2.1.2, the start/end probability(CharE2) was used
to extract the sentiment phrases from the tweet.
Custom loss and Jaccard scores were used here.

3 Experiment

In this section, we have discussed the dataset, and
it’s preprocessing step along with the evaluation
matrix used in our experiment. We have sequen-
tially explained the experiment setup and model
configuration in detail.

3.1 Evaluation Methods
For the evaluation of our proposed single and en-
semble character-level pre-trained language mod-
els, we used the Jaccard score as evaluation met-
rics. For a given model in training, in each val-
idation fold, Jaccardscore was calculated using
the predicted string and ground-truth string and
then at the end of the training mean Jaccard score
Jaccard scoremean of k validation fold was calcu-
lated which was used as the final model score.

Jaccard score =
1

n

n∑

i=1

jaccard(gti, dti)

where, n is the number of tweets in a set, gti
is the ith ground truth and dti is the ith predicted
value.

477

3.2 Dataset

We used Tweet Sentiment Extraction competition
dataset2 publicly available on the Kaggle3 website.
The dataset is comprised of three parts2- (i) tweets
(ii) one of the three sentiment classes(Positive, Neg-
ative, and Neutral) associated with each tweet (iii)
the phrases/words extracted from each tweet that
support the sentiment label in the tweet. The to-
tal number of tweets in the dataset were 27,481,
consisting of 10,992 neutral tweets/8,244 positive
tweets/8,245 negative tweets. For the experiment,
we used 5 fold stratified cross-validation in which 4
folds i.e. 80%(21,985 tweets) data was for training
and 1 fold i.e. 20%(5,496 tweets) data used for
validation.

3.3 Experiment Setting

Model training: At level 1: (i) each model was
trained separately using 5-fold cross-validation
method for five epochs with the batch size
of 64(BERT-base, RoBERTa-base), 32(ALBERT-
large, Distil-RoBERTa-base) and 16(BERT-large-
WWM, RoBERTa-large), (ii) the tokenized input
sequence was truncated or padded up to the max
length of 100 and Adam(Kingma and Ba, 2014)
optimizer was used with learning rate = 3e-5 and
weight decay = 0.001. At level 2: (i) character-level
model were trained using 5-fold cross-validation
for five epochs, (ii) each model had following con-
figurations: max sequence length = 150, training
batch size = 128, validation batch size of 512.
Trained for five epochs with learning rate of 5e-3,
(iii) character-level ensemble model was trained us-
ing 5 fold cross-validation for five epochs with the
batch size = 8, learning rate = 5e-4 and character-
level model configuration was same.
Custom loss (Jaccard-based Soft Labels): Since
Cross-Entropy does not optimize Jaccard directly,
we tried different loss functions to penalize far pre-
dictions more than close ones. We developed a
custom loss function that modifies cross-entropy
label smoothing by computing Jaccard on the token
level. We then use this new target labels and opti-
mize Kullback–Leibler (KL) divergence(Kullback
and Leibler, 1951). Alpha here is a parameter to
balance between usual cross-entropy and Jaccard-
based labelling. On top of this, we used Stochastic
Weight Averaging (SWA)(Izmailov et al., 2018)

2Dataset is available at https://www.kaggle.com/c/tweet-
sentiment-extraction/data

3https://www.kaggle.com/

for better generalization to improve the training
stability.

Regularization setting: At level 1: Based on the
experiments, the best regularization parameters for
every architecture were selected. For improving
generalization and accelerating training, we used
Multi-Sample Dropout(Inoue, 2019)(MSD). Each
Transformer had an MSD layer with a probabil-
ity of 0.5 except for RoBERTa-large, which was
0.6. We add the Gaussian Noise, with = 0.02,
to the output layer of the transformers. Based
on BERT-paper(Devlin et al., 2018b) we assigned
attention probability dropout(0.1) to every trans-
former. At level 2: As discussed here 2.1.2, for
each character-level NN model in the ensemble we
used MSD(Inoue, 2019) with the dropout probabil-
ity value = 0.5.

4 Result and Discussion

In this section, we have discussed the experiment
results and presented a performance analysis of
character-level transformer models and ensemble
models. During our experiment, we combined
the level 1 model, with every level 2 model pair-
wise. As a result, we found out that the RNN
based model surpassed other models by achiev-
ing a higher Jaccard score during testing. As a
result, table1 contains the Jaccard scoremean of
each transformer combined with the RNN model
as Level 2 character-NN model.

According to the table 1, among various sin-
gle transformer models, the RoBERTa-large model
shows good results by having a Jaccard scoremean
of 71.5%. RoBERTa-base achieved a score
of 71.4%, which was very close to RoBERTa-
large. Other models also shows promising results,
like BERT-large-uncased-WWM and ALBERT-
large-V2 had equal Jaccard scoremean of 71.1%,
whereas the ALBERT-base-V2 and BERT-base-
uncased achieved the Jaccard scoremean of 70.5%
and 71.0% respectively.

Our proposed ensemble model outperformed
all the single transformer by an average of 2.4%.
With a perfect blending of transformer mod-
els, the ensemble model was able to achieve a
Jaccard scoremean of 73.5%.

5 Conclusion

In this paper, we proposed a character-level lan-
guage model consisting of a pre-trained language

478

model and character-level neural network for ex-
tracting sentiment support phrases from human-
generated tweets based on the associated senti-
ment labels. We also designed a stacking ensemble
model by carefully blending multiple PCE trans-
former models like BERT, RoBERTa, ALBERT,
and character-level neural network models like
CNN, RNN, and WaveNet. We conducted a com-
parative performance analysis of all character-level
transformer models and ensemble models. We
found that with the optimal combination of trans-
former models and character-level neural network
models, the ensemble architecture generalizes bet-
ter and outperforms the single transformer models
at every level. The ensemble model showed promis-
ing results, having a Jaccard Score of 73.5%, which
is better than any single transformer model.

References

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018a. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018b. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Hiroshi Inoue. 2019. Multi-sample dropout for ac-
celerated training and better generalization. arXiv
preprint arXiv:1905.09788.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov,
Dmitry Vetrov, and Andrew Gordon Wilson. 2018.
Averaging weights leads to wider optima and better
generalization. arXiv preprint arXiv:1803.05407.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Solomon Kullback and Richard A Leibler. 1951. On
information and sufficiency. The annals of mathe-
matical statistics, 22(1):79–86.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Models Jaccard Scoremean

BERT-base-uncased 71.0
BERT-large-uncased-WWM 71.1
ALBERT-base-V2 70.5
ALBERT-large-V2 71.1
RoBERTa-base 71.4
RoBERTa-large 71.5
Ensemble-Model 73.5

Table 1: Models’ Scores(in %) on Test Data

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. arXiv preprint arXiv:1806.03822.

Cha Zhang and Yunqian Ma. 2012. Ensemble machine
learning: methods and applications. Springer.

6 Appendix

479

Figure 1: Level 2 Character Level Neural Network (a)Recurrent Neural Network (b)WaveNet (c)Convolution
Neural Network

text(given) sentiment(given) selected text(target)
I really really likeeee the song
Love Story by Taylor Swift

positive likee

I need to get my computer
fixed

neutral
I need to get my computer
fixed

Sooo SAD I will miss you
here in San Diego

negative Sooo SAD

Table 2: Dataset: texts(given) represents tweets, sentiment(given) represents associated sentiment, se-
lected text(target) represents extracted phrases.

Figure 2: The proposed architecture: Ensemble Model. In level 1, all the transformer models are placed parallelly.
In level 2, char-NN models are placed parallelly.

480

Proceedings of the 17th International Conference on Natural Language Processing, pages 481–490
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Developing a Faroese PoS-tagging solution using Icelandic methods

Hinrik Hafsteinsson and Anton Karl Ingason
University of Iceland
Reykjavík, Iceland

{hih43,antoni}@hi.is

Abstract

We describe the development of a dedi-
cated, high-accuracy part-of-speech (PoS) tag-
ging solution for Faroese, a North Germanic
language with about 50,000 speakers. To
achieve this, a state-of-the-art neural PoS tag-
ger for Icelandic, ABLTagger, was trained on a
100,000 word PoS-tagged corpus for Faroese,
standardised with methods previously applied
to Icelandic corpora. This tagger was supple-
mented with a novel Experimental Database
of Faroese Inflection (EDFM), which contains
morphological information on 67,488 Faroese
words with about one million inflectional
forms. This approach produced a PoS-tagging
model for Faroese which achieves a 91.40%
overall accuracy when evaluated with 10-fold
cross validation, which is currently the high-
est reported accuracy for a dedicated Faroese
PoS-tagger. The tagging model, morphologi-
cal database, proposed revised PoS tagset for
Faroese as well as a revised and standardised
PoS tagged corpus are all presented as prod-
ucts of this project and are made available for
use in further research in Faroese language
technology.

1 Introduction

This paper describes the developement of a high-
accuracy Part-of-Speech (PoS) tagging solution for
Faroese, a North Germanic spoken by about 50,000
people in the Faroe Islands, an autonomous terri-
tory in the Kingdom of Denmark. Limited research
has been performed on such an implementation for
the language and as PoS taggers are fundamental
in various further implementations in natural lan-
guage processing (NLP) and linguistic research, the
need for new research is apparent. In the current
project, as a basis for a Faroese PoS tagger, a state-
of-the-art bi-LSTM neural PoS-tagging system for
Icelandic, ABLTagger (Steingrímsson et al., 2019),
is used as a foundation to build on, in addition to

various methods used in Icelandic NLP research.
The reason why these Icelandic resources may also
be applied to Faroese is the extensive grammatical
similarities between the two languages. These sim-
ilarities are especially apparent in morphology, as
both languages retain grammatical categories and
nuances not apparent in related languages.

In contrast with Faroese, the last two decades
have seen broad gains for Icelandic in the field
of language technology (LT), producing tools and
databases which have enabled both various new
technical implementations for the language and
new opportunities in linguistic research. With the
grammatical similarities of the two languages in
mind, similar gains should be possible for Faroese.

Using Icelandic NLP tools and methods, a
Faroese PoS-tagging model was produced which
achieves an overall tagging accuracy of 91.40%.
This is considerably higher than the previous ded-
icated PoS tagger for Faroese which achieved
87.00% using a similar tagset and trained on the
same corpus, the Faroese Sosialurin corpus, which
contains news articles, totalling about 100,000
words (Hansen et al., 2004). Furthermore, the cur-
rent project produced various data set innovations
which could prove useful in further NLP research
for Faroese. These include a proposed revised tag-
ging scheme for Faroese which is optimised for
high-accuracy PoS-tagging and a standardised ver-
sion of hand-corrected PoS tagged corpus for use
in NLP projects. In addition to this, the project
produced a novel inflection database for Faroese,
the Experimental Database of Faroese Morphology
(EDFM), which contains detailed morphological
information on 67,488 Faroese words, modelled
on the Dictionary of Icelandic Morphology (Bjar-
nadóttir, 2012; Bjarnadóttir et al., 2019). These
data sets have been made available online1 for fur-

1See: https://github.com/hinrikur/
far-ABLTagger.

481

ther development and research in Faroese language
technology.

Section 2 outlines the ABLTagger PoS-tagging
system and previous work on Faroese LT relevant
to the current project, along with discussing the ap-
plicability and incentives to use Icelandic materials
and methods to develop LT solutions for Faroese.
Section 3 describes the collection and preparation
of the materials used to implement ABLTagger for
Faroese. Section 4 describes the training and evalu-
ation of the Faroese ABLTagger model and Section
5 discusses the current applicability of the Faroese
PoS tagging model and the next steps in improving
it as a whole. Section 6 concludes.

