@inproceedings{nikolov-etal-2020-rapformer,
title = "Rapformer: Conditional Rap Lyrics Generation with Denoising Autoencoders",
author = "Nikolov, Nikola I. and
Malmi, Eric and
Northcutt, Curtis and
Parisi, Loreto",
editor = "Davis, Brian and
Graham, Yvette and
Kelleher, John and
Sripada, Yaji",
booktitle = "Proceedings of the 13th International Conference on Natural Language Generation",
month = dec,
year = "2020",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.inlg-1.42/",
doi = "10.18653/v1/2020.inlg-1.42",
pages = "360--373",
abstract = "The ability to combine symbols to generate language is a defining characteristic of human intelligence, particularly in the context of artistic story-telling through lyrics. We develop a method for synthesizing a rap verse based on the content of any text (e.g., a news article), or for augmenting pre-existing rap lyrics. Our method, called Rapformer, is based on training a Transformer-based denoising autoencoder to reconstruct rap lyrics from content words extracted from the lyrics, trying to preserve the essential meaning, while matching the target style. Rapformer features a novel BERT-based paraphrasing scheme for rhyme enhancement which increases the average rhyme density of output lyrics by 10{\%}. Experimental results on three diverse input domains show that Rapformer is capable of generating technically fluent verses that offer a good trade-off between content preservation and style transfer. Furthermore, a Turing-test-like experiment reveals that Rapformer fools human lyrics experts 25{\%} of the time."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nikolov-etal-2020-rapformer">
<titleInfo>
<title>Rapformer: Conditional Rap Lyrics Generation with Denoising Autoencoders</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nikola</namePart>
<namePart type="given">I</namePart>
<namePart type="family">Nikolov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eric</namePart>
<namePart type="family">Malmi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Curtis</namePart>
<namePart type="family">Northcutt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Loreto</namePart>
<namePart type="family">Parisi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Brian</namePart>
<namePart type="family">Davis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yvette</namePart>
<namePart type="family">Graham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="family">Kelleher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yaji</namePart>
<namePart type="family">Sripada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The ability to combine symbols to generate language is a defining characteristic of human intelligence, particularly in the context of artistic story-telling through lyrics. We develop a method for synthesizing a rap verse based on the content of any text (e.g., a news article), or for augmenting pre-existing rap lyrics. Our method, called Rapformer, is based on training a Transformer-based denoising autoencoder to reconstruct rap lyrics from content words extracted from the lyrics, trying to preserve the essential meaning, while matching the target style. Rapformer features a novel BERT-based paraphrasing scheme for rhyme enhancement which increases the average rhyme density of output lyrics by 10%. Experimental results on three diverse input domains show that Rapformer is capable of generating technically fluent verses that offer a good trade-off between content preservation and style transfer. Furthermore, a Turing-test-like experiment reveals that Rapformer fools human lyrics experts 25% of the time.</abstract>
<identifier type="citekey">nikolov-etal-2020-rapformer</identifier>
<identifier type="doi">10.18653/v1/2020.inlg-1.42</identifier>
<location>
<url>https://aclanthology.org/2020.inlg-1.42/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>360</start>
<end>373</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Rapformer: Conditional Rap Lyrics Generation with Denoising Autoencoders
%A Nikolov, Nikola I.
%A Malmi, Eric
%A Northcutt, Curtis
%A Parisi, Loreto
%Y Davis, Brian
%Y Graham, Yvette
%Y Kelleher, John
%Y Sripada, Yaji
%S Proceedings of the 13th International Conference on Natural Language Generation
%D 2020
%8 December
%I Association for Computational Linguistics
%C Dublin, Ireland
%F nikolov-etal-2020-rapformer
%X The ability to combine symbols to generate language is a defining characteristic of human intelligence, particularly in the context of artistic story-telling through lyrics. We develop a method for synthesizing a rap verse based on the content of any text (e.g., a news article), or for augmenting pre-existing rap lyrics. Our method, called Rapformer, is based on training a Transformer-based denoising autoencoder to reconstruct rap lyrics from content words extracted from the lyrics, trying to preserve the essential meaning, while matching the target style. Rapformer features a novel BERT-based paraphrasing scheme for rhyme enhancement which increases the average rhyme density of output lyrics by 10%. Experimental results on three diverse input domains show that Rapformer is capable of generating technically fluent verses that offer a good trade-off between content preservation and style transfer. Furthermore, a Turing-test-like experiment reveals that Rapformer fools human lyrics experts 25% of the time.
%R 10.18653/v1/2020.inlg-1.42
%U https://aclanthology.org/2020.inlg-1.42/
%U https://doi.org/10.18653/v1/2020.inlg-1.42
%P 360-373
Markdown (Informal)
[Rapformer: Conditional Rap Lyrics Generation with Denoising Autoencoders](https://aclanthology.org/2020.inlg-1.42/) (Nikolov et al., INLG 2020)
ACL