
Proceedings of the ICON 2020 Workshop on Joint NLP Modelling for Conversational AI, pages 33–39
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

33

Optimized Web-Crawling of Conversational Data from Social Media and
Context-Based Filtering

Annapurna P Patil
Department of Computer Science

and Engineering
Ramaiah Institute of Technology

Bangalore, India
annapurnap2@msrit.edu

Gaurav Karkal
Department of Computer Science

and Engineering
Ramaiah Institute of Technology

Bangalore, India
gauravkarkal@gmail.com

Jugal Wadhwa
Department of Computer Science

and Engineering
Ramaiah Institute of Technology

Bangalore, India
jugaldeepak@gmail.com

Meer Sawood
Department of Computer Science

and Engineering
Ramaiah Institute of Technology

Bangalore, India
sawoodrocket@gmail.com

Rajarajeswari S
Department of Computer Science

and Engineering
Ramaiah Institute of Technology

Bangalore, India
raji@msrit.edu

Keerthana Purushotham
Department of Computer Science

and Engineering
Ramaiah Institute of Technology

Bangalore, India
keerthupuru@gmail.com

K Dhanush Reddy
Department of Computer Science

and Engineering
Ramaiah Institute of Technology

Bangalore, India
dhanushreddy1014@gmail.com

Abstract

Building Chatbot’s requires a large amount
of conversational data. In this paper, a
web crawler is designed to fetch multi-turn
dialogues from websites such as Twit-
ter, YouTube and Reddit in the form of
a JavaScript Object Notation (JSON) file.
Tools like Twitter Application Programming
Interface (API), LXML Library, and JSON
library are used to crawl Twitter, YouTube
and Reddit to collect conversational chat data.
The data obtained in a raw form cannot be
used directly as it will have only text metadata
such as author or name, time to provide more
information on the chat data being scraped.
The data collected has to be formatted for
a good use case, and the JSON library of
python allows us to format the data easily. The
scraped dialogues are further filtered based
on the context of a search keyword without

introducing bias and with flexible strictness of
classification.

1 Introduction

Real-world data remains a necessary part of train-
ing system models. The digital streams that indi-
viduals produce are quite useful in the Data Anal-
ysis domain, like natural language processing and
machine learning. Social networking applications
like Twitter, YouTube and Reddit contain a large
volume of data that are quite useful for various al-
gorithms. Naturally, the need to make information
easily accessible to all leads to deploying a conver-
sational agent. In order to build a chat model, a
huge volume of conversational text data is required.

Twitter is a microblogging service that allows
individuals to post short messages called tweets



34

that appear on timelines. These tweets were limited
to 140 characters, which has been later expanded
to 280 characters and prone to change again in the
future. Tweets consist of two kinds of metadata
that are entities and places. Tweet entities are hash-
tags, user- mentions, images, and places in the real
world’s geographical locations. Metadata and short
prose add to fewer than 280 characters can link to
Webpages, Twitter users. Twitter timelines are cat-
egorized into the home timeline and user timeline.
Timelines are collections of tweets in chronologi-
cal order. Twitter API uses Representational State
Transfer (REST) API to crawl and collect a random
set of sample public tweets. The API allows users
to explore and search for trending topics, tweets,
hashtags, and geographical locations.

YouTube, a video-sharing website, allows
users to view, upload, rate, report on videos. It
contains a wide variety of videos such as TV show
clips, music videos, documentaries. It also provides
a platform for users to communicate and describe
their thoughts about what they watch through com-
ments.

Reddit is a social news platform where regis-
tered users may submit links, images, text, posts
and also upvote or downvote the posts posted by
other users. Posts are organized based on boards
created by the user called subreddit. It is also a
platform for web content rating and discussions.
Reddit stores all of its content in json format which
can be viewed on the browser by extending the
reddit link with the extension ’.json’.

Real-time datasets are needed to build a model
to generate accurate output. As the available
datasets are insufficient and do not contain real-
istic examples, there is a need to build a crawler
which would scrape conversational data. Building
crawlers for each website would allow collection of
conversational data. This would help in the creation
of datasets of conversational data.

