@inproceedings{karthikeyan-etal-2020-named,
title = "Named Entity Popularity Determination using Ensemble Learning",
author = "Karthikeyan, Vikram and
Varna, B Shrikara and
Hegde, Amogha and
Satwani, Govind and
B R, Shambhavi and
P, Jayarekha and
Samal, Ranjan",
editor = "S, Praveen Kumar G and
Mukherjee, Siddhartha and
Samal, Ranjan",
booktitle = "Proceedings of the Workshop on Joint NLP Modelling for Conversational AI @ ICON 2020",
month = dec,
year = "2020",
address = "Patna, India",
publisher = "NLP Association of India (NLPAI)",
url = "https://aclanthology.org/2020.icon-workshop.4",
pages = "27--32",
abstract = "Determining the popularity of a Named Entity after completion of Named Entity Recognition (NER) task finds many applications. This work studies Named Entities of Music and Movie domains and solves the problem considering relevant 11 features. Decision Trees and Random Forests approaches were applied on the dataset and the latter algorithm resulted in acceptable accuracy.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="karthikeyan-etal-2020-named">
<titleInfo>
<title>Named Entity Popularity Determination using Ensemble Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vikram</namePart>
<namePart type="family">Karthikeyan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">B</namePart>
<namePart type="given">Shrikara</namePart>
<namePart type="family">Varna</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amogha</namePart>
<namePart type="family">Hegde</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Govind</namePart>
<namePart type="family">Satwani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shambhavi</namePart>
<namePart type="family">B R</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jayarekha</namePart>
<namePart type="family">P</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ranjan</namePart>
<namePart type="family">Samal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Joint NLP Modelling for Conversational AI @ ICON 2020</title>
</titleInfo>
<name type="personal">
<namePart type="given">Praveen</namePart>
<namePart type="given">Kumar</namePart>
<namePart type="given">G</namePart>
<namePart type="family">S</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Siddhartha</namePart>
<namePart type="family">Mukherjee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ranjan</namePart>
<namePart type="family">Samal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>NLP Association of India (NLPAI)</publisher>
<place>
<placeTerm type="text">Patna, India</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Determining the popularity of a Named Entity after completion of Named Entity Recognition (NER) task finds many applications. This work studies Named Entities of Music and Movie domains and solves the problem considering relevant 11 features. Decision Trees and Random Forests approaches were applied on the dataset and the latter algorithm resulted in acceptable accuracy.</abstract>
<identifier type="citekey">karthikeyan-etal-2020-named</identifier>
<location>
<url>https://aclanthology.org/2020.icon-workshop.4</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>27</start>
<end>32</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Named Entity Popularity Determination using Ensemble Learning
%A Karthikeyan, Vikram
%A Varna, B. Shrikara
%A Hegde, Amogha
%A Satwani, Govind
%A B R, Shambhavi
%A P, Jayarekha
%A Samal, Ranjan
%Y S, Praveen Kumar G.
%Y Mukherjee, Siddhartha
%Y Samal, Ranjan
%S Proceedings of the Workshop on Joint NLP Modelling for Conversational AI @ ICON 2020
%D 2020
%8 December
%I NLP Association of India (NLPAI)
%C Patna, India
%F karthikeyan-etal-2020-named
%X Determining the popularity of a Named Entity after completion of Named Entity Recognition (NER) task finds many applications. This work studies Named Entities of Music and Movie domains and solves the problem considering relevant 11 features. Decision Trees and Random Forests approaches were applied on the dataset and the latter algorithm resulted in acceptable accuracy.
%U https://aclanthology.org/2020.icon-workshop.4
%P 27-32
Markdown (Informal)
[Named Entity Popularity Determination using Ensemble Learning](https://aclanthology.org/2020.icon-workshop.4) (Karthikeyan et al., ICON 2020)
ACL
- Vikram Karthikeyan, B Shrikara Varna, Amogha Hegde, Govind Satwani, Shambhavi B R, Jayarekha P, and Ranjan Samal. 2020. Named Entity Popularity Determination using Ensemble Learning. In Proceedings of the Workshop on Joint NLP Modelling for Conversational AI @ ICON 2020, pages 27–32, Patna, India. NLP Association of India (NLPAI).