2 Background

2.1 The ABLTagger system
The current project draws inspiration from the
ABLTagger experiment for Icelandic (Steingríms-
son et al., 2019), which produced a Bi-directional
LSTM PoS tagger which uses a morphological
database to achieve high accuracy tagging of the
language, using a fine-grained tagset. When trained
on a hand-corrected corpus, the IFD corpus (Pind
et al., 1991), a total of about 500,000 words, the
ABLTagger system achieved an overall tagging ac-
curacy of 94.17%, making it the state-of-the-art
PoS-tagging implementation for Icelandic.

The ABLTagger system for Icelandic uses a fine-
grained tagset of about 600 PoS tags, originally
introduced in the aforementioned IFD corpus and
revised in further research, notably in the MIM-
GOLD corpus (Barkarson et al., 2020). An excerpt
of this tagging scheme is shown in Table 1. In the
tagging scheme, each token receives one tag string.
Each tag string contains a series of symbols, each
containing important grammatical information on
the token, e.g., case, number, tense and grammati-
cal gender.

The morphological component of the ABLTag-
ger system consists of a morphological database
for the language being tagged. For Icelandic, Ste-
ingrímsson et al. used the Databse of Icelandic
Morphology, DIM (Bjarnadóttir, 2012; Bjarnadót-
tir et al., 2019), in the so-called DIM basic for-
mat.2 DIM contains around 290,000 inflectional
paradigms with over 5.8 million inflectional forms,
aiming to be a descriptive resource for Icelandic.
This database is freely available under a CC BY-SA

2See: https://bin.arnastofnun.is/DMII/
LTdata/s-format/

4.0 license in standardised formats and is for the
most part manually corrected.

Providing these two components of the ABLT-
agger system, the PoS-tagged corpus and morpho-
logical database, is essential for implementing the
system for a new language and is the main focus of
the current project.

2.2 Previous work on Faroese

Although extensive research in Faroese LT is scant,
some research has taken place in the past decades.
Experiments have been performed in machine-
parsing Faroese text using transfer learning with
Icelandic data (Ingason et al., 2014) and work on a
finite-state based grammatical analyser for Faroese
is ongoing (Trosterud, 2009).

Notably, the Sosialurin corpus project (Hansen
et al., 2004) consisted of the formulation of a fine-
grained PoS tagging scheme for Faroese and the
compilation of a hand-corrected, PoS-tagged text
corpus using the tagset. This corpus was used to
train the TnT tagger (Brants, 2000), which achieved
an overall tagging accuracy of 87.0% at the time.
Furthermore, the Sosialurin corpus and further
machine-tagged text have been made accessible for
linguistic research on the CorpusEye (Bick et al.,
2020) website.3 These resources, the Sosialurin
corpus and its corresponding tagging scheme, are
instrumental for the current project, as they provide
the training material for the ABLTagger system.

2.3 Applicability of Icelandic methods for
Faroese

The foremost incentive for using Icelandic NLP
tools for Faroese is the scarcity of NLP implemen-
tations for the latter. A handful of previous research
exists, but very few extensive databases and ready-
to-use software are available for the language at
large. As a result, the amount of available digital
language resources for Faroese is limited. In con-
trast, the last two decades have seen great gains
for Icelandic in the field of language technology
(Nikulásdóttir et al., 2017). This has produced
tools and databases which enable both new tech-
nical implementations for the language and new
opportunities in linguistic research, both of which
would also be beneficial for Faroese.

The fundamental reason that makes Icelandic
NLP implementations applicable for Faroese are
the grammatical similarities between the two lan-

3See: https://corp.hum.sdu.dk/.

482

Token Lemma PoS tag Explanation
Ég ég fp1en f: pronoun; p: personal; 1: 1st person;

e: singular; n: nominative;
stökk stökkva sfg1eþ s: verb; f: indicative; g: active;

1: 1st person; e: singular; þ: past tense
á á aa a: adverb; a: doesn’t govern case;
eftir eftir aþ a: adverb; þ: governs dative;
strætó strætó nkeþ n: noun; k: masculine; e: singular; þ: dative;
og og c c: conjunction;
veifaði veifa sfg1eþ s: verb; f: indicative; g: active;

1: 1st person; e: singular; þ: past tense

Table 1: Excerpt from the IFD corpus, with explanations. The IFD corpus was used to train the ABLTagger system
for Icelandic by Steingrímsson et al. (2019) and as a basis for the original Faroese tagging scheme by Hansen et al.
(2004).

guages. These similarities are especially apparent
in morphology, as both languages retain grammati-
cal categories not apparent other similar languages,
e.g., four grammatical cases for nominals and an
extensive conjugation system for verbs, to name a
few. Furthermore, the similarities also extend to
the syntax of the languages and orthographies, al-
though with various systematic differences in both.
With this in mind it can be supposed that some
NLP tools that perform well for Icelandic may also
perform well for Faroese, especially data-driven
applications.

3 Data collection and preparation

A cornerstone of implementing the ABLTagger sys-
tem for Faroese is collecting and preparing the re-
sources needed for the task. In the current project,
this consisted of standardising the training corpus,
revising an already existing tagging scheme for
Faroese and compiling an experimental morpho-
logical database. This is described in the following
section.

3.1 Sosialurin Corpus

The aforementioned Sosialurin project, conducted
by Hansen et al. (2004) aimed at gathering text into
a sizeable corpus, which would then be machine-
tagged and finally manually corrected to create a
standardised PoS-tagged corpus for Faroese, to be
used in NLP projects and linguistic research. This
corpus, hereafter referred to as the Sosialurin cor-
pus, consists of 221 excerpts from the newspaper
Sosialurin.4 In total, the corpus contains 119,833

4Accessible at: https://www.sosialurin.fo/.

tokens in 4,073 sentences, about 104,000 words
excluding punctuation.

As the corpus was meant to be used in NLP
projects and linguistic research in general, the cor-
pus comes prepared in a token-tag format, where
each line of the corpus file contains a single token
and its corresponding PoS tag, separated by a tab
character. Sentences are demarcated with an empty
line and tokens are PoS-tagged using a PoS tagging
scheme devised specifically for the corpus.

Before use in the current project, the Sosialurin
corpus was slightly modified from the original.
This included removing duplicated sentences and
metadata from the corpus text and standardising or-
ganisation and sentence demarcation. This process
produces a revised version of the Sosialurin cor-
pus, bringing the total number of sentences in the
revised corpus to 6,156, from the original corpus’
4,073 and the total number of tokens to 117,690
from the original 119,819. It is worth noting this
corpus is less than 10% as large as the combined
training corpus used to train the original ABLT-
agger implementation for Icelandic, as discussed
in Section 2.1. Nevertheless, as the largest hand-
corrected, Faroese PoS tagged corpus, this revised
version of the Sosialurin corpus was used to train
the ABLTagger implementation for Faroese, with
the supposed effect of its relatively small size being
discussed further in Section 4.

3.2 Revised Faroese tagging scheme
The tagging scheme devised for the Sosialurin cor-
pus by Hansen et al. (2004) is, to a large extent,
based on the tagging scheme used in the IFD corpus
for Icelandic (Pind et al., 1991). In the last decades,
a number of revisions have been made to the IFD

483

tagging scheme, mostly to improve tagging effi-
ciency, with the latest version appearing in the most
recent release of the MIM-GOLD hand-corrected,
PoS-tagged corpus (Barkarson et al., 2020). The
same cannot be said about the Sosialurin tagging
scheme, as no substantial revisions have been made
to it since its inception. As such, before being used
to train the ABLTagger system, a number of re-
visions were applied to the tagging scheme and
subsequently to the PoS tags in the Sosialurin cor-
pus itself.

Most of the revisions applied to the Faroese tag-
ging scheme were based on revisions previously
applied to the IFD tagging scheme for Icelandic.
These include reworked numeral and punctuation
tag strings, simplified case governance tagging for
adverbs and the removal of a dedicated tag for past
participles. Furthermore, various new tag strings
were introduced, also based on the IFD tagging
scheme, e.g., distinction between different cate-
gories of pronouns.

One example of a language-specific revision
made on the tagset was the removal of distinc-
tion between person (1st, 2nd or 3rd) from verb
tags in the original tagset. This was likely a carry-
over from the IFD tagging scheme, as Icelandic
verbs are morphologically distinct between per-
son in both singular and plural. In Faroese, verbal
person is not morphologically apparent in plural
forms, and thus should not be relevant to the tag-
ging scheme, in theory. The effect of this revision
to the tagging scheme on tagging accuracy is dis-
cussed in Section 4.

When applied to the Sosialurin corpus, the total
number of unique PoS tags in the corpus was re-
duced from 390 to 371. This total does not reflect
the tagset changes at large, as not all possible tag
strings in the tagging scheme are represented in
such a small corpus and while many possible tag
strings were removed from the tagset, a number of
possible tag strings were added as well.

3.3 Experimental Database of Faroese
Morphology (EDFM)

The ABLTagger system uses a morphological
database, a detailed description of the inflection
of a language, in tandem with a bi-LSTM-based
neural tagger to enhance the accuracy of the tagger
as a whole. In the original experiment for Icelandic,
the Database of Icelandic Morphology, DIM (Bjar-
nadóttir, 2012; Bjarnadóttir et al., 2019) was used

for this purpose, as Icelandic was the language be-
ing tagged. As discussed in Section 2.1, DIM is
an extensive database with hundreds of thousands
of unique lemmas and millions of inflected word
forms on file, and was applied in the so-called DIM
basic format5 for the project.

No such database, comparable in size, scope or
accessibility to DIM, exists for Faroese. This sit-
uation of course poses a problem when trying to
replicate the ABLTagger experiment for Faroese,
as the morphological component is essential the
high accuracy of the tagging mechanism. For the
current project, we overcame this by gathering all
freely accessible information on Faroese inflection
into an Experimental Database of Faroese Morphol-
ogy (EDFM), formatted in the DIM basic format.
This database can then used for Faroese, the same
way DIM is used in the ABLTagger system. As
discussed in Section 2.3, Faroese and Icelandic
are to large extent morphologically similar, so this
approach is at least theoretically applicable.

3.4 Sourcing morphological data

The inflectional data used to build the EDFM was
collected from several main sources. In Table 2,
the number of paradigms extracted from each data
set is shown, also categorised by lexical category.

Faroese Dictionary Database: The largest sin-
gle morphological description of Faroese is pro-
vided by the Dictionary of Faroese (Føroysk
Orðabók, Poulsen et al. 1997), hereafter referred
to as the OBG database. This database is acces-
sible and searchable on the website of Sprotin,6 a
Faroese publishing house which provides digital ac-
cess to various Faroese dictionaries. This database
contains 67,488 word entries, of which 65,062
contain inflectional information and were used in
the EDFM. Out of these, 5,374 entries (mainly
verbs and numerals) contained partial inflectional
paradigms that were extended using Python scripts
written for the current project.

Faroese naming committee: Along with the
OBG database, the Sprotin website hosts a com-
plete list of approved given names in Faroese, with
each name’s inflection included. Faroese nam-
ing laws dictate that only given names that are
approved by a governmental naming committee

5See: https://bin.arnastofnun.is/DMII/
LTdata/s-format/

6Accessible at: www.sprotin.fo/dictionaries.

