@inproceedings{kasner-dusek-2020-data,
title = "Data-to-Text Generation with Iterative Text Editing",
author = "Kasner, Zden{\v{e}}k and
Du{\v{s}}ek, Ond{\v{r}}ej",
editor = "Davis, Brian and
Graham, Yvette and
Kelleher, John and
Sripada, Yaji",
booktitle = "Proceedings of the 13th International Conference on Natural Language Generation",
month = dec,
year = "2020",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.inlg-1.9",
doi = "10.18653/v1/2020.inlg-1.9",
pages = "60--67",
abstract = "We present a novel approach to data-to-text generation based on iterative text editing. Our approach maximizes the completeness and semantic accuracy of the output text while leveraging the abilities of recent pre-trained models for text editing (LaserTagger) and language modeling (GPT-2) to improve the text fluency. To this end, we first transform data items to text using trivial templates, and then we iteratively improve the resulting text by a neural model trained for the sentence fusion task. The output of the model is filtered by a simple heuristic and reranked with an off-the-shelf pre-trained language model. We evaluate our approach on two major data-to-text datasets (WebNLG, Cleaned E2E) and analyze its caveats and benefits. Furthermore, we show that our formulation of data-to-text generation opens up the possibility for zero-shot domain adaptation using a general-domain dataset for sentence fusion.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kasner-dusek-2020-data">
<titleInfo>
<title>Data-to-Text Generation with Iterative Text Editing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zdeněk</namePart>
<namePart type="family">Kasner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ondřej</namePart>
<namePart type="family">Dušek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Brian</namePart>
<namePart type="family">Davis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yvette</namePart>
<namePart type="family">Graham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="family">Kelleher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yaji</namePart>
<namePart type="family">Sripada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a novel approach to data-to-text generation based on iterative text editing. Our approach maximizes the completeness and semantic accuracy of the output text while leveraging the abilities of recent pre-trained models for text editing (LaserTagger) and language modeling (GPT-2) to improve the text fluency. To this end, we first transform data items to text using trivial templates, and then we iteratively improve the resulting text by a neural model trained for the sentence fusion task. The output of the model is filtered by a simple heuristic and reranked with an off-the-shelf pre-trained language model. We evaluate our approach on two major data-to-text datasets (WebNLG, Cleaned E2E) and analyze its caveats and benefits. Furthermore, we show that our formulation of data-to-text generation opens up the possibility for zero-shot domain adaptation using a general-domain dataset for sentence fusion.</abstract>
<identifier type="citekey">kasner-dusek-2020-data</identifier>
<identifier type="doi">10.18653/v1/2020.inlg-1.9</identifier>
<location>
<url>https://aclanthology.org/2020.inlg-1.9</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>60</start>
<end>67</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Data-to-Text Generation with Iterative Text Editing
%A Kasner, Zdeněk
%A Dušek, Ondřej
%Y Davis, Brian
%Y Graham, Yvette
%Y Kelleher, John
%Y Sripada, Yaji
%S Proceedings of the 13th International Conference on Natural Language Generation
%D 2020
%8 December
%I Association for Computational Linguistics
%C Dublin, Ireland
%F kasner-dusek-2020-data
%X We present a novel approach to data-to-text generation based on iterative text editing. Our approach maximizes the completeness and semantic accuracy of the output text while leveraging the abilities of recent pre-trained models for text editing (LaserTagger) and language modeling (GPT-2) to improve the text fluency. To this end, we first transform data items to text using trivial templates, and then we iteratively improve the resulting text by a neural model trained for the sentence fusion task. The output of the model is filtered by a simple heuristic and reranked with an off-the-shelf pre-trained language model. We evaluate our approach on two major data-to-text datasets (WebNLG, Cleaned E2E) and analyze its caveats and benefits. Furthermore, we show that our formulation of data-to-text generation opens up the possibility for zero-shot domain adaptation using a general-domain dataset for sentence fusion.
%R 10.18653/v1/2020.inlg-1.9
%U https://aclanthology.org/2020.inlg-1.9
%U https://doi.org/10.18653/v1/2020.inlg-1.9
%P 60-67
Markdown (Informal)
[Data-to-Text Generation with Iterative Text Editing](https://aclanthology.org/2020.inlg-1.9) (Kasner & Dušek, INLG 2020)
ACL