
Proceedings of the ICON 2020 Workshop on Joint NLP Modelling for Conversational AI, pages 1–9
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

1

Neighbor Contextual Information Learners for Joint Intent and Slot
Prediction

Bharatram Natarajan∗, Gaurav Mathur∗ and Sameer Jain
research.samsung.com

{bharatram.n, gaurav.m4, sameer.jain}@samsung.com

Abstract
Intent Identification and Slot Identification are
two important task for Natural Language Un-
derstanding (NLU). Exploration in this area
have gained significance using networks like
RNN, LSTM and GRU. However, models
containing the above modules are sequential
in nature, which consumes lot of resources
like memory to train the model in cloud it-
self. With the advent of many voice as-
sistants delivering offline solutions for many
applications, there is a need for finding re-
placement for such sequential networks. Ex-
ploration in self-attention, CNN modules has
gained pace in the recent times. Here we ex-
plore CNN based models like Trellis and mod-
ified the architecture to make it bi-directional
with fusion techniques. In addition, we pro-
pose CNN with Self Attention network called
Neighbor Contextual Information Projector us-
ing Multi Head Attention (NCIPMA) architec-
ture. These architectures beat state of the art in
open source datasets like ATIS, SNIPS.

1 Introduction

Intelligent Voice Assistant like Samsung Bixby,
Google Assistant, Amazon Alexa and Microsoft
Cortana are increasingly becoming popular. These
assistants cater to the user request by extract-
ing the user intention from the spoken utterance.
NLU express the user intention in terms of in-
tent label and slot tags. There is one intent la-
bel for entire utterance, which signifies unique
action to execute. Whereas slots are tags given
to tokens in utterance, which signifies extra in-
formation required to execute the unique action.
Slot tags are denoted in IBO format. For exam-
ple, consider the utterance “what flights are avail-
able from Denver to San Francisco”. We denote
Intent label as “atis flight”. We denote Slot in-
formation as “O O O O O B-fromloc.city name

∗Authors contributed equally

O B-toloc.city name I-toloc.city name”. There
is one slot tag for every token in the utterance,
where “O” represents that token is not a slot
and B-fromloc.city name represents that token is
“Beginning of slot fromloc.city name” and “B-
toloc.city name I-toloc.city name” represents that
corresponding tokens are Beginning and Contin-
uation of slot toloc.city name respectively. We
consider Intent Identification as Classification task
and Slot tagging as sequence labelling task where
we predict slot for each word.

Lots of work has happened in this area. Initially,
research community explored both intent and slot
tasks as independent task. Different techniques
were explored for intent classification. Firdaus
et al. (2018) created ensemble model by combining
learnings of CNN, LSTM and GRU using multi-
layer perceptron to enhance intent classification.
Kim et al. (2016) proposed enriched word embed-
ding for making similar words together and dis-
similar words farther, which aided intent detection
better. Yolchuyeva et al. (2020) proposed use of
self-attention for enhancing intent classification by
capturing long-range and multi-scale dependency
in data.

Similarly for slot tagging, Kurata et al. (2016)
proposed use of label dependencies along with in-
put sentence for enhancing slot learnings using
LSTM. Mesnil et al. (2014) suggested use of Re-
current Neural Network for slot tagging task. Ngoc
Thang Vu (2016) proposed novel CNN architec-
ture for slot tagging task, which also used past and
future words information.

These individual models approach resulted in
pipelined design of NLU. Where intent model will
predict intent and they use intent output in slot
model to predict slot. This resulted in error prop-
agation i.e. error in intent output resulted in slot
tagging errors. In addition, the intent and slot learn-
ings are not available for each other to enhance



2

each task learning.

To circumvent the above limitation, research
community started exploring unified model where
they identify both intent classification and slot tag-
ging. Liu and Lane (2016) proposed attention as
RNN encoder as input to Decoder for predicting
slot and intent by the decoder. Tingting et al. (2019)
proposed exploration of attention with Bi-LSTM
for joint intent and slot prediction. Firdaus et al.
(2019) suggested usage of CNN and RNN for con-
textual understanding of the utterance along with
CRF for label dependency to predict intent and
slot. Hardalov et al. (2020) proposed intent pool-
ing attention along with word features on top of
BERT for predicting intent and slot. The above
approaches addresses both the task using single
unified network where both the learnings are prop-
agated to single network.