484

Category OBG Names Wiktionary Generated Manual Total
Adjectives 11,907 - 16 - - 11,923
Adverbs 1,289 - - - - 1,289
Conjunctions - - - - 61 61
Interjections - - - - 115 115
Nouns 46,492 1,667 113 - - 48,272
Numerals - - - 47 57 104
Prepositions - - - - 62 62
Pronouns - - - - 20 20
Verbs - - 7 5,327 - 5,334
Total 59,688 1,667 136 5,374 315 67,180

Table 2: Contents of the EDFM by lexical category and source database.

can be used officially (Faroese Naming Commit-
tee, 2020). This list provided 1,667 Fareoese given
names to the EDFM, containing 880 masculine
given names and 787 feminine.

Wiktionary data: The English-language Wik-
tionary contains entries for various Faroese words,
most of which contain morphological information.
These entries the were accessed via morphological
data from the UniMorph project (Kirov et al., 2018;
McCarthy et al., 2020), which was originally ex-
tracted and generated from Wiktionary data dumps,
specifically from June 20, 2015 (Kirov et al., 2016)
and is freely available online.7 Although 3,077 in
total, 2,687 of the UniMorph entries were already
represented in the entries extracted from the OBG
database. Nevertheless, 390 new entries were ex-
tracted, further improving the EDFM.

Manual paradigms: A total of 315 entries in the
EDFM were manually defined using morphological
descriptions of Faroese as guidelines, e.g. Þráins-
son et al. (2004). These were mostly pronouns
and functional words, in addition to a number of
uninflectable words.

3.5 Formatting the EDFM

As discussed in Section 2.1, the morphological
component of the original ABLTagger experiment
for Icelandic was applied in the DIM basic format.
As such, the Faroese inflectional data had to be
standardised in a similar manner, in order to be ap-
plied in the ABLTagger system. This was achieved
automatically with purpose built scripts.

To illustrate the output format of the EDFM,
the entry for the Faroese word grunnur ‘founda-

7Accessible at: https://github.com/unimorph/
fao.

grunnur;18433;kk;obg;grunnur;NFET
grunnur;18433;kk;obg;grunn;ÞFET
grunnur;18433;kk;obg;grunni;ÞGFET
grunnur;18433;kk;obg;gruns;EFET
grunnur;18433;kk;obg;grunnar;NFFT
grunnur;18433;kk;obg;grunnar;ÞFFT
grunnur;18433;kk;obg;grunnum;ÞGFFT
grunnur;18433;kk;obg;grunna;EFFT
grunnur;18433;kk;obg;grunnurin;NFETgr
grunnur;18433;kk;obg;grunnin;ÞFETgr
grunnur;18433;kk;obg;grunninum;ÞGFETgr
grunnur;18433;kk;obg;grunsins;EFETgr
grunnur;18433;kk;obg;grunnarnir;NFFTgr
grunnur;18433;kk;obg;grunnarnar;ÞFFTgr
grunnur;18433;kk;obg;grunnunum;ÞGFFTgr
grunnur;18433;kk;obg;grunnanna;EFFTgr

Figure 1: Excerpt from EDFM output in the DIM basic
format: Inflections of grunnur.

tion’ in the EDFM is shown in Figure 1. The for-
mat consists of lines of comma-seperated fields,
with each line containing an inflectional form of a
given word. These lines are grouped into word en-
tries, identifieable by the lemma, here grunnur,
as shown in the first field, and the database ID
number, here 18433, as shown in the second
field. The remaining fields are lexical category,
here kk for masculine noun, source data set, here
obg for the OBG database, inflected form of the
word and finally the database specific grammati-
cal tag, which encodes morphological information
on the word form.

Ideally, each word entry contains the full inflec-
tional paradigm for the given word. In its current
experimental form, the EDFM contains mostly full
paradigms, although it contains partial paradigms
for certain lexical categories. Furthermore, as the
database has not been formally proofread, there are
bound to be some errors in the data, especially in
the automatically generate paradigms. As will be

485

discussed in Section 4, this does not disqualify the
EDFM from use in LT implementations, such as
ABLTagger, although revisions remain a focus for
further work on the database.

4 Evaluation of tagger

The ABLTagger system as described by (Stein-
grímsson et al., 2019) uses DyNet8 (Neubig et al.,
2017). The architecture and model hyperparam-
eters used in the evaluation were all unchanged
from the original ABLTagger experiment.9 This
included stochastic gradient descent training with
initial learning rate of 0.13, which decays 5% per
epoch, running for 30 epochs for the full model.
The hidden layer of the network has 32 layers. The
input text, PoS tags and morphological data are vec-
torized before use in the system and the resulting
embeddings for words, characters and the morpho-
logical component have 128, 20 and 61 dimensions
respectively.

In accordance with previous experiments (see,
e.g., Loftsson 2006; Barkarson 2018; Ingólfsdóttir
et al. 2019; Steingrímsson et al. 2019), training and
evaluation was done via 10-fold cross validation. In
this approach, the whole data set at hand is used for
both training and testing. This is especially useful
when the data set is not large enough to effectively
split into dedicated training and testing sets.

4.1 Evaluation setup
Three variables were taken into account to evaluate
the Faroese ABLTagger implementation. These
were the effect of the tagset revisions discussed in
Section 3.2, the effects of the size and contents of
the training corpus, and the effect of adding the
morphological component described in Section 3.3
to the ABLTagger system.

Tagset revisions: Three models were trained,
each using the Sosialurin corpus with a specific
tagset with varying amounts of revisions:

• S-Baseline: The original Faroese tagset by
Hansen et al. (2004)

• S-Revised-V: The revised Faroese tagset,
with unchanged verbal plural tags (see dis-
cussion in Section 3.2)

• S-Revised: The fully revised Faroese tagset
8The Dynamic Neural Network Toolkit, see http://

dynet.io.
9The ABLTagger source code is available at https://

github.com/steinst/ABLTagger.

Corpus size and contents: To evaluate the per-
formance of ABLTagger on small corpora in gen-
eral, three comparison models were trained, us-
ing subsets of the hand-corrected Icelandic MIM-
GOLD corpus, with each subset corpus being
of a relatively similar size and text genre as the
Sosialurin corpus, i.e. news articles:

• MIM-F: Texts from the newspaper Frét-
tablaðið. Size: 94,224 tokens

• MIM-M: Texts from the newspaper Morgun-
blaðið. Size: 243,346 tokens

• MIM-MR: Texts from the newspaper
Morgunblaðið, resized to same size as
Sosialurin. Size: 117,957 tokens

Addition of morphological data: A Faroese
model trained on Sosialurin, with the tagset which
provies the best overall accuracy, along with the
EDFM as the morphological component. Addition-
ally, three reference models were trained using the
same Icelandic corpora as above, with the DIM as
the morphological component:

• S-Morph: Sosialurin with optimal tagset
+ EDFM as morphological component

• MIM-F-Morph: MIM-F model
+ DIM as morphological component

• MIM-M-Morph: MIM-M model
+ DIM as morphological component

• MIM-MR-Morph: MIM-MR model
+ DIM as morphological component

4.2 Results

The evaluation results of the three “tagset mod-
els”, S-Baseline, S-Revised-V and S-Revised, are
is shown in Table 3.

Model Token Sentence Known Unknown
S-Baseline 88.92% 23.50% 91.70% 55.85%
S-Revised-V 89.75% 24.09% 92.63% 55.76%
S-Revised 90.12% 25.55% 93.01% 56.01%

Table 3: Accuracy of taggers trained on different
tagsets.

It is apparent that the baseline model trained on the
original, unrevised tagging scheme achieved the
lowest overall accuracy of the three. Adding only
the revisions based on the Icelandic MIM-GOLD
corpus to the tagset (S-Revised-V), as described in
Section 3.2, resulted in an accuracy gain of 0.83%,

486

S-Baseline S-Revised-V S-Revised
Proposed tag Error Proposed tag Error Proposed tag Error

No. > correct tag rate > correct tag rate > correct tag rate
1. ED > EA 2.24% DN > DG 3.07% DN > DG 3.35%
2. EA > ED 1.91% DG > DN 3.05% DG > DN 3.17%
3. VNPP3 > VI 1.59% VI > VNPP3 1.68% VNPP > VI 2.15%
4. VI > VNPP3 1.56% C > CI 1.65% VI > VNPP 1.84%
5. C > CI 1.51% VNPP3 > VI 1.52% C > CI 1.69%
6. EA > EN 1.33% C > CR 1.33% CI > C 1.20%
7. EN > EA 1.16% CI > C 1.25% CR > C 1.19%
8. CI > C 1.16% CR > C 1.15% C > CR 1.17%
9. CR > C 1.13% DN > C 0.83% DN > C 0.92%

10. C > CR 0.98% C > DN 0.72% C > DN 0.77%

Table 4: 10 most common errors in tagset evaluation, divided by tagging scheme

equivalent to a total error reduction of 7.51%. Fur-
ther omission of grammatical person in plural verb
PoS tags raised the overall accuracy of the model by
another 0.23%, pushing the total error reduction to
10.05% compared to the baseline. The fully revised
tagging scheme also achieved the highest scores
in whole-sentence accuracy and for both known
and unknown tag accuracy, without much loss of
grammatical information in the tagging scheme. As
such, the S-Revised model was used for the further
evaluation steps.

Although the fully revised tagging scheme pro-
duces the most accurate model out of the three,
there are some systematic errors in the tagging that
the revisions do not affect. In Table 4, the 10 most
common errors in the models are shown. The most
common errors in all the models concern adverbs
and prepositions, specifically concerning case gov-
ernance. In Table 4, these are lines 1.-2. for the
revised models and 1.-2. and 6.-7. for the base-
line model. These errors play a bigger role in the
S-Baseline model, as the PoS tags EN, EA, ED,
EG refer to prepositions that govern nominative,
accusative, dative and genitive case, respectively,
with substantial ambiguity between tokens that re-
ceive these tags. In the revised tagset, these are
replaced by DN and DG, for prepositions10 that
do not govern case and those which do govern
case, respectively, eliminating some of this ambi-
guity. Similar to these are the various errors con-
cerning conjunctions (or complementisers), i.e., the
tag strings starting with C. This is mainly caused

10In the original tagging scheme prepositions receive a tag
string starting with E. These are merged with adverbs (D) in
the revised tagging schemes.

by the words at, ið and sum (all meaning ‘that’)
which can be variously tagged as conjunctions, rel-
ative conjunctions or (in the case of at) as infinitive
markers (in which case it means ‘to’).

After removing grammatical person from tags
of plural verbs, these tags continue to cause errors.
However, the errors in question, underlined in Table
4, are not caused by ambiguity within the plural
verb tags themselves. These errors are caused by
the Faroese verbal infinitive form, which should
receive the tag VI, being lexically identical to the
active present plural form, which should receive
the tag VNPP after the tagset revisions. Although
at first glance, the table may suggest that this type
of error has a higher rate of occurrence in the fully
revised model (from 1.68% and 1.52% to 2.34%
and 1.86%) this is not the case. This is simply
because the revised tagset merges the plural tags
into VNPP, thus “collecting” the errors of this type.
At any rate, the omission of grammatical person in
plural verb PoS tags raises the overall accuracy of
the model by a substantial amount without much
loss of grammatical information.

The three models trained on MIM-GOLD sub-
corpora described above were evaluated in the same
manner as the tagset models, with the results shown
in Table 5. Also shown in the table are the full base-
line model (without morphological data) from the
original ABLtagger experiment for Icelandic and
the S-Revised model, the model which achieved
the highest accuracy above, along with the total
token count of all the training corpora used.