2 Literature Survey

A Focused crawler is designed to crawl and retrieve
specific topics of relevance. The idea of the focused
crawler is to selectively look for pages that are
relevant while traversing and crawling the least
number of irrelevant pages on the web.

Context Focused Crawlers (CFC) use a lim-
ited number of links from a single queried docu-
ment to obtain all relevant pages to the document,
and the said obtained documents are relevant con-

cerning the context. This data obtained is then used
to train a classifier that would detect the context
of documents and allow classification of them into
categories based on the link distance from a query
to target. Features of a crawler are-

• Politeness

• Speed

• Duplicate Content

Each website comes with the inclusion of a
file known as robot.txt. It is a standardized prac-
tice where robots or bots are communicated with
the website through this protocol. This standard
provides the necessary instructions to the crawler
about the status of the website and whether it is al-
lowed to scrape the data off of the website. This is
used to inform crawlers whether the website can be
crawled either partially or fully, if the website can-
not be crawled as per the robot.txt then the server
blocks any such requests and can even lead to block-
ing of IP’s.

Websites have robot.txt, which prevent the
use of crawlers that attempt to scrape large data
from their website. Any request for a large amount
of data is blocked almost immediately. To pre-
vent such a case where the crawler should not be
blocked, a list of publicly available proxy servers
as described in Achsan (2014) is used to scale and
crawl the website. Twitter is a popular social me-
dia platform used for communication. Crawling
such a website can be useful to gain conversational
data, and such information can be targeted based
on the topic; one such example is a perception on
the internet of things as shown in Bian J (2017) or
Assessing the Adequacy of Gender Identification
Terms on Intake Forms as described in Hicks A
(2015).

3 Proposed System

3.1 Twitter Crawler

Twitter API provides the tweets encoded in JSON
format. The JSON format contains key-value pairs
as the attributes along with their values. Twitter
handles both the users and as well the tweets as
objects. The user object contains attributes includ-
ing their name, geolocation, followers. The tweet
object contains the author, message, id, timestamp,
geolocation etc. The JSON file can also contain
additional information in the media or links present



35

in the tweets, including the full Uniform Resource
Locator(URL) or link’s title or description.

Each tweet object contains various child ob-
jects. It contains a User object describing the au-
thor of the object, a place object if the tweet is
geo-tagged, and entities object, which is an array
of URLs, hashtags, etc. Extended tweets include
tweets with longer text fields exceeding 140 charac-
ters. It also contains a complete list of entities like
hashtags, media, links, etc. They are identified by
the Boolean truncated field equals true, signifying
the extended tweet section to be parsed instead or
the regular section of the tweet object.

The retweet object contains the retweet object
itself as well as the original tweet object. This is
contained in the retweeted status object. Retweets
contain no new data or message, and the geoloca-
tion and place is always null. A retweet of another
retweet will still point to the original tweet.

Quote tweets contain new messages along
with retweeting the original tweet. It can also con-
tain a new set of media, links or hashtags. It con-
tains the tweet being quoted in the quoted status
section. It also contains the User object of the
person quoting the tweet.

The Twitter REST API method gives access
to core Twitter data. This includes update timelines,
status data, and user information. The API methods
allow interaction with Twitter Search and trends
data.

The Twitter streaming API obtains a set of
public tweets based upon search phrases, user IDs
as well as location. It is equipped to handle GET
and POST requests as well. However, there is a
limitation on the number of parameters specified
by GET to avoid long URLs. Filters used with this
API are-

• follow- user IDs of whom to fetch the statuses

• track- specific words to be searched for.

• location- filter tweets based on geo location.

Workflow of Twitter Crawler:

1. Crawling for public tweets

This project uses Streaming API access to
crawl and collect a random sample set of
public tweets. These tweets are crawled in
real time. These tweets can be filtered with
geo location to crawl tweets with respect to a
specific region. These sample sets of public

tweets are outputted to a json file as seen in
Figure 1.