Further, exploration of parallel learning net-
works, using common base module, with fusing
of intent and slot learnings have gained momentum.
Goo et al. (2018) suggested slot gate mechanism
to fuse the intent attention learning with slot atten-
tion learning to predict slot along with intent. E
et al. (2019) proposed a novel iteration mechanism
to fuse the meanings of intent and slot subnet for
predicting intent and slot.

Inspired by the work on parallel learning net-
works, where we address the intent and slot tasks
learnings by each parallel network, we are propos-
ing a novel architecture, Neighbor Contextual Im-
portance Projector (NCIP) for learning the word
importance in its immediate vicinity to boost its
importance learning in the overall utterance. We
use parallel Multi head attention on top of NCIP to
project importance phrases for each task, to predict
intent and slot. We are also exploring Trellis net-
work, which learns immediate neighbors in a layer
and entire utterance in multiple such layers. In ad-
dition, the weights of the network is shared in both
temporal direction as well as across layers. Hence,
we are proposing a bi-directional Trellis network
with different fusion techniques, like Linear Fusion,
Concatenation, to predict intent and slot to mimic
bi-directional LSTM or GRU.

We organize rest of the section as follows. Sec-
tion 2 describes the Proposed Approaches. Sec-
tion 3 describes the experimental setup including
dataset, metrics used followed by results. Finally,
we conclude and suggest future work and exten-
sions.

2 Proposed Approaches

2.1 Trellis Network Based Architectures
Bai et al. (2018) proposed a novel architecture con-
taining special Temporal Convolutional Neural Net-
works (T-CNN) for language modeling (LM) task.
In this model, they share weights across all layers
and they inject the input to deep layers.

As Trellis network has structural and algorith-
mic elements from both LSTM & CNN, it achieved
state of art in various LM tasks. Therefore, we are
exploring extension of the same in intent determi-
nation and slot tagging.

Original Trellis Network process the input se-
quence in forward direction only. We propose bi-
directional network with two parallel Trellis net-
work encoders, one for forward pass and one for
backward pass, for intent determination and slot
tagging.

2.1.1 Utterance Pre-Processing
We tokenize the input utterance into words. If the
number of words is less than seq len (seq len is
obtained by taking maximum of the count of words
for each utterance in the dataset), we pad that ut-
terance with “PAD” word. We convert words to
index using dictionary of unique training words
to incremental index. If we do not find any word
in the dictionary, than assign the index of “unk”
(specially added token into dictionary to handle un-
seen words). We convert every utterance of training
batch into list of indices to generate training data
of shape [bs, seq len]. Where ‘bs’ is batch size.

For bidirectional Trellis network, we first reverse
the training utterances than apply same preprocess-
ing as on original utterances.

2.1.2 Unidirectional Trellis Network Based
Architecture

Figure 1: Unidirectional Trellis flow for joint intent and
slot prediction



3

Figure 1 shows unidirectional Trellis encoder based
architecture. We pass input data of shape [bs,
seq len] through embedding layer to represent ev-
ery word with embedding size (emb size) vector.
Trellis Network is used as an encoder to represent
input data in [bs, seq len, nout] dimension. Where
nout is a hyper parameter of Trellis network. For
slot prediction, output of Trellis network is passed
by a linear layer to produce output of shape [bs,
seq len, ntag], where ntag is number of tags.

For intent determination, we first flatten the Trel-
lis output than pass to output linear layer. It pro-
duces output of shape [bs, nIntent], where nIntent
is number of intent labels.

2.1.3 Bidirectional Trellis Network Based
Architecture

Figure 2: Bidirectional Trellis Flow for joint intent and
slot prediction

Figure 2 shows Bi-directional Trellis network. In
this, we used two Trellis network encoders, first to
process the input sequence as-is and the second to
process a reversed copy of the input sequence. Both
Trellis encoders generates outputs of dimension [bs
, seq len , nout] . Then we pass both the Trellis
network outputs through fusion layer. Fusion layer
determines the importance of each Trellis output by
selectively propagating the learnings from both the
outputs. Then we predict intent by flattening the
fused output and passing through dense layer with
nintent [distinct intents] as final labels. We also
predict slot by passing through dense layer with
ntag [distinct tags] as output label. We explore two
fusion techniques in Section 2.1.4 and 2.1.5 and
Trellis network in 2.1.6.