There seems to be a correlation between cor-
pus size and tagging accuracy; the larger the train-
ing corpus, the higher the achieved tagging accu-

487

Model Overall Known Unknown Corp. sz.
S-Revised 90.12% 93.01% 56.01% 117,690
MIM-F 87.28% 93.46% 56.75% 94,224
MIM-MR 88.31% 93.22% 59.78% 117,957
MIM-M 91.03% 94.41% 64.85% 243,346
ABLTagger 93.25% 95.19% 66.84% 590,279

Table 5: Revised Sosialurin model, Icelandic refer-
ence models and the original ABLTagger implementa-
tion (Steingrímsson et al., 2019) without morphologi-
cal data.

racy is. With this in mind, at 90.06%, the Faroese
S-Revised model achieves a relatively high accu-
racy, surpassing the overall accuracy of two of the
smaller Icelandic reference corpora, although not
approaching the 93.25% of the original ABLTag-
ger baseline model. These accuracy scores are not
directly comparable, as although the technical as-
pects of the models are identical (and, in theory,
the text genre of the training corpora), the tagset
used for Faroese is still simpler than the one for
Icelandic, which may affect the final tagging ac-
curacy. The results do however show that while
the accuracy of the Faroese S-Revised model is not
comparable to the original ABLTagger baseline, it
is in the same ballpark as the Icelandic reference
models.

The evaluation of the ABLTagger model supple-
mented with EDFM is shown in Table 6.

Model Token Sentence Known Unknown
S-Revised 90.12% 25.55% 93.01% 56.01%
S-Morph 91.40% 29.01% 92.89% 51.41%

Table 6: Sosialurin morphology evaluation results.

The full model with morphological data achieves a
overall accuracy of 91.40%, the highest for all the
Faroese models. When compared to the S-Revised
model, which achieved a 90.12% accuracy, this
shows that applying the EDFM raises the final accu-
racy by 1.28%, amounting to a total error reduction
of 12.96%.

The comparison of the S-Morph model to the
Icelandic reference models is shown in Table 7.
Each model’s accuracy is shown along with the
accuracy gain provided by the morphological data.
In comparison to the Icelandic reference models,
the accuracy gain that the EDFM provides when
tagging Faroese is comparatively low. Indeed, the
DIM contains a much more thorough description of
Icelandic than the EDFM does of Faroese and thus
should in theory provide better results when applied

Model Accuracy Morph. gain
S-Morph 91.40% +1.28%
MIM-F-Morph 90.69% +3.41%
MIM-MR-Morph 91.85% +3.54%
MIM-M-Morph 92.36% +1.33%

Table 7: Morphology model results and accuracy gain
from morphological data.

with ABLTagger. However, these results show that
despite its experimental nature, the EDFM does in-
deed serve its purpose in raising the overall tagging
accuracy of the ABLTagger system.

5 Application and further work

It remains to be discussed how effectively the tag-
ger produced in the current project can be applied
in PoS-tagging Faroese text in general. In Table
8, the current project’s S-Morph model, hereafter
referred to as the Faroese ABLTagger model, is
compared to the the last dedicated PoS-tagging im-
plementation for Faroese, by Hansen et al. (2004),
as mentioned in Section 2.2.11 Although this tag-
ger used the unrevised Faroese tagset, as discussed
in Sections 3.1 and 3.2, and the exact evaluation
procedure used is not known, it can serve as a ten-
tative comparison for the current project, in lieu of
a previous state-of-the-art tagging implementation
for Faroese.

Implementation Overall Known Unknown
Hansen et al. (2004) 87.00% 91.00% 64.70%
Faroese ABLTagger model 91.40% 92.89% 51.41%

Table 8: Tagging accuracy for the current project com-
pared to previous best

As is apparent in Table 8, with an overall tagging
accuracy of 91.40%, the model produced in the cur-
rent project returns a substantial improvement on
the previous tagger, which achieved an accuracy of
87.00%. The result achieved by the Faroese ABLT-
agger model is quite promising, especially as it is
uses a quite fine-grained tagset. By these metrics,
the current project has produced the most accurate
dedicated, fine-grained PoS tagger for Faroese to
date.

11The Faroese Giellatekno implementations (Trosterud,
2009), although not containing a PoS tagger per se, do contain
a rule based grammatical analyser, which can function some-
what like a PoS tagger. However, these implementations have
not been evaluated in a similar way to the taggers discussed
here and are thus left out of the discussion. The possibility of
future comparisons remains.

488

Despite the high reported accuracy of the
Faroese model, two issues must be kept in mind.
Firstly, the overall accuracy, although high, does
not approach the accuracy of the full ABLTagger
model for Icelandic, which, as discussed in Section
2.3, has a similar tagset and overall morphology to
Faroese. In theory, a substantially higher tagging
accuracy should be obtainable for Faroese with the
ABLTagger system, but it is limited by the size and
contents of the training data used. Secondly, as the
Sosialurin corpus only consists of news articles, its
contents are likely not representative of Faroese-
language texts in general. The Faroese ABLTagger
model would thus perform well on news-like texts
in its current form, but likely return sub-optimal
results when tagging large, unseen texts in different
genres, which is the main goal when developing a
PoS tagger.

6 Conclusion

In this paper we have described the developement
of a dedicated, high-accuracy PoS-tagging solu-
tion for Faroese. This was achieved by training
ABLTagger, a state-of-the-art PoS-tagging system
for Icelandic, on Faroese language data which had
been revised and formatted with methods and tools
based on Icelandic NLP research. This produced
a Faroese PoS-tagging model which achieves a
91.40% overall tagging accuracy, when trained on
the 100,000 word Sosialurin corpus and evaluated
using 10-fold cross validation. The last similar
PoS-tagging implementation for Faroese achieved
a 87.0% overall accuracy. Thus, in the absence of
recent comparable implementations, the Faroese
ABLTagger model may tentatively be considered
the state-of-the-art for PoS-tagging Faroese.

In addition to developing the PoS tagger, this
project produced various resources which could
prove useful in further research in Faroese language
technology. These include a proposed revised PoS-
tagging scheme for Faroese, mainly based on the
Icelandic MIM-gold tagging scheme, as well as
the standardised and revised version of the cor-
responding Sosialurin PoS-tagged Corpus. The
same goes for the EDFM, the experimental mor-
phological database compiled for use with the tag-
ger. Although its format is based on its Icelandic
counterpart, DIM, and is mostly compiled from al-
ready existing Faroese dictionary data, with 67,488
word forms and about 1,000,000 inflectional forms,
it is the first of its kind for Faroese as a single,

accessible data set designed for use in language
technology implementations.

As Faroese digital language resources are, at the
moment, few and far between, Faroese language
technology has ground to cover before it can be
considered fully equipped to tackle recent innova-
tions in the field. As the data sets and PoS-tagging
model produced in this project have been made
available online,12 they may well serve as a basis
for further developments for Fareoese, both to im-
plement new NLP applications and provide further
opportunities for linguistic research.

References
Starkaður Barkarson. 2018. Þjálfun málfræði-

markarans Stagger með nýjum gullstaðli [Train-
ing of the PoS tagger Stagger with a New
Gold Standard]. Unpublished MA thesis. URL
http://hdl.handle.net/1946/29474.

Starkaður Barkarson, Einar Freyr Sigurðsson, Eiríkur
Rögnvaldsson, Hildur Hafsteinsdóttir, Hrafn Lofts-
son, Steinþór Steingrímsson, and Þórdís Dröfn An-
drésdóttir. 2020. MIM-GOLD 20.05. CLARIN-IS,
Stofnun Árna Magnússonar.

Eckhart Bick, Heini Justinussen, Zakaris Svabo
Hansen, Trond Trosterud, and Tino Didriksen. 2020.
Corpuseye Faroese Corpus.

Kristín Bjarnadóttir. 2012. The database of mod-
ern Icelandic inflection (Beygingarlýsing íslensks
nútímamáls). In Proceedings of the Workshop on
Language Technology for Normalisation of Less-
Resourced Languages (SaLTMiL 8 – AfLaT2012),
pages 13–20, Istanbul, Turkey. European Language
Resources Association.

Kristín Bjarnadóttir, Kristín Ingibjörg Hlynsdóttir, and
Steinþór Steingrímsson. 2019. Dim: The database
of Icelandic Morphology. In Proceedings of the
22nd Nordic Conference on Computational Linguis-
tics, pages 146–154, Turku, Finland. Linköping Uni-
versity Electronic Press.

Thorsten Brants. 2000. TnT: A statistical Part-of-
Speech Tagger. In Proceedings of the Sixth Con-
ference on Applied Natural Language Processing,
ANLC ’00, page 224–231, USA. Association for
Computational Linguistics.

Faroese Naming Committee. 2020. Góðkend Fólka-
nøvn [Approved Given Names].

Zakaris Svabo Hansen, Heini Justinussen, and Mortan
Ólason. 2004. Marking av teldutøkum tekstsavni
[Tagging of a digital text corpus].

12See: https://github.com/hinrikur/
far-ABLTagger.

489

Anton Karl Ingason, Hrafn Loftsson, Eiríkur Rögn-
valdsson, Einar Freyr Sigurðsson, and Joel Wallen-
berg. 2014. Rapid Deployment of Phrase Structure
Parsing for Related languages: A Case Study of In-
sular Scandinavian. In Proceedings of Ninth Interna-
tional Conference on Language Resources and Eval-
uation (LREC 2014), pages 91–95. European Lan-
guage Resources Association (ELRA).

Svanhvít Lilja Ingólfsdóttir, Hrafn Loftsson,
Jón Friðrik Daðason, and Kristín Bjarnadóttir.
2019. Nefnir: A high accuracy lemmatizer for
Icelandic. In Proceedings of the 22nd Nordic
Conference on Computational Linguistics, pages
310–315, Turku, Finland. Linköping University
Electronic Press.

Christo Kirov, Ryan Cotterell, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Patrick
Xia, Manaal Faruqui, Sebastian Mielke, Arya D
McCarthy, Sandra Kübler, et al. 2018. Unimorph
2.0: universal morphology. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018). European
Language Resources Association (ELRA).

Christo Kirov, John Sylak-Glassman, Roger Que, and
David Yarowsky. 2016. Very-large scale pars-
ing and normalization of wiktionary morphological
paradigms. In Proceedings of the Tenth Interna-
tional Conference on Language Resources and Eval-
uation (LREC 2016), pages 3121–3126. European
Language Resources Association (ELRA).

Hrafn Loftsson. 2006. Tagging Icelandic text: An
experiment with integrations and combinations of
taggers. Language Resources and Evaluation,
40(2):175–181.

Arya D. McCarthy, Christo Kirov, Matteo Grella,
Amrit Nidhi, Patrick Xia, Kyle Gorman, Ekate-
rina Vylomova, Sabrina J. Mielke, Garrett Nico-
lai, Miikka Silfverberg, Timofey Arkhangelskiy, Na-
taly Krizhanovsky, Andrew Krizhanovsky, Elena
Klyachko, Alexey Sorokin, John Mansfield, Valts
Ernštreits, Yuval Pinter, Cassandra L. Jacobs, Ryan
Cotterell, Mans Hulden, and David Yarowsky. 2020.
Unimorph 3.0: Universal morphology. In Proceed-
ings of The 12th Language Resources and Eval-
uation Conference, pages 3922–3931, Marseille,
France. European Language Resources Association.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin-
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel Cloth-
iaux, Trevor Cohn, Kevin Duh, Manaal Faruqui,
Cynthia Gan, Dan Garrette, Yangfeng Ji, Lingpeng
Kong, Adhiguna Kuncoro, Gaurav Ku-mar, Chai-
tanya Malaviya, Paul Michel, Yusuke Oda, Matthew
Richardson, Naomi Saphra, Swabha Swayamdipta,
and Pengcheng Yin. 2017. Dynet: The dynamic neu-
ral network toolkit. CoRR, abs/1701.03980.