Figure 1: The above figure depicts a tweet object. It
contains all attributes contained within a tweet

2. Crawling for tweets while searching and mon-
itoring a list of keyword

For searching and monitoring, a list of key-
words, search/tweets is used. Streaming API’s
status/filters are not used as it does not pro-
vide previous tweets at all. Search/tweets are
used to crawl and provide tweets from at most
a week back. This function continues to end-
lessly crawl for tweets matching the query.
Another advantage of using this method is
that it does not limit the number of keywords
it can track, unlike statuses/filters, which re-
quire separate or new instances to search for
different keywords.

3. Filtering Tweets with replies

The crawler filters through the collected pub-
lic sample of tweets to find specific tweets
with replies. It finds the same by checking
the ’in reply to status id’ attribute of the col-
lected tweets. It then proceeds to crawl the
parent tweet using the ’in reply to status id’.
It outputs the parent and the reply tweet to-
gether in the JSON file, as seen in Fig. 2.

4. Filtering Quoted Retweets

Quoted Retweets or retweets with com-
ments are filtered from the collected set of



36

public tweets. This is achieved by pars-
ing the collected tweets and searching for
’quoted status’. The parent tweet is con-
tained within the quoted retweet inside the
’quoted status’ attribute. The crawler outputs
the quoted retweet with its contained parent
tweet to the JSON file, as seen in Fig. 3.

Figure 2: In the above diagram, the ’in reply to status’
tag used to filter the tweets is highlighted.

3.2 Youtube Crawler

Cascading Style Selector and Python are the pri-
mary tools that are used. The crawler works to
accept a CSS selector expression as input; the se-
lector compiles to XPath, and many other libraries
such as requests.

AJAX interchanges data with the server in
the background enabling the web page to be up-
dated. This allows certain sections to be up-
dated as opposed to the entire page. Python is an
object-oriented programming language for general-
purpose programming. It helps enhance code read-
ability by including the whitespace.

YouTube has server-side rendering with au-
tomation,it is impractical to wait for all comments
to get loaded in order to extract them. This work
uses the fact that YouTube sends an AJAX Request

Figure 3: In the above diagram, the ’quoted status’ tag
used to filter the tweets is highlighted.

to a URL in order to get comments. By using that
URL, the crawler makes a session with a user agent
and sends the AJAX request to the server for a
particular video id input given by the user; all the
comments are downloaded and stored in a JSON
format; each comment and its reptiles are identified
by the id it has, replies have the id of the main
comment prefixed with its id.

Figure 4: Algorithm Crawl Youtube Comments

3.3 Reddit Crawler

Reddit is a social media platform that serves the
purpose of sharing the content of many forms, in-
cluding multimedia content. A subreddit is defined
to cover a topic of interest, for example, sports
and users can make posts on sports, and others can
comment on these posts.

Usually, scraping Reddit is difficult since Red-



37

dit easily blocks IP addresses after a certain number
of requests. Hence the work done focuses on view-
ing Reddit pages as a collection of JSON objects
that can be simply parsed for the required content
type. This overcomes the issue mentioned above
of having a single IP address blocked at multiple
requests.

Reddit returns a JSON object when the link is
extended with ’.json’, which is passed as an initial
request to crawl, and a callback function is called
with the response downloaded from the request. In
the callback function, the response object is parsed,
and the crawler retrieves the comments. Post links
are retrieved based on the search term entered and
sorted on hot, new, top, rising, or controversial.
The number of post links is limited based on the
limit factor. Each of these posts contains a set
of permalinks containing information about the
comments. Each of these permalinks is parsed, are
traversed, and a JSON object is retrieved. Obtained
JSON objects are parsed to retrieve the comments.

Scrapy, a web scraping framework, is used
to extract structured content from the Reddit page.
Libraries such as JSON, time are used. The JSON
library provided by python is used to parse JSON
objects returned from Reddit links. The crawler
output can be seen as in Fig. 5.