2.1.4 Masked Flip and Concatenation

Figure 3: Masked flip and concatenation

Masked flip is implemented by Gardner et al.
(2017) in AllenNLP platform. As shown in Figure
3, we first flip the output of backward Trellis (it
brings representation of “pad” at beginning) than
slice every example of batch on original unpadded
length of that example. It gives representation of
pad and actual words separately, than again con-
catenate pad representation at end of word represen-
tation. After masked flipping of backward Trellis
output, concatenate it with forward Trellis output.

2.1.5 Linear Fusion

Figure 4: Linear Fusion

As shown in Figure 4, we are using a linear layer
to learn joint representation of forward and back-
ward Trellis outputs. For it we first concatenate
both outputs at axis 1, then transpose it to bring
word representation as final axis and pass by linear
layer to bring the final axis to seq len. We then
transpose the same to get seq len in first axis.

2.1.6 Trellis Network Decoded
As we are using Trellis Network to learn a token
representation from its neighbor, let us discuss



4

Figure 5: Inter layer transformation of Trellis

about its working. Trellis network is a special form
of temporal convolutional neural network (T-CNN)
with special structure. It share weights across depth
and provide input matrix to all the layers. Figure 5
explains the working of Trellis in intermediate lay-
ers. We denote xtεRp as input embedding vectors
at time step t. We denote ZTi

1 εRq as hidden output
vector for all-time steps 1 to T and layer i. Hyper
parameters of Trellis networks are nhid is hidden
size , nout is output size and hsize = nhid + nout

Hidden output Zi+1
1:T at for layer i+1 is computed

by three steps
First, precompute linear transformation on input

x, result will be directly passed to all layers as
shown in Equation 1.

x̃1:T = Conv1D(x1:T ,W1) (1)

Shape of input x is (bs x emb size x seq len) which
is transpose of embedding layer output. Shape of
W1 is [4* hsize, emb size, kernel size). Kernel size
is fixed to 2. nhid is hidden layer size. Padding is
done to keep output as same seq len as input, x̃1:T
will be of shape [bs, (4* hsize), seq len]

After computing Pre-activation output ẑi+1
1:T , it

will be divided into four equal parts to apply LSTM
style activation function.ẑi+1

1:T is kind of considered
as concatenation of input gate, output gate, cell

state and forget gates. This is the reason number of
filters are kept 4*hsize in convolution operations.
Conv1D computes Pre-activation output ẑi+1

1:T as
shown in Equation 2.

ẑi+1
1:T = Conv1D(zi1:T ,W2) + (̈x)1:T (2)

Shape of previous layer hidden output zi1:T is [bs
, hsize , seq len], which can be initialized all zero
for first layer. Shape of W2 is [4* hsize, hsize ,
kernel size]. Kernel size is fixed to 2. Padding is
done to keep output as same seq len as input. Pre-
activation output ẑi+1

1:T will be of shape [bs, 4*hsize
, seq len].

Lastly, we produce Output zi+1
1:T by non-linear

activation function as shown in Equation 3.

zi+1
1:T = f(ẑi+1

1:T , z
i
1:T−1) (3)

As we discussed, the nonlinear activation is based
on LSTM cell equations. The pre-activation output
is equally divided in four parts of shape [bs , hsize
, seq len] as shown in Equation 4

ẑi+1
1:T = [ẑi+1

1:T,1, ẑ
i+1
1:T,2, ẑ

i+1
1:T,3, ẑ

i+1
1:T,4] (4)

Output zi+1
1:T has two parts, computed as shown in

Equation 5

zi+1
1:T,1 =σ(ẑ

i+1
1:T,1)� z

i
0:T−1,1 + σ(ẑi+1

1:T,2)

� tanh(ẑi+1
1:T,3)

zi+1
1:T,1 =σ(ẑ

i+1
1:T,4)� tanh(z

i+1
1:T,1)

(5)

Therefore, in multiple such layers, Trellis network
is learning short and long distance relation in input
sequence. From last layer’zi1:T , last “nout” repre-
sentations for every time stamp are passed as final
output.