Anna Björk Nikulásdóttir, Jón Guðnason, and Steinþór
Steingrímsson. 2017. Mál tækni fyrir íslensku

2018–2022: verkáætlun [Language Technology for
Icelandic 2018-2022: Strategic Plan]. Mennta- og
menningarmálaráðuneytið, Reykjavík, Iceland.

Jörgen Pind, Friðrik Magnússon, and Stefán Briem.
1991. Íslensk orðtíðnibók [The Icelandic Frequency
Dictionary]. The Institute of Lexicography, Univer-
sity of Iceland, Reykjavík, Iceland.

Jóhan Hendrik W. Poulsen, Marjun Simonsen, Jógvan
í Lón Jacobsen, Anfinnur Jóhansen, and Zakaris Sv-
abo Hansen, editors. 1997. Føroysk orðabók [Dic-
tionary of Faroese]. Føroya fróðskaparfelag, Tor-
shavn.

Steinþór Steingrímsson, Örvar Kárason, and Hrafn
Loftsson. 2019. Augmenting a BiLSTM Tagger
with a Morphological Lexicon and a Lexical Cate-
gory Identification Step. In Proceedings of the Inter-
national Conference on Recent Advances in Natural
Language Processing (RANLP 2019), pages 1161–
1168, Varna, Bulgaria.

Trond Trosterud. 2009. A constraint grammar for
Faroese. In Proceedings of the 16th Nordic Con-
ference of Computational Linguistics (NODALIDA
2009). Northern European Association for Language
Technology (NEALT).

Höskuldur Þráinsson, Hjalmar P. Petersen, Jógvan
í Lón Jacobsen, and Zakaris Svabo Hansen. 2004.
Faroese: An overview and reference grammar.
Føroya fróðskaparfelag, Torshavn.

490

Proceedings of the 17th International Conference on Natural Language Processing, pages 491–500
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Leveraging Multi-domain, Heterogeneous Data using Deep Multitask
Learning for Hate Speech Detection

Prashant Kapil
Department of CSE

Indian Institute of Technology Patna
prashant.pcs17@iitp.ac.in

Asif Ekbal
Department of CSE

Indian Institute of Technology Patna
asif@iitp.ac.in

Abstract

With the exponential rise in user-generated
web content on social media, the proliferation
of abusive languages towards an individual or
a group across the different sections of the in-
ternet is also rapidly increasing. It is very chal-
lenging for human moderators to identify the
offensive contents and filter those out. Deep
neural networks have shown promise with rea-
sonable accuracy for hate speech detection and
allied applications. However, the classifiers
are heavily dependent on the size and quality
of the training data. Such a high-quality large
data set is not easy to obtain. Moreover, the
existing data sets that have emerged in recent
times are not created following the same anno-
tation guidelines and are often concerned with
different types and sub-types related to hate.
To solve this data sparsity problem, and to ob-
tain more global representative features, we
propose a Convolution Neural Network (CNN)
based multi-task learning models (MTLs)1 to
leverage information from multiple sources.
Empirical analysis performed on three bench-
mark datasets shows the efficacy of the pro-
posed approach with the significant improve-
ment in accuracy and F-score to obtain state-
of-the-art performance with respect to the ex-
isting systems.

1 Introduction

The continuing rise in the usage of the internet has
loaded a large volume of content in social media
like Twitter with 500 million2 tweets per day and
Facebook laden with 510K comments3 per minute.
These sites are important sources for people to give
their opinion on a host of general social topics. The
message can be clean, sarcastic, obscene, offensive,
rude, hateful, etc. (Nockleby, 2000) defined hate

1code is available at https://github.com/imprasshant/STL-
MTL

2https://www.internetlivestats.com/twitter-statistics/
3https://kinsta.com/blog/facebook-statistics/

speech as a broad umbrella term that describes it
as any communication that demeans any person or
any group based on race, color, gender, ethnicity,
sexual orientation, and nationality.

Defining hate is, itself, a difficult task as it
greatly depends on the demography, i.e. the same
content comes under Right to speech in some coun-
tries, while other countries might adhere to a very
strict policy for the same message.
In recent times, Germany made policy for the social
media companies that they would have to face a
penalty up to $60 million4 if they failed to remove
illegal content on time. Denmark and Canada have
laws that prohibit all the speeches that contain in-
sulting or abusive content that could promote vio-
lence and social disorders. The Indian government
has also urged leading social media sites such as
Facebook, Twitter to take necessary action against
hate speech, especially those posts that create so-
cial outrage. Setting aside legal actions our aim
should be to combat these texts by agreeing to a set
of standard definitions, guidelines, and practices to
remove the content. Recently many automated tech-
niques following supervised learning utilizing deep
neural networks have been developed. Recently
shared tasks such as (Basile et al., 2019; Mandl
et al., 2019; Zampieri et al., 2019) have mainly fo-
cused on developing multiple-layer identification
of offensive languages. The existing prior research
towards this direction mainly focused on single-
task learning (STL) where classification task on
one data set at a time is solved by training the model
in stochastic gradient descent approach. However,
training of neural networks relies on a large amount
of data, and creating a balanced data set seems to
be time-consuming, and tedious. As the number
of posts showing aggressive tendencies is very less

4https://www.inc.com/joseph-steinberg/germanys-tough-
new-social-media-law-punishes-offensive-posts-with-fines-
of-up-to-60-million.html

491

compared to non-aggressive posts, we leverage the
concept of homogeneous multi-task learning where
we utilized the multiple classification task data sets
to be trained jointly to solve the task. Although bi-
nary classification is very problematic, it filters out
harmful messages and provides hateful data to fur-
ther train the model to classify the data into more
fine-grained classes and helps in getting the target
and sentiment behind the posts, thus preventing the
violation of the right to freedom of speech.

The key characteristics of our current work are
summarized as follows.
(i). We propose a deep multi-task learning
framework that leverages information from
multiple sources. We experiment on five different
variations of CNN based single-task learning
(STL) and five different variations of CNN based
multi-task Learning (MTL) approaches for solving
the problem of hate speech classification.
(ii). The proposed classification approach can be
utilized to obtain hateful or abusive posts to further
train any classifier with these data to perform the
classification to finer labels.

2 Related Work

In recent times, online hate speech detection
has attracted the attention of researchers and
developers because of its necessity in maintaining
social fabrics. In recent times, most of the methods
that have emerged are mainly based on classical
machine learning and deep learning. (Badjatiya
et al., 2017) defined hateful tweets as speech that
contains abusive speech targeting individuals
(e.g. cyberbullying, politician, a celebrity or a
product) or a group (a religious group, country,
LGBT, gender, organization), etc. (Wulczyn et al.,
2017) identified the personal attack as a binary
classification problem and experimented with
logistic regression and multilayer perceptron with
word n-grams or char n-grams based features.
(Nobata et al., 2016) observed that including
simple n-gram features are more powerful than
linguistics-based features, syntactic-based features,
as well as word and paragraph embeddings.
(Davidson et al., 2017) highlighted the differences
between hateful and offensive languages and that,
conflating these two erroneously will make many
speakers be hate speakers. They highlighted the
need to train the model with hateful data that does
not contain any particular keywords or abusive

terms to enrich the model with more contextual
and knowledge-based features. (Chakrabarty
et al., 2019) provided visualization of attention
weights and concluded that the model assigned
higher attention to potentially abusive terms
when employed with contextual information
in comparison to self-attention based features.
(MacAvaney et al., 2019) utilized BERT, that
make use of Transformer (Vaswani et al., 2017),
an attention mechanism helping to capture the
contextual representation between words and
sub-words of a sentence that is utilized to perform
the classification task on (de Gibert et al., 2018).
(Pérez and Luque, 2019) leveraged BiLSTM with a
dense layer on top consuming Elmo vectors (Peters
et al., 2018), and Bag of words as additional input
to do the classification on the data by (Basile
et al., 2019). In this paper, we present a multi-task
framework that aims at leveraging information
contained in multiple related tasks and improve the
classification performance of the hate data sets.

3 Methodology

3.1 Preprocessing
We perform different steps of pre-processing to
clean the text.

1. A light pre-processing by removing all the
characters like @!:;?. and removing all the
numbers (0-9), URLs present in the tweet.

2. Word segmentation is being done to con-
vert the hashtags like #BuildTheWall −→
build the wall, #SendthemBack−→ send them
back, #refugeeswelcome −→ refugees wel-
come, #humantrafficking −→ human traffick-
ing, #whitegenocides −→ white genocides,
#makeLoveNotWar −→ make love not war,
#F**kracism−→ f**k racism, etc. using
python (Rossum, 1995) word segment to pre-
serve the important features to compute senti-
ment of any type of message.

3. All the emoticons were manually categorized
into 5 categories, i.e. love, sad, happy, shock-
ing and anger. The unicode character of
emoticons is then substituted with the token it
matched.

4. All the @ mentions were replaced with the
common token i.e user.

492

Figure 1: Architecture of Fully Shared Multi-Task Learning(FS-MTL)

3.2 Embeddings
Word embeddings (we): In our experiments, we
utilized the Google pre-trained word2vec vectors
trained on 100 billion words to produce 300 di-
mensions for each word capturing the semantic and
syntactic relationship between the words trained
using skip-gram by (Mikolov et al., 2013).
Character embedding (ce): The presence of Out-of-
Vocabulary (OOV) word is a serious problem in a
social media text. Embedding for such words in the
pre-trained word embedding model is not found,
hence losing morphological information. We lever-
age the skip-gram model by (Bojanowski et al.,
2017) which represents each word as a bag of char-
acter n-grams. The dimension of each word using
character embedding is 300. The final word em-
bedding xe for word x ∈ Xis represented by the
following process:

xe = we ⊕ ce (1)

where (⊕) denotes the concatenation operation and
X is the number of unique tokens. The resulting
dimension of xe is 600.

3.3 Models
We adopt (Kim, 2014) for word-level Convolu-
tional neural networks(Word-CNN) and (Zhang
et al., 2015) for Character-level Convolutional
neural networks (Char-CNN) to build different
variants of CNN for our experiments. Here, we
describe Word-CNN and Char-CNN.

Word-CNN: We adopted the CNN-Static by

(Kim, 2014). The input sequence Si of length l is
tokenized to assign a unique integer index to each
word wi, that is then mapped to its N dimension
real-valued vector. A convolution operation
involves a filter f ∈ RhN which is applied to the h
words to produce a new feature xi in Eq.2. Here, b
∈ R is a bias term and g is a non-linear activation
function. This process is repeated l-h+1 to get the
feature map x in Eq.3.

xi = g(f · Si:i+h−1 + b) (2)

x = [x1, x2,, xl−h+1] (3)

Then the pooling layer is applied to reduce
the spatial size of the representation helping in
reducing over-fitting. The vector form of features
obtained from the last CNN layer is fed into the
fully connected layer followed by the softmax
activation function that calculates the probability
values for all the classes. We define the following
5 models that utilize the word-level CNN: Model
15, Model 2, Model 4, Model 5, Model 6 Model 7,
Model 8, Model 9 and Model 10(all these models
are defined below).