Figure 5: Crawler output in JSON format

4 Context Based Dialogue Filtering

The tool used in the comment filtering module is
python libraries centered around handling and ma-
nipulating the data obtained from the crawlers. The
filtering model uses the pandas’ library to read the
raw data from a .csv form of the output json data
from the crawlers. The filtering model uses the
nltk library to clean our data, tokenize the data, and
remove stop words.

The outputs collected from the crawlers are
all initially in JSON files. These are then converted
into a uniformly structured csv type file. The main
technology used is in the form of the bag of words
model used to analyze the importance of each gen-
erated token within the context of the extracted
data.

In the implementation, note that input is the
csv file, and output is a cleaned and appended list of
comments and replies. The comments and replies
are first to read into a data frame following which
the following cleaning methods are applied: Con-
vert to lowercase “[/()\[\]\—@,;” symbols are re-
placed by a space “0-9a-z + ” symbols are removed

Stopwords are removed according to the ’En-
glish’ stopwords from the nltk stopwords library

The first 30 comments are then analyzed to
generate a list of tokens, and their frequencies are
counted. Tokens with ”” are given high preference,
and a high-frequency list of words is taken as a sub-
set of the original list. Then all the comments and
replies from the data frame are cross-referenced.
Entries that do not contain any of the words in the
list of high-frequency words are rejected. The re-
maining entries which have been filtered are the
output.

Figure 6: Algorithm Comment filtering



38

5 Analysis and Comparison

5.1 Twitter
Standard twitter crawlers use the Streaming API
statues/filters, which do not provide old tweets. The
other caveat is that it can only track a limited num-
ber of keywords. So, if the user has a lot to track,
he will need to have many separate instances, each
tracking different parts of the keywords.

The proposed Twitter crawler is beneficial
in that it uses search/tweets to get old tweets. It
searches for a portion of the keyword list at a time.
The Streaming API is used to collect a random sam-
ple of real-time public teams. The REST API is
used to filter and obtain tweets with respect to spec-
ified filters. The implemented algorithm filters the
tweets to obtain tweets relevant to conversational
data.

5.2 YouTube
Selenium, a vast tool for scraping, can crawl
YouTube. YouTube has server-side rendering,
which loads the website first upon which it can be
scraped for data. This approach’s problem is that
the website has to be loaded upon which JavaScript
has to be used to load more comments on the web
page.

The novelty in this approach lies in
that by analyzing how YouTube retrieved its
comments, and the same approach can be
used by sending AJAX requests to the URL
https://youtube.com/id/comments. Since sections
of the page that does not include comments are not
downloaded, the crawler saves time and resources
over the downloaded contents.

5.3 Reddit
Reddit being a dynamic website and communicates
through rest API; selenium is a powerful web scrap-
ing tool that can be used to scrape dynamic web-
sites. While simulating the browser, crawlers can
mimic the scrolling of the pages, clicking to read
more comments. Since the speed of retrieval will
depend on the speed at which each section of the
page loads, it is inefficient as the next load will only
start after the previous load and the cursor scrolls
further down.

Scrapy is faster and robust in handling errors
but does not allow the crawling of dynamic sites.
Scrapy can be provided with a Reddit URL ex-
tended by the ’.json’ link and get all internal links
consisting of comments and replies. Instead of

traversing the Reddit page using html and selectors,
which would be time-consuming, a simple scraper
has been built using the functionality of scrapy.

5.4 Filtering of extracted data
The filtering model is a simple algorithm that
avoids excessive computation as it does not look
outside the extracted data for filtering conditions.
It works more along the lines of ”sticking to the
topic” by using the high-frequency terms and hash-
tags from the extracted data itself. A sample of
filtered and unfiltered data for a Twitter search term
”cancer” is attached below. One of the two vari-
ables to note here is the number of comments used
to generate the high-frequency list - . Ideally, it
should depend on the volume of extracted data, at
least 2-5% of the total volume.

The other variable is the frequency number-
used to classify a token as highly frequent. This
would depend on the number of tokens used to
create a high-frequency list. Approximately the
first 80% of the tokens, when arranged in ascending
order in terms of their occurrence frequency, need
to be rejected. Samples of such filtering are seen in
Figure 7 and Figure 8.