2.2 NCIPMA Network
Figure 6 shows Neighbor Contextual Information
Projector with Multi Head Attention. (NCIPMA)
architecture. First, we pass the utterance through
Utterance Pre-Processing stage explained in 2.2.1.

2.2.1 Utterance Pre-Processing
The input utterance is broken down into chunk of
words. If the number of words is less than required
maximum number (obtained by taking maximum
of the count of words for each utterance in the
training data, denoted as max words), we pad the
rest of the words with “PAD” word. We convert
words to index using sorted dictionary of unique



5

Figure 6: NCIPMA Architecture. Neighbor Contextual
Importance Projector enhances the word importance
learning by adding the unigram, bi-gram and tri-gram
word importance learnings using Multi- Head Atten-
tion. Here f=1 means filter size as 1 representing un-
igram, f=2 means filter size as 2 representing bi-gram
and f=3 means filter size as 3 representing tri-gram.
MHA means Multi-Head Attention

training words to incremental index. If we do not
find the word in the dictionary, then we assign the
index of “unkword” (specially added into sorted
dictionary to handle unseen words).We map sorted
words in dictionary to index from 1 to n (number of
words in the dictionary). We use index 0 for “PAD”
word. This is the way we convert utterance to list
of indices.

We pass the converted list of indices to Embed-
ding layer. During training time, we have trained
Embedding layer by masking zero index, passing
weight-embedding matrix and making the matrix
as trainable. We used unique training words, from
sorted dictionary, to construct weight-embedding
matrix. We did this by taking word index from sort-
ing dictionary and 300-dimension word embedding
from Glove Embedding for each word in unique
training words. Hence, Embedding layer provides
trained word embedding vector for each word in-
dex in the utterance during test time. This creates
3-d matrix of size (1, max words, 300).

2.2.2 Neighbor Contextual Information
Projector(NCIP) Module

In this module, we pass the 3-d matrix (output
of utterance pre-processing module) through three
parallel CNN layers. Each CNN layer uses filter
size as one, two and three respectively capturing
unigram, bi-gram and tri-gram word information.
To learn each word information importance over
other, we keep the word length same by making
padding “same”.

We capture the importance of uni-gram, bi-gram

Figure 7: (Left) Scaled Dot-Product Attention. (Right)
Multi-Head Attention consist of many scaled dot prod-
uct attention in parallel.

and tri-gram word information on the uni-gram
word information using Multi-Head Attention, as
shown in Figure 7. Multi-Head Attention aid in
capturing multiple phrases importance in the pro-
vided input by passing the same input as query, key
and value and calculating the importance as shown
in Figure 6. Here, we pass n-gram (uni-gram, bi-
gram or tri-gram) word information as query and
key. We pass value as unigram word information.

Finally, we add the outputs of all the three Multi-
Head Attention Module with unigram output.

This module aids in capturing

• Multi-phrase importance for each word.

• Multi-phrase importance for each phrase
made from two to three words as well.

Addition of the above information projects that a
word is important even as a part of the phrase and
not only as a single word. We pass this information
to two parallel Multi-Head Attention Modules.

These parallel Multi-Head Attention (MHA)
modules try to learn the importance of phrases for
each task in the provided input by passing the input
as Query, Key and Value as shown in Figure 7. We
predict intent through one MHA module by first
flattening the 3 dimensional output, then by pass-
ing through dense layer with distinct intent as final
hidden dimension. We predict slot through another
MHA module, by passing through dense layer with
distinct slot as final hidden dimension.

2.3 NCIPMA With CRF

Figure 8 shows the architecture of NCIPMA with
CRF. First, we pass the utterance through Utterance
Pre-Processing module. We pass the output of the
module to NCIP module. We use the output of
NCIP module to predict intent and slot.



6

Figure 8: NCIPMA with CRF

For intent, we pass through MHA module to
enhance the learning important for intent. Then
we pass through Conditional Random Field (CRF)
module.