Char-CNN: We adopt the character-CNN
(Zhang et al., 2015) where the gradients are ob-
tained by backpropagation to perform optimization.
It accepts a sequence of encoded characters as
input. The encoding is done by quantizing each

5Model i and model i will refer to the same model in the
text where i ∈ [1, 10]

493

character using 1-of-m encoding, also known as
one-hot-encoding. Then the sequence of characters
is transformed to a sequence of m sized vector
with fixed length lo= 256/1024. The value of m in
their proposed model is 70 with 26 for the English
alphabet, 10 digits, 33 other characters, and one
for the newline character. They designed 9 layers
with 6 convolutional layers and 3 fully-connected
layers. They initialized the weights using Gaussian
distribution. Two models, viz. Model 3 and Model
4 (all these models are defined below) utilize the
concept of character CNN. Below, we briefly
describe each of the proposed models.

Model 1: Random word vectors-CNN: We
adopt the method by (Gambäck and Sikdar, 2017)
to assign the random vector of dimension 600 as
feature embeddings for words.

Model 2: Word-CNN: In this model, we uti-
lize real-valued vectors of 600 dimensions for
each word capturing the semantic and syntactic
relationship between the words from Eq.1.

Model 3: Char-CNN: Our designed model
consists of representing each characters using
27 sized vector with 26 elements for the English
alphabet and one for all other symbols. This model
consists of a convolution layer with kernel size 4
followed by max-pool layer of size 3. This is fed
into another convolution layer with kernel size 4
and max-pool layer of size 3. This is followed by 2
dense layers of size 64 and 2. The strides used in
convolution layers are 4 and 2.

Model 4: Hybrid-CNN: It utilizes both character
and word input at the same time. The output
of both the channels after flattening the pooling
features is concatenated to pass into a fully
connected layer with softmax activation function.

Model 5: CNN-Word-Attention: This mech-
anism expands the functionality of neural networks
by paying attention to the specific parts of the
sentence depicting the human brain. We utilized
the CNN-sentence-level attention by (Raffel and
Ellis, 2015). It calculates the attention weight for
the important words to form a representation of the
sentences. Each word’s hidden state representation
(ht) is passed through a learnable function a(ht)
to produce probability value α1,α1...αn for each

word. The sentence vector output is calculated by
the weighted average of ht with weights of α.

et = tanh(Wht + b) (4)

αt = softmax(et) (5)

output =
t=n∑

t=1

αtht (6)

Fully Shared MTL(FS-MTL): The architecture
of model 6, model 7 and model 8 are based on this
scheme that is shown in Figure 1. This scheme
consists of two steps.
Step 1: Training of Shared Network (SN): The
SN consists of 4 components: Shared Embed-
ding Layer (SEL), Shared Neural Network (SNN),
Shared Dense Layer (SDL) and Softmax layer.
This network is pre-trained by taking equal samples
from each of the participating data sets and training
it in batch-wise manner. The Shared Embedding
Layer (SEL) consists of the unique tokens from all
the data sets. All the different classes of each data
set are merged to represent class ci where in this
experiment i ∈ [1,N] where N is number of data set.
The parameters of the SN are trained to minimize
the categorical cross entropy of the predicted and
true distribution on all the tasks. The loss LTask

can be defined as:

LTask =

K∑

k=1

αk · L(ŷk, yk) (7)

where αk is the class weight i.e 1 in this experiment
and L(ŷ,y) is defined in equation 8.

L(ŷ, y) = −
C∑

i=1

N∑

j=1

yji log ŷ
j
i (8)

Here C is the total number of classes, N is the num-
ber of samples, yji is the ground truth label and ŷji
is the predicted label.
Step 2: The trained shared network (SN) is sliced
off to extract the weight matrix of the first two lay-
ers: SEL and SNN, denoted in red color in Figure
16. The parameters of the transferred layers to the
new network are kept frozen. A new sentence Si
is passed through the frozen weight matrix to get
representation fa which is passed to dense layer
followed by softmax layer to get the probability
values.

Model 6: Word-CNN-Fully Shared MTL:
We adopt the schema of (Liu et al., 2017) by

6The figure is best viewed in color

494

Figure 2: Architecture of Soft Sharing MTL

employing fully-shared Word-CNN layers to
extract features for all the tasks. It takes the view
that features of task m can be totally shared by task
n and the vice-versa. Figure 1 explains the idea.
Here X1 −→D1, X2 −→D2, X3 −→D3.{D1, D2 and
D3 explained in section 4}

Model 7: This model utilizes the sentiment
data to be trained with hate data in a fully shared
manner. Here X1 −→Di, X2 −→S1, X3 −→S2, X4

−→S3.
{S1, S2 and S3 explained in section 4} and i = 1,2,3

Model 8: The intermediate feature fa ob-
tained from model 6 and model 7 is concatenated
to pass into dense layer followed by softmax layer.

Model 9: Soft Sharing CNN-Word-MTL:
This model is motivated by (Xiao et al., 2018) that
utilizes the CNN based multitasking paradigm.
Every task owns a subnet and shares the features
with each other. The embedding layer (EL) in
Figure 2 consists of uniques tokens present in
all the data sets. Here D1, D2 and D3 will share
feature with each other. All the subnet undergoes
a pre-training of the text sequences. Let C be the
total collection of n tasks C = {T1,T2.....Tn}. The
output of any sequence si at any layer l is the
concatenation of the output of the same sequence
si from all the other tasks. Task i borrows the
features from Task j which is calculated as

glij = (W l
ij · F l

ij + blij) (9)

where l denotes the level of layers. For any task i
the output of F l+1

ij by merging the F l from all the

other tasks by

F l+1
ij =

∑

j∈Cj 6=i

glij + F l
i (10)

Model 10: The training will remain the same as of
model 9 but Di will share the features with S1, S2
and S3. Figure 2 explains the idea for 2 task which
can be extended to n tasks. Here i ∈ [1,3]

4 Dataset and Experiment Setup

4.1 Data
We evaluate our model on 3 different datasets.
(denoted as D1, D2 and D3). Hate speech and
sentiment analysis are closely related, and it is
safe to assume that usually negative sentiment
pertains to a hate speech message. We also utilized
3 sentiment data which have been described as S1,
S2 and S3. Table 1 and Table 2 shows the statistics
of the datsets.

D1(de Gibert et al., 2018): The sentences
have been extracted from stormfront, a white
supremacist forum. A subset of 22 sub-forums
covering diverse topics and nationalities was
random-sampled to gather individual posts
uniformly distributed among the sub-forums and
users. The most common hateful words found
were ape,homosexuals, libtard, monkey and miglet.
The data set constitutes of 36.05% and 41.63%
hate vocabulary from gender and ethnicity.

D2(Basile et al., 2019): This dataset is part
of hate speech against immigrants and women
in English, collected between July to September
2018. The most frequent keywords were migrant,

495

refugee, b**ch, #buildthatwall, h*e and women.

D3(Mandl et al., 2019): The HASOC dataset was
subsequently sampled from Twitter and partially
from Facebook for the three languages. For our
experiments, we leveraged the English data. They
identified topics for which many hate posts can be
expected. Thus, the tweets were acquired using
hashtags and keywords that contained offensive
contents.

S1
7: This dataset is crawled from twitter

containing US Airline Sentiment tweets.

S2(Rosenthal et al., 2017): The English top-
ics based on popular current events that were
trending on Twitter, both internationally and in
specific English speaking countries were used
to crawl using Twitter API. The topics included
a range of named entities (e.g., Donald Trump,
iPhone), geopolitical entities (e.g., Aleppo,
Palestine), and other entities (e.g., Syrian refugees,
Dakota Access Pipeline, Western media, gun
control, and vegetarianism).

S3(Misra and Arora, 2019): To overcome
the limitations related to noise in Twitter datasets,
they collected a news Headlines dataset from two
news websites. The Onion2 aims at producing sar-
castic versions of current events and they collected
all the headlines from News in Brief and News
in Photos categories (which are sarcastic). They
collect real (and non-sarcastic) news headlines
from HuffPost.

Table 1: Hateful Data Statistics

Dataset labels and count Test

D1
Hate:1097

CV
Non-Hate:8571

D2
Hate:4210 Hate:1260

Non-Hate:5790 Non-Hate:1740

D3
Hate:2261 Hate:288

Non-Hate:3591 Non-Hate:865

4.2 Experimental Setup

All the deep learning models were implemented us-
ing Keras, a neural network API by (Chollet et al.,
2018) with Tensorflow (Abadi et al., 2016) at the

7https://www.kaggle.com/crowdflower/twitter-airline-
sentiment

Table 2: Sentiment Data Statistics

Dataset labels and count Test

S1

Positive:2363
-Negative:9178

Neutral:3099

S2

Positive:7059
-Negative:3231

Neutral:10342

S3
Sarcastic:25358

-
Non-sarcastic:29970

backend. All the dataset were split using 5-fold
cross validation mode using the Stratified K-fold
with 80% for training and 20% for testing with an
equal proportion of samples from all the classes.
The batch size of 30 is used for training SN Model
in Figure 1. The official test set of 3000 instances
is utilized for D2 and 1153 for D3. Random search
was done to fine-tune the results of the neural net-
works to select the best performing combination
of hyperparameters. Categorical cross-entropy is
used as loss function with adam, a combination of
Adagrad and RmsProp is used as the optimizer.
The number of filters used for Word-CNN and
Char-CNN are 100 and 256. The value for bias
is randomly initialized to all zeros, relu activation
function were employed at the intermediate layer
and softmax is utilized at last dense layer.

5 Results, Comparison and Analysis

We report the 5-Fold cross validation result for D1,
D2 and D3 in Table 5, Table 6 and Table 7. Of
the 10 models all the 5 CNN-MTL8 outperforms 5
CNN-STL based approaches. We report here the
macro-f, weighted-f and accuracy of the proposed
methods. The best models for STL in D1, D2 and
D3 are CNN-attention, character-CNN and CNN-
attention respectively. Hybrid-CNN also shows
significant improvements in D2. For the MTL
based approach, concatenation of sentiment and
hate based features gives good results for D1. For
D2 and D3 model 7 and model 6 performs best.
Table 8, Table 9 and Table 10 enlist the compar-
isons between the previous benchmarks with our
best models.

8The results obtained for S1, S2 and S3 in MTL setting is
not reported to focus only on hateful text detection.

496

Table 3: False Negatives

Sl Type Sentence
1. Toxic B**ch our streak is dying @C**t***Lady
2 Toxic @AMike4761 Wake the f**k up and fight back! Savethewest sendthemback
3 Non-Toxic Fed up with this crap! #DeportThemAll
4 Non-Toxic @globalnews #SendThemHome we do not need those #Students here in #Canada

5 Direct Attack ”The first sexual attack against a woman happened in Hungary. The criminal is a
””legal”” afghan rapefugee. This is how Orban protects us.”

6 Direct Attack
@whaas3 @judithineuropa Just got on twitter because of this farce today.
Imagine this, I make a report on You. Calling you names and telling people
how big liar and a****le you are without reason. Would you be angry

7 Doubtful
@DVATW @TheHairyJobbie By god there is a lot of woman and
children got off that boat eh,poor holiday makers paying good money
to go on holiday to witness that roundthemup sendthemback

8 Doubtful @AdamBandt if its gets you upset - Hes the best man for the job.
#gohome #strongborders #sendthemback

9 Sarcastic ”Please don’t call it ””rescue”” - it’s human trafficking
#portsclosed #sendthemback #benefitseekers”

Table 4: False Positives

Sl Type Sentence

1 Toxic H*e stood behind a car door and said ”I don’t feel comfortably with you
that close” b**ch made

2. Toxic @Cornjdw Lmao f**k you bitch don’t get mad at me cuz u don’t know the
game of basketball hoe

3. Non-Toxic A little louder @w terrence for the liberals in the back. #SendThemBack
#BuildTheWall

4 Non-Toxic Meanwhile in Spain..stopimmigration

5 Direct Attack @realDonaldTrump Do you support @realDonaldTrump’s Southern Border Wall?
Vote #RETWEETCheck out wall progress at Order Bricks to show you.

