@inproceedings{ihori-etal-2020-memory,
title = "Memory Attentive Fusion: External Language Model Integration for Transformer-based Sequence-to-Sequence Model",
author = "Ihori, Mana and
Masumura, Ryo and
Makishima, Naoki and
Tanaka, Tomohiro and
Takashima, Akihiko and
Orihashi, Shota",
editor = "Davis, Brian and
Graham, Yvette and
Kelleher, John and
Sripada, Yaji",
booktitle = "Proceedings of the 13th International Conference on Natural Language Generation",
month = dec,
year = "2020",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.inlg-1.1/",
doi = "10.18653/v1/2020.inlg-1.1",
pages = "1--6",
abstract = "This paper presents a novel fusion method for integrating an external language model (LM) into the Transformer based sequence-to-sequence (seq2seq) model. While paired data are basically required to train the seq2seq model, the external LM can be trained with only unpaired data. Thus, it is important to leverage memorized knowledge in the external LM for building the seq2seq model, since it is hard to prepare a large amount of paired data. However, the existing fusion methods assume that the LM is integrated with recurrent neural network-based seq2seq models instead of the Transformer. Therefore, this paper proposes a fusion method that can explicitly utilize network structures in the Transformer. The proposed method, called memory attentive fusion, leverages the Transformer-style attention mechanism that repeats source-target attention in a multi-hop manner for reading the memorized knowledge in the LM. Our experiments on two text-style conversion tasks demonstrate that the proposed method performs better than conventional fusion methods."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ihori-etal-2020-memory">
<titleInfo>
<title>Memory Attentive Fusion: External Language Model Integration for Transformer-based Sequence-to-Sequence Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mana</namePart>
<namePart type="family">Ihori</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryo</namePart>
<namePart type="family">Masumura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoki</namePart>
<namePart type="family">Makishima</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tomohiro</namePart>
<namePart type="family">Tanaka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Akihiko</namePart>
<namePart type="family">Takashima</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shota</namePart>
<namePart type="family">Orihashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Brian</namePart>
<namePart type="family">Davis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yvette</namePart>
<namePart type="family">Graham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="family">Kelleher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yaji</namePart>
<namePart type="family">Sripada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents a novel fusion method for integrating an external language model (LM) into the Transformer based sequence-to-sequence (seq2seq) model. While paired data are basically required to train the seq2seq model, the external LM can be trained with only unpaired data. Thus, it is important to leverage memorized knowledge in the external LM for building the seq2seq model, since it is hard to prepare a large amount of paired data. However, the existing fusion methods assume that the LM is integrated with recurrent neural network-based seq2seq models instead of the Transformer. Therefore, this paper proposes a fusion method that can explicitly utilize network structures in the Transformer. The proposed method, called memory attentive fusion, leverages the Transformer-style attention mechanism that repeats source-target attention in a multi-hop manner for reading the memorized knowledge in the LM. Our experiments on two text-style conversion tasks demonstrate that the proposed method performs better than conventional fusion methods.</abstract>
<identifier type="citekey">ihori-etal-2020-memory</identifier>
<identifier type="doi">10.18653/v1/2020.inlg-1.1</identifier>
<location>
<url>https://aclanthology.org/2020.inlg-1.1/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>1</start>
<end>6</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Memory Attentive Fusion: External Language Model Integration for Transformer-based Sequence-to-Sequence Model
%A Ihori, Mana
%A Masumura, Ryo
%A Makishima, Naoki
%A Tanaka, Tomohiro
%A Takashima, Akihiko
%A Orihashi, Shota
%Y Davis, Brian
%Y Graham, Yvette
%Y Kelleher, John
%Y Sripada, Yaji
%S Proceedings of the 13th International Conference on Natural Language Generation
%D 2020
%8 December
%I Association for Computational Linguistics
%C Dublin, Ireland
%F ihori-etal-2020-memory
%X This paper presents a novel fusion method for integrating an external language model (LM) into the Transformer based sequence-to-sequence (seq2seq) model. While paired data are basically required to train the seq2seq model, the external LM can be trained with only unpaired data. Thus, it is important to leverage memorized knowledge in the external LM for building the seq2seq model, since it is hard to prepare a large amount of paired data. However, the existing fusion methods assume that the LM is integrated with recurrent neural network-based seq2seq models instead of the Transformer. Therefore, this paper proposes a fusion method that can explicitly utilize network structures in the Transformer. The proposed method, called memory attentive fusion, leverages the Transformer-style attention mechanism that repeats source-target attention in a multi-hop manner for reading the memorized knowledge in the LM. Our experiments on two text-style conversion tasks demonstrate that the proposed method performs better than conventional fusion methods.
%R 10.18653/v1/2020.inlg-1.1
%U https://aclanthology.org/2020.inlg-1.1/
%U https://doi.org/10.18653/v1/2020.inlg-1.1
%P 1-6
Markdown (Informal)
[Memory Attentive Fusion: External Language Model Integration for Transformer-based Sequence-to-Sequence Model](https://aclanthology.org/2020.inlg-1.1/) (Ihori et al., INLG 2020)
ACL