We use linear chain CRF. Linear Chain CRF
implements sequential dependencies during predic-
tion. It is a generalization of Hidden Markov Model
(HMM) where it solves the chain graph problem.
CRF predicts for each word, the most probable in-
tent possible. We then check if we predict the same
intent for all the words and consider the intent as
pass if we do so otherwise fail.

Similarly, for slot, we pass through MHA mod-
ule to enhance the learning important for slot. Then
we pass through Conditional Random Field (CRF)
module. We use same linear chain CRF module.
This module now predicts the most probable slot,
for each word.

2.4 RASA DIET
RASA has developed a separate neural network
framework and ?? proposed DIET architecture for
intent classification and slot tagging. Impressed
by the framework, we conducted experiments on
RASA’s DIET architecture. We use a typical Rasa
pipeline for our experiments on the DIET classifier,
which consists of: 1) Tokenization, 2) Featuriza-
tion, and 3) Entity Recognition/Intent Classifica-
tion. The Rasa framework allows for a modular
approach in creating a model pipeline. We use a
Whitespace tokenizer, followed by a set of super-
vised embedding featurizers, followed by the DIET
components. The DIET architecture has two com-
ponents: intent classification and slot tagging. For
intent classification, it captures a representation of
the entire utterance by combining individual token
representations and passing the result through a
transformer layer. For slot tagging, individual to-

ken representations obtained from the transformer
layer are further fed into a conditional random field
(CRF) layer. Finally, the model optimizes on the
total loss obtained by combining intent loss and
slot loss.

3 Experiments

We evaluate proposed models on two open source
dataset ATIS1 and SNIPS 1

3.1 Data

Dataset Train
Data

Valid
Data

Test
Data

Intent Slot

ATIS 4478 500 893 21 120
SNIPS 13084 700 700 7 72

Table 1: Dataset Information.

Table 1 shows ATIS and SNIPS dataset informa-
tion.

Airline Travel Information System (ATIS)
dataset contains audio recording of people mak-
ing flight reservations. It contains 4478 training
data, 500 validation data and 893 test data. ATIS
dataset is highly skewed in nature. In addition,
there are 120 slot labels and 21 intent types present.
SNIPS dataset is collected from SNIPS personal
voice assistant. It contains 13084 training data,
700 validation data and 700 test data. In addition,
there are 7 intents and 72 slots. The complexity
of SNIPS dataset is high due to large number of
cross-domain intents.

3.2 Training Details
3.2.1 Trellis Network Based Experiments
Trellis network has many hyper-parameters, we ma-
jorly experimented with different values of number
of layers, embedding size and hidden size. We first
identified optimal value of number of layers. Bai
et al. (2018) used 55 layers for Word-PTB and 70
layers for Word-WT103 datasets for LM task. For
joint intent and slot experimentation, we varied the
number of layers from 5 to 20. We found that the
experimentation provided best accuracy for 11 lay-
ers and started decreasing after 11 layers. Hence,
all our experimentation consisted of 11 layers.

We kept embedding size small as compare to
original LM task, LM experiments were done with
embedding size between 280 and 512, whereas we

1https://github.com/MiuLab/SlotGated-
SLU/tree/master/data



7

are keeping embedding size 50 & 100 for different
experiments. Hidden size of LM was 1000 to 2000,
whereas we are keeping 100 or 120 for different
experiments. For all experiments, we are keeping
nout (output dimension of Trellis network) same as
embedding size.

3.2.2 NCIPMA Network
We use glove embedding of 300 dimensional vec-
tor for each seen word and “unk” word embedding
(randomly initialized 300 dimensional vector) for
unseen words to construct weight matrix for Em-
bedding Module. There are three parallel CNN
networks. We use Conv1D module with filter size
as 1, 2 and 3 respectively and hidden dimension as
256 with padding “same” feature. The inputs for
Multi-Head Attention are having same hidden di-
mension namely 256. Hence, the output dimension
is also 256. Addition module adds the output of
the three Multi-Head Attention Module. Hence the
dimension size is same as 256. We pass through
parallel Multi-Head Attention Module, which does
not change the hidden dimensional. Hence, the
output dimension for each Multi-Head Attention
module is 256. For intent, we flatten the matrix
to 2D and pass through “Dense” layer, with intent
size as hidden units and activation as “Softmax”.
For slot, we pass through “Dense” layer, with slot
size as hidden units and activation as “Softmax”.