6 Direct Attack Still can’t be. Even the neonazis behind the ””rapefugee”” website
only claim around 450 rapes by immigrants for all of 2016.

7. References What an idiot. #buildthatwall
8. References @RepLowenthal Asylum seekers should enter at a LEGAL #USA port of entry

Table 5: Evaluation Results on D1 (de Gibert et al.,
2018)

Model Macro(%) Weighted(%) Acc.(%)
Single Task Learning

Model-1 47.44 83.30 88.39
Model-2 47.25 83.36 88.61
Model-3 48.48 83.13 87.47
Model-4 47.07 83.33 88.63
Model-5 47.79 83.49 88.65

Multi Task Learning
Model-6 87.81 95.13 95.18
Model-7 85.19 93.93 93.84
Model-8 90.55 96.35 96.52
Model-9 84.17 93.70 93.78
Model-10 72.11 89.76 90.81

5.1 Error Analysis

Quantitative Analysis: The confusion matrix
obtained by best performing model on D1,
D2 and D3 is presented in Table 11, Table
12 and Table 13. For D1 model 8 performs
best, model 7 is performing best for D2 and
D3. From the table it can be seen that mis-
classification rate in the proposed model for

Table 6: Evaluation Results on D2 (Basile et al.,
2019)

Model Macro(%) Weighted(%) Acc.(%)
Single Task Learning

Model-1 46.69 44.33 50.76
Model-2 48.04 45.91 51.36
Model-3 51.49 51.19 51.56
Model-4 49.78 47.66 52.76
Model-5 45.47 42.76 50

Multi Task Learning
Model-6 91.40 91.57 91.54
Model-7 93.60 93.75 93.75
Model-8 93.41 93.56 93.56
Model-9 90.11 90.35 90.35
Model-10 89.43 89.72 89.76

hate is 23% for D1, 31.5% for D2 and 34% for
D3. However, the misclassification for Non-Hate
is 1.6% forD1, 54.25% forD2 and 13.87% forD3.

Qualitative Analysis: We also identified
some of the false negative cases i.e hateful tweet
predicted to non-hate and false positive cases i.e
non-hate tweet classified as hateful class in Table 3

497

Table 7: Evaluation Results on D3 (Mandl et al.,
2019)

Model Macro(%) Weighted(%) Acc.(%)
Single Task Learning

Model-1 57.32 61.47 65.12
Model-2 56.98 61.08 64.54
Model-3 44.27 51.37 61.77
Model-4 59.82 63.14 65.12
Model-5 62.19 65.27 67.05

Multi Task Learning
Model-6 87.37 87.99 87.96
Model-7 79.82 81.20 81.65
Model-8 86.76 87.65 87.93
Model-9 86.17 86.94 87.01
Model-10 84.34 85.13 85.12

Table 8: Comparison to the state-of-the-art systems
and proposed system for D1 (de Gibert et al., 2018)

Model Macro(%) Acc(%)
(MacAvaney et al., 2019) 82.01 82.01
(MacAvaney et al., 2019) 80.31 80.33

(Berglind et al., 2019) 70.80 72.20
(Berglind et al., 2019) 81.90 81.60
(Berglind et al., 2019) 78.40 77.10

Model-8 90.55 96.52
Model-6 87.81 95.18

Table 9: Comparison to the state-of-the-art systems
and proposed system for D2 (Basile et al., 2019)

Model Test Data
Macro(%) Acc(%)

(Ding et al., 2019) 54.60 56
(Montejo-Ráez et al., 2019) 51.90 -

(Pérez and Luque, 2019) 47.10 50.80
(Baruah et al., 2019a) 51 54

Model-7 55.24 55.26
Model-8 50.55 52.60

Table 10: Comparison to the state-of-the-art systems
and proposed system for D3 (Mandl et al., 2019)

Model Test Data
Macro(%) Acc(%)

(Mishra and Mishra, 2019) 74.65 -
(Baruah et al., 2019b) 74.62 -

(Jiang, 2019) 74.31 -
Model-7 75.39 81.09
Model-8 74.68 80.65

Table 11: Confusion matrix of D1 (de Gibert et al.,
2018)

Class Hate Non-Hate
Hate 844 253

Non-Hate 136 8435

and Table 4. It points to the fact that due to usage
of words like f**k, bi**h, kill, bas***d etc. in
both hate and non-hate context, the neural network

Table 12: Confusion matrix ofD2 (Basile et al., 2019)

Class Hate Non-Hate
Hate 862 398

Non-Hate 944 796

Table 13: Confusion matrix of D3 (Mandl et al.,
2019)

Class Hate Non-Hate
Hate 190 98

Non-Hate 120 745

is being confused to classify correctly.

6 Conclusion and Future work

In this paper we have proposed five multi-task learn-
ing based approaches for hate speech detection.
The proposed approaches has an ability to learn
shared features between three different hate speech
data sets and also leveraging the knowledge from
the data of sentiment analysis tasks. The efficacy of
the proposed approach is evident from the fact that
it shows a consistent improvement in the F-score
and accuracy values over the models working on
single-task learning paradigm.

The system failure on some cases highlights the
need to build a more diverse and robust neural net-
work system to take into account the contextual,
demographic as well as the knowledge based fea-
tures.

Acknowledgement

The Authors gratefully acknowledge the project
”HELIOS - Hate, Hyperpartisan, and Hyperplural-
ism Elicitation and Observer System”, sponsored
by Wipro Ltd.

References

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2016. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467.

Pinkesh Badjatiya, Shashank Gupta, Manish Gupta,
and Vasudeva Varma. 2017. Deep learning for hate
speech detection in tweets. In Proceedings of the
26th International Conference on World Wide Web
Companion, pages 759–760.

498

Arup Baruah, Ferdous Barbhuiya, and Kuntal Dey.
2019a. Abaruah at semeval-2019 task 5: Bi-
directional lstm for hate speech detection. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation, pages 371–376.

Arup Baruah, Ferdous Ahmed Barbhuiya, and Kuntal
Dey. 2019b. Iiitg-adbu at hasoc 2019: Automated
hate speech and offensive content detection in en-
glish and code-mixed hindi text. In FIRE (Working
Notes), pages 229–236.

Valerio Basile, Cristina Bosco, Elisabetta Fersini,
Nozza Debora, Viviana Patti, Francisco
Manuel Rangel Pardo, Paolo Rosso, Manuela
Sanguinetti, et al. 2019. Semeval-2019 task 5:
Multilingual detection of hate speech against immi-
grants and women in twitter. In 13th International
Workshop on Semantic Evaluation, pages 54–63.
Association for Computational Linguistics.

Tor Berglind, Björn Pelzer, and Lisa Kaati. 2019. Lev-
els of hate in online environments. In Proceedings
of the 2019 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining,
pages 842–847.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Tuhin Chakrabarty, Kilol Gupta, and Smaranda Mure-
san. 2019. Pay “attention” to your context when
classifying abusive language. In Proceedings of the
Third Workshop on Abusive Language Online, pages
70–79.

François Chollet et al. 2018. Keras: The python deep
learning library. ascl, pages ascl–1806.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated hate speech
detection and the problem of offensive language.
arXiv preprint arXiv:1703.04009.

Yunxia Ding, Xiaobing Zhou, and Xuejie Zhang. 2019.
Ynu dyx at semeval-2019 task 5: A stacked bigru
model based on capsule network in detection of hate.
In Proceedings of the 13th International Workshop
on Semantic Evaluation, pages 535–539.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Us-
ing convolutional neural networks to classify hate-
speech. In Proceedings of the first workshop on abu-
sive language online, pages 85–90.

Ona de Gibert, Naiara Perez, Aitor Garcı́a-Pablos,
and Montse Cuadros. 2018. Hate speech dataset
from a white supremacy forum. arXiv preprint
arXiv:1809.04444.

Aiqi Jiang. 2019. Qmul-nlp at hasoc 2019: Offensive
content detection and classification in social media.
In FIRE (Working Notes), pages 254–262.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2017.
Adversarial multi-task learning for text classifica-
tion. arXiv preprint arXiv:1704.05742.

Sean MacAvaney, Hao-Ren Yao, Eugene Yang, Katina
Russell, Nazli Goharian, and Ophir Frieder. 2019.
Hate speech detection: Challenges and solutions.
PloS one, 14(8):e0221152.

Thomas Mandl, Sandip Modha, Prasenjit Majumder,
Daksh Patel, Mohana Dave, Chintak Mandlia, and
Aditya Patel. 2019. Overview of the hasoc track at
fire 2019: Hate speech and offensive content identi-
fication in indo-european languages. In Proceedings
of the 11th Forum for Information Retrieval Evalua-
tion, pages 14–17.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Shubhanshu Mishra and Sudhanshu Mishra. 2019. 3id-
iots at hasoc 2019: Fine-tuning transformer neu-
ral networks for hate speech identification in indo-
european languages. In FIRE (Working Notes),
pages 208–213.

Rishabh Misra and Prahal Arora. 2019. Sarcasm de-
tection using hybrid neural network. arXiv preprint
arXiv:1908.07414.

Arturo Montejo-Ráez, Salud Marı́a Jiménez-Zafra,
Miguel A Garcı́a-Cumbreras, and Manuel Carlos
Dı́az-Galiano. 2019. Sinai-dl at semeval-2019 task
5: Recurrent networks and data augmentation by
paraphrasing. In Proceedings of the 13th Inter-
national Workshop on Semantic Evaluation, pages
480–483.

Chikashi Nobata, Joel Tetreault, Achint Thomas,
Yashar Mehdad, and Yi Chang. 2016. Abusive lan-
guage detection in online user content. In Proceed-
ings of the 25th international conference on world
wide web, pages 145–153.

JT Nockleby. 2000. ‘hate speech in encyclopedia of
the american constitution.

Juan Manuel Pérez and Franco M Luque. 2019. Ata-
laya at semeval 2019 task 5: Robust embeddings for
tweet classification. In Proceedings of the 13th Inter-
national Workshop on Semantic Evaluation, pages
64–69.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. arXiv preprint arXiv:1802.05365.

499

Colin Raffel and Daniel PW Ellis. 2015. Feed-
forward networks with attention can solve some
long-term memory problems. arXiv preprint
arXiv:1512.08756.

Sara Rosenthal, Noura Farra, and Preslav Nakov. 2017.
Semeval-2017 task 4: Sentiment analysis in twitter.
In Proceedings of the 11th international workshop
on semantic evaluation (SemEval-2017), pages 502–
518.

Guido Rossum. 1995. Python reference manual.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information process-
ing systems, 30:5998–6008.

Ellery Wulczyn, Nithum Thain, and Lucas Dixon. 2017.
Ex machina: Personal attacks seen at scale. In Pro-
ceedings of the 26th International Conference on
World Wide Web, pages 1391–1399.

Liqiang Xiao, Honglun Zhang, and Wenqing Chen.
2018. Gated multi-task network for text classifica-
tion. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 2 (Short Papers), pages 726–731.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019. Semeval-2019 task 6: Identifying and cate-
gorizing offensive language in social media (offen-
seval). arXiv preprint arXiv:1903.08983.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems, pages 649–657.