Figure 7: Accepted and cleaned comments. This is a
sample of accepted comments that were cleaned prior
filtering for the searched keyword, ”cancer”.

Thus we see that this filtering algorithm achieves
highly flexible strictness with respect to which com-
ments are accepted and with no bias. Since this is a
simple implementation of a modified bag of words
model, it is computationally light in comparison
with ML models that do the same.

6 Conclusion

The proposed crawler can fetch multi-turn dia-
logues from Twitter, YouTube. The crawler can
scrape conversational data from Twitter, YouTube.



39

Figure 8: Cleaned but rejected comments. This is a
sample of rejected comments that were cleaned before
filtering for the searched keyword, ”cancer”.

Unstructured data retrieved from the crawler is con-
verted to well-formatted data. Streaming API has
been used to crawl Twitter and retrieve random
sets of public tweets. Quoted Retweets or retweets
with comments are filtered from the collected set
of public tweets. The quoted retweet, with its con-
tained parent tweet, is outputted to the JSON file.
YouTube crawling is made easy without any limita-
tions as like which the YouTube data v3 API has,
and getting comments has never been this easy and
fast before. Reddit crawler parses the JSON object
from the response downloaded from the spider’s
request and can get the comments of the posts.

References
Wahyu Achsan, Harry Wibowo. 2014. A fast dis-

tributed focused- web crawling. Procedia Engineer-
ing, pages 492–499.

Sandip Chauhan Ayar Pranav. 2015. Efficient focused
web crawling approach for search engine. Inter-
national Journal of Computer Science and Mobile
Computing, 4:545 – 551.

Hicks A Yuan J He Z Xie M Guo Y Prosperi M Salluom
R Modave F Bian J, Yoshigoe K. 2016. Mining twit-
ter to assess the public perception of the ”internet of
things”. PLoS One, 11(7).

Salloum RG Guo Y Wang M Prosperi M Zhang H Du X
Ramirez-Diaz LJ He Z Sun Y Bian J, Zhao Y. 2017.
Using social media data to understand the impact of
promotional information on laypeople’s discussions:
A case study of lynch syndrome. J Med Internet Res.

Satish Kumar Dhiraj Khurana. 2012. Web crawler: A

review. International Journal of Computer Science
Management Studies, 12(1).

Rutherford M Malin B Xie M Fellbaum C Yin Z Fabbri
D Hanna J Bian J Hicks A, Hogan WR. 2015. Min-
ing twitter as a first step toward assessing the ade-
quacy of gender identification terms on intake forms.
AMIA AnnuSymp Proc.

Vassiliki Angelis LefterisVakali Athena K. Paparrizos,
IoannisKoutsonikola. 2010. Automatic extraction of
structure, content and usage data statistics of web-
sites. pages 301–302.

M. Singhal M. Bahrami and Z. Zhuang. 2015. A
cloud-based web crawler architecture. International
Conference on Intelligence in Next Generation Net-
works), pages 216–223.

Varnica. Stockmeyer Mini Singh Ahuja, Dr. Jatinder
Singh Bal. 2014. Web crawler: Extracting the web
data. International Journal of Computer Trends and
Technology (IJCTT), 13(3):132–137.

Károly Nemeslaki, AndrásPocsarovszky. 2011. Web
crawler research methodology.

Christopher Olston and Marc NajorkInfolab. 2010.
Web crawling. Stanford university, Foundations and
TrendsR in Information Retrieval, 4(3):175–246.

Felix K Akorli Pavalam S M, S V Kashmir Raja and
Jawahar M. 2011. A survey of web crawler algo-
rithms. IJCSI International Journal of Computer
Science Issues, 8(1).

Jawahar M. Pavalam S. M., S. V. Kasmir Raja and Fe-
lix K. Akorli. 2012. Web crawler: Extracting the
web data. IJMLC, 2(4):531–534.

Hui Shen Xiaoyu Li Wenjie Cao ZiqiangNiu Shuzi.
Yanran, Li Su. 2017. Dailydialog: A manually la-
belled multi-turn dialogue dataset.