We use “Keras” platform with optimizer as
“Adam”, loss as “categorical crossentropy”, batch
size as 64 and learning rate as 0.001.

3.2.3 NCIPMA with CRF
All the dimensions used for this experiment is same
as NCIPMA network except for intent and slot
prediction.

For intent prediction, we use CRF layer with
output dimensions as intent size, with mode set to
join mode. For slot prediction, we use CRF layer
with output dimensions as slot size, with mode set
to join mode.

We use “Keras” platform with optimizer
as “Adam”, loss as “crf loss”, accuracy as
“crf viterbi accuracy”, batch size as 64 and learn-
ing rate as 0.001.

3.2.4 RASA DIET
For the DIET model, we use the default architecture
suggested by RASA for intent classification and
slot tagging without pre-trained embeddings. It
consists of two transformer layers of size 256, with

4 attention heads. The learning rate is set to 0.001,
batch size to 4, and the dropout to 0.2.

4 Results and Analysis

4.1 Impact of embedding and hidden size on
Trellis Network

This section explores the impact of embedding and
hidden size on Uni-directional and Bi-directional
Trellis network.

4.1.1 Unidirectional Trellis Network

Dataset Emb
Size

Hidden
Size

Intent
Acc

Slot
F1
Score

ATIS 50 100 95.0 94.3
ATIS 100 120 95.33 94.44
SNIPS 50 100 96.89 81.45
SNIPS 100 120 98.16 83.59

Table 3: Trellis Network results with different model
parameters for ATIS and SNIPS.

Table 3 shows results with ATIS and SNIPS data.
On both datasets, Accuracy increases little with
increase in embedding and hidden sizes.

4.2 Bidirectional Trellis network

Fusion Emb
Size

Hidden
Size

Intent
Acc

Slot
F1
Score

Linear 50 100 97.88 90.01
Linear 100 120 97.88 88.57
Concat 50 100 96.89 88.75
Concat 100 120 97.31 89.43

Table 4: Bi Directional Trellis Network results for
ATIS and SNIPS.

Table 4 shows results of Bidirectional Trellis with
SNIPS data set, slot F1 improves a lot as compare
to unidirectional model. But with increase in num-
ber of parameters, Bi-directional models are not
improving well. This might because of limitations
of fusion block. Therefore, there is need for trying
different fusion techniques with it.

4.3 NCIPMA Architecture Result and
Comparison with State of Art

We evaluate all the proposed architectures on open
source dataset like ATIS and SNIPS. Table 2 shows
the accuracy comparison of the proposed models



8

ATIS SNIPS
Architecture Intent Slot(f1) Intent Slot(f1)
NCIPMA 97.87 95.42 98.57 91.55
NCIPMA with
CRF

97.87 96.25 98.14 92.35

Unidirectional
Trellis Network
Based Model

95.33 94.44 98.16 83.59

Bi-directional
Trellis Network
Based Model

95.11 95.70 97.88 90.01

RASA 95.88 94.47 97.56 92.91
Goo et al.
(2018)

94.1 95.2 97.0 88.8

E et al. (2019) 97.76 95.75 97.29 92.23

Table 2: Accuracy Comparison with State of the Art.

with each other in addition to state of the art mod-
els like Slot gated model (Goo et al., 2018) and
Bi-directional Interrelated model (E et al., 2019).
From the table, we are able to infer that NCIPMA
with CRF model is able to surpass state of the art
architecture and other architectures for ATIS and
SNIPS. For ATIS, intent accuracy improved by
0.11% and slot accuracy improved by 0.5%. For
SNIPS, the intent accuracy improved by 0.85% and
the slot accuracy improved by 0.12%. NCIPMA
architecture without CRF is able to perform bet-
ter intent detection for SNIPS by 1.28%. We are
able to infer that CRF has boosted the accuracy
of NCIPMA architecture because final slot predic-
tion is based on previous labels and current word,
which aided in improving the slot prediction. In ad-
dition, word level intent prediction for ATIS aides
in maintaining the accuracy for intent for ATIS
and degraded for slot by 0.43%. This indicates the
word-level intent evaluation by CRF aids in main-
taining the intent accuracy without much degra-
dation. We are also able to infer that CNN with
Self-attention architecture is able to beat models
with sequential models like GRU, LSTM. RASA
for SNIPS slot is performing the best by beating
state of the art by 0.68%.