500

Author Index

., Mamta, 444

Abboud, Khadige, 30
Agarwal, Dolly, 430
Aggarwal, Anupriya, 15
Aggarwal, Salil, 228
Agrawal, Nilesh, 60
Aithal K R, Rachana, 144
Akella, Kartheek, 437
Akhtar, Md. Shad, 379
AlAmr, Mashael, 257
Alaparthi, Chaitanya, 161
Allu, Sai Himal, 437
Alqahtani, Abeer, 181
Alsaif, Amal, 181
Alsalka, Mohammad, 22
Appidi, Abhinav Reddy, 101
Atreya, Arjun, 373
Atwell, Eric, 22, 257

Baghel, Nishant, 430
Baidar, Rasil, 281
Bal, Bal Krishna, 281
Bandyopadhyay, Sivaji, 50
Baruah, Nomi, 303
Behera, Pranati, 444
Bhasin, Anmol, 384
Bhat, Jyoti, 368
Bhatt, Brijesh, 349, 409
Bhattacharya, Pushpak, 373
Bhattacharyya, Pushpak, 175, 191, 317, 323, 460
Bodhankar, Jahnavi, 138
Bommadi, Meghana, 355

Can, Burcu, 90
Chandrahas, ., 60, 70
Chaudhary, Binaya Kumar, 281
Chaudhary, Prashant, 138
Conley, Thomas, 170

Darbari, Hemant, 138
Das Mandal, Shyamal Kr., 341
Das, Amitava, 149
Das, Souvick, 400
DATTA, ANISHA, 155

Dias, Gihan, 200
Dowlagar, Suman, 272

Ekbal, Asif, 444, 460, 491

Fabien, Maël, 127, 362

Gambäck, Björn, 246, 261
Ghosh, Abhigyan, 228
Ghosh, Soumitra, 460
Gogoi, Arjun, 303
Golovneva, Olga, 117
Gour, Vijeta, 384
Goyal, Pawan, 287
Goyal, Vikram, 379
Griffith, Kaden, 76
Gupta, Aditya, 317
Gupta, Somya, 430

Hafsteinsson, Hinrik, 481
Haque, Rejwanul, 108
Hasanuzzaman, Mohammed, 108
Heo, Min-Kang, 208
Hoque, Mohammed Moshiul, 453
Hossain, Md. Rajib, 453
HR, Mamatha, 144

Ingason, Anton Karl, 481

Jain, Ankita, 368
Jain, Minni, 234
Jain, Raghav, 191
Jangra, Anubhav, 191
Jasim, Binu, 470
Jawahar, C V, 470
Jawahar, C.V., 437
Jeong, Dong-Ho, 208
Johnson, Simi, 368

K, Vennela, 144
Kalita, Jugal, 76, 170
Kanojia, Diptesh, 175
Kapil, Prashant, 491
Kar, Debanjana, 287
Karmakar, Samarjit, 334
Kaushal, Vivek, 85

501

Khalid, Zoya, 40
Khan, Haidar, 30
Khan, Zeeshan, 437
Kim, Hyung-Chul, 208
Krishna, P Radha, 334
Krishnan, Radhika, 393
Kulkarni, Amba, 308
Kulkarni, Malhar, 15
Kumar Singh, Anil, 239
Kumar, Ajai, 138
Kumar, Alka, 460
Kumar, Jeetu, 323
Kumar, Nitish, 460
Kumar, Rahul, 384
Kumar, Sajit, 362
Kumar, Sumit, 475
Kurariya, Pavan, 138

Laishram, Jimmy, 420
Lawaye, Aadil Ahmad, 243

Mamidi, Radhika, 228, 272, 355
Mathias, Sandeep, 175
Mavi, Vaibhav, 191
Mehta, Manthan, 373
MIR, TAWSEEF AHMAD, 243
Mistree, Kinjal, 349
Mohtaj, Salar, 297
Möller, Sebastian, 297
Motlicek, Petr, 127, 362
Mukherjee, Prerana, 149
Murthy, Rudra, 175

Namboodiri, Vinay, 470
Naskar, Sudip, 155, 420
Naskar, Sudip Kumar, 400
Natarajan, Bharatram, 329
Nediyanchath, Anish, 329
Nittala, Ravindra, 1
Nongmeikapam, Kishorjit, 420

Oz, Gokmen, 30

P. Namboodiri, Vinay, 437
Pai, Priyadarshini, 384
Palshikar, Girish, 368
Pandey, Chandan, 384
Pandit, Rajat, 400
Parida, Shantipriya, 127, 362
Park, Sang-Won, 208
Patel, Muktan, 409
Patel, Parth, 373
Pathak, Archita, 213

Pathak, Vyom, 409
Patwa, Parth, 149
Pawar, Sachin, 368
Peris, Charith, 30, 117
Prabhakar, Acharya Ashish, 297
Pragadeesh, Cibi, 70
Pranesh, Raj, 475
Pruthi, Sarthak, 234
Pulabaigari, Viswanath, 149
Punia, Ravneet, 234
PYKL, Srinivas, 149

R Kamath, Vinayaka, 144
Ranjan, Ashutosh, 393
Rao, Godawari Sudhakar, 384
Raval, Deepang, 409
Røstvold, Kasper Aalberg, 246
Roy, Samapika, 239

Saha, Shambhu Nath, 341
Saha, Sriparna, 191, 317, 323, 460
Samal, Ranjan, 384
Sanayai Meetei, Loitongbam, 50
Sanjurjo-González, Hugo, 10
Sarkar, Sudeshna, 287
Sarma, Shikhar Kr., 303
Sarveswaran, Kengatharaiyer, 200
Sengupta, Sreoshi, 329
Sengupta, Tathagata, 70
Shaikh, Mohammad Abuzar, 213
Sharma, Aditya, 234
Sharma, Dipti, 393
Shekhar, Ambesh, 475
Shrivastava, Manish, 1, 101, 161
Si, Shukrity, 155
Simma, Dharani, 329
Singh, Chirag, 329
Singh, Lenali, 138
Singh, Raghvendra Pratap, 108
Singh, Thoudam Doren, 50
Singhal, Aman, 437
Sinha, Shobhit, 379
Srihari, Rohini, 213
Srirangam, Vamshi Krishna, 101
Srivastava, Shikha, 460
Steinbakken, Stian, 261
Suhas, Darsi, 101
Sukhada, Sukhada, 239
Suman, Chanchal, 317, 323
Suresh Ragupathi, Sridhar, 437

Talukdar, Partha, 60, 70

Tarmom, Taghreed, 22
Terupally, Shreya, 355
Thakor, Devendra, 349
Tuc, Salih, 90
Tyagi, Vipin, 460

van Genabith, Josef, 50
Varada, Venkata sai Varada, 30
Vela, Mihaela, 50
Vemuri, Kavita, 85
Verma, Kartik, 379
Vikram, Sanal, 308
Villatoro-Tello, Esau, 127, 362

Wanigasekara, Prashan, 30
Way, Andy, 108

	Program
	The WEAVE Corpus: Annotating Synthetic Chemical Procedures in Patents with Chemical Named Entities
	Increasing accuracy of a semantic word labelling tool based on a small lexicon
	Treatment of optional forms in Mathematical modelling of Paini
	Automatic Hadith Segmentation using PPM Compression
	Using multiple ASR hypotheses to boost i18n NLU performance
	A Grammatical Sketch of Asur: A North Munda language
	English to Manipuri and Mizo Post-Editing Effort and its Impact on Low Resource Machine Translation
	Learning to Interact: An Adaptive Interaction Framework for Knowledge Graph Embeddings
	Inducing Interpretability in Knowledge Graph Embeddings
	Solving Arithmetic Word Problems Using Transformer and Pre-processing of Problem Texts
	Clickbait in Hindi News Media : A Preliminary Study
	Self Attended Stack-Pointer Networks for Learning Long Term Dependencies
	Creation of Corpus and Analysis in Code-Mixed Kannada-English Social Media Data for POS Tagging
	Identifying Complaints from Product Reviews: A Case Study on Hindi
	Generative Adversarial Networks for Annotated Data Augmentation in Data Sparse NLU
	BertAA : BERT fine-tuning for Authorship Attribution
	TREE ADJOINING GRAMMAR BASED "LANGUAGE INDEPENDENT GENERATOR"
	Exploration of Cross-lingual Summarization for Kannada-EnglishLanguage Pair
	Hater-O-Genius Aggression Classification using Capsule Networks
	A New Approach to Claim Check-Worthiness Prediction and Claim Verification
	Improving Passage Re-Ranking with Word N-Gram Aware Coattention Encoder
	Language Model Metrics and Procrustes Analysis for Improved Vector Transformation of NLP Embeddings
	Cognitively Aided Zero-Shot Automatic Essay Grading
	Automated Arabic Essay Evaluation
	Semantic Extractor-Paraphraser based Abstractive Summarization
	ThamizhiUDp: A Dependency Parser for Tamil
	Constructing a Korean Named Entity Recognition Dataset for the Financial Domain using Active Learning
	Self-Supervised Claim Identification for Automated Fact Checking
	SUKHAN: Corpus of Hindi Shayaris annotated with Sentiment Polarity Information
	Improving Neural Machine Translation for Sanskrit-English
	Parsing Indian English News Headlines
	WORD SENSE DISAMBIUATION FOR KASHMIRI LANGUAGE USING SUPERVISED MACHINE LEARNING
	Sentimental Poetry Generation
	WEKA in Forensic Authorship Analysis: A corpus-based approach of Saudi Authors
	Native-Language Identification with Attention
	Does a Hybrid Neural Network based Feature Selection Model Improve Text Classification?
	Efforts Towards Developing a Tamang Nepali Machine Translation System
	Event Argument Extraction using Causal Knowledge Structures
	Claim extraction from text using transfer learning.
	Assamese Word Sense Disambiguation using Genetic Algorithm
	Free Word Order in Sanskrit and Well-nestedness
	A Multi-modal Personality Prediction System
	D-Coref: A Fast and Lightweight Coreference Resolution Model using DistilBERT
	Semantic Slot Prediction on low corpus data using finite user defined list
	Leveraging Latent Representations of Speech for Indian Language Identification
	Acoustic Analysis of Native (L1) Bengali Speakers’ Phonological Realization of English Lexical Stress Contrast
	Towards Performance Improvement in Indian Sign Language Recognition
	Question and Answer pair generation for Telugu short stories
	Detection of Similar Languages and Dialects Using Deep Supervised Autoencoder
	Weak Supervision using Linguistic Knowledge for Information Extraction
	Leveraging Alignment and Phonology for low-resource Indic to English Neural Machine Transliteration
	STHAL: Location-mention Identification in Tweets of Indian-context
	On-Device detection of sentence completion for voice assistants with low-memory footprint
	Polarization and its Life on Social Media: A Case Study on Sabarimala and Demonetisation
	A Rule Based Lightweight Bengali Stemmer
	End-to-End Automatic Speech Recognition for Gujarati
	Deep Neural Model for Manipuri Multiword Named Entity Recognition with Unsupervised Cluster Feature
	ScAA: A Dataset for Automated Short Answer Grading of Children’s free-text Answers in Hindi and Marathi
	Exploring Pair-Wise NMT for Indian Languages
	Only text? only image? or both? Predicting sentiment of internet memes
	Towards Bengali Word Embedding: Corpus Creation, Intrinsic and Extrinsic Evaluations
	Annotated Corpus of Tweets in English from Various Domains for Emotion Detection
	PhraseOut: A Code Mixed Data Augmentation Method for MultilingualNeural Machine Tranlsation
	CLPLM: Character Level Pretrained Language Model for ExtractingSupport Phrases for Sentiment Labels
	Developing a Faroese PoS-tagging solution using Icelandic methods
	Leveraging Multi-domain, Heterogeneous Data using Deep Multitask Learning for Hate Speech Detection