5 Conclusion

We are able to find a replacement for sequential
learning models like LSTM, GRU and RNN by
using CNN with self-attention. We are able to see
that NCIP module is able to project the importance
of uni-gram, bi-gram and tri-gram well. Trellis

network based models worked well but further re-
search is required with them to improve on intent
classification and slot tagging tasks.

Future scopes are exploration of unified model
to predict domain, intent and slot for the said task.
Exploration of impact of shared weights across
layers for CNN with Self-attention is a needed task
to reduce size without impact in accuracy.

References
Shaojie Bai, J Zico Kolter, and Vladlen Koltun. 2018.

Trellis networks for sequence modeling. arXiv
preprint arXiv:1810.06682.

Haihong E, Peiqing Niu, Zhongfu Chen, and Meina
Song. 2019. A novel bi-directional interrelated
model for joint intent detection and slot filling. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5467–
5471.

Mauajama Firdaus, Shobhit Bhatnagar, Asif Ekbal, and
Pushpak Bhattacharyya. 2018. Intent detection for
spoken language understanding using a deep ensem-
ble model. In Pacific Rim international conference
on artificial intelligence, pages 629–642. Springer.

Mauajama Firdaus, Ankit Kumar, Asif Ekbal, and
Pushpak Bhattacharyya. 2019. A multi-task hierar-
chical approach for intent detection and slot filling.
Knowledge-Based Systems, 183:104846.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson HS Liu, Matthew
Peters, Michael Schmitz, and Luke S Zettlemoyer.
2017. A deep semantic natural language processing
platform. arXiv preprint arXiv:1803.07640.



9

Chih-Wen Goo, Guang Gao, Yun-Kai Hsu, Chih-Li
Huo, Tsung-Chieh Chen, Keng-Wei Hsu, and Yun-
Nung Chen. 2018. Slot-gated modeling for joint
slot filling and intent prediction. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Pa-
pers), pages 753–757.

Momchil Hardalov, Ivan Koychev, and Preslav Nakov.
2020. Enriched pre-trained transformers for joint
slot filling and intent detection. arXiv preprint
arXiv:2004.14848.

Joo-Kyung Kim, Gokhan Tur, Asli Celikyilmaz, Bin
Cao, and Ye-Yi Wang. 2016. Intent detection us-
ing semantically enriched word embeddings. In
2016 IEEE Spoken Language Technology Workshop
(SLT), pages 414–419. IEEE.

Gakuto Kurata, Bing Xiang, Bowen Zhou, and Mo Yu.
2016. Leveraging sentence-level information with
encoder lstm for semantic slot filling. arXiv preprint
arXiv:1601.01530.

Bing Liu and Ian Lane. 2016. Attention-based recur-
rent neural network models for joint intent detection
and slot filling. arXiv preprint arXiv:1609.01454.

Grégoire Mesnil, Yann Dauphin, Kaisheng Yao,
Yoshua Bengio, Li Deng, Dilek Hakkani-Tur, Xi-
aodong He, Larry Heck, Gokhan Tur, Dong Yu, et al.
2014. Using recurrent neural networks for slot fill-
ing in spoken language understanding. IEEE/ACM
Transactions on Audio, Speech, and Language Pro-
cessing, 23(3):530–539.

Chen Tingting, Lin Min, and Li Yanling. 2019. Joint in-
tention detection and semantic slot filling based on
blstm and attention. In 2019 IEEE 4th international
conference on cloud computing and big data analy-
sis (ICCCBDA), pages 690–694. IEEE.

Sevinj Yolchuyeva, Géza Németh, and Bálint Gyires-
Tóth. 2020. Self-attention networks for intent detec-
tion. arXiv preprint arXiv:2006.15585.


