@inproceedings{khurana-bhatnagar-2020-nmf,
title = "{NMF} Ensembles? Not for Text Summarization!",
author = "Khurana, Alka and
Bhatnagar, Vasudha",
editor = "Rogers, Anna and
Sedoc, Jo{\~a}o and
Rumshisky, Anna",
booktitle = "Proceedings of the First Workshop on Insights from Negative Results in NLP",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.insights-1.14",
doi = "10.18653/v1/2020.insights-1.14",
pages = "88--93",
abstract = "Non-negative Matrix Factorization (NMF) has been used for text analytics with promising results. Instability of results arising due to stochastic variations during initialization makes a case for use of ensemble technology. However, our extensive empirical investigation indicates otherwise. In this paper, we establish that ensemble summary for single document using NMF is no better than the best base model summary.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="khurana-bhatnagar-2020-nmf">
<titleInfo>
<title>NMF Ensembles? Not for Text Summarization!</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alka</namePart>
<namePart type="family">Khurana</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vasudha</namePart>
<namePart type="family">Bhatnagar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Insights from Negative Results in NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">João</namePart>
<namePart type="family">Sedoc</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rumshisky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Non-negative Matrix Factorization (NMF) has been used for text analytics with promising results. Instability of results arising due to stochastic variations during initialization makes a case for use of ensemble technology. However, our extensive empirical investigation indicates otherwise. In this paper, we establish that ensemble summary for single document using NMF is no better than the best base model summary.</abstract>
<identifier type="citekey">khurana-bhatnagar-2020-nmf</identifier>
<identifier type="doi">10.18653/v1/2020.insights-1.14</identifier>
<location>
<url>https://aclanthology.org/2020.insights-1.14</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>88</start>
<end>93</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NMF Ensembles? Not for Text Summarization!
%A Khurana, Alka
%A Bhatnagar, Vasudha
%Y Rogers, Anna
%Y Sedoc, João
%Y Rumshisky, Anna
%S Proceedings of the First Workshop on Insights from Negative Results in NLP
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F khurana-bhatnagar-2020-nmf
%X Non-negative Matrix Factorization (NMF) has been used for text analytics with promising results. Instability of results arising due to stochastic variations during initialization makes a case for use of ensemble technology. However, our extensive empirical investigation indicates otherwise. In this paper, we establish that ensemble summary for single document using NMF is no better than the best base model summary.
%R 10.18653/v1/2020.insights-1.14
%U https://aclanthology.org/2020.insights-1.14
%U https://doi.org/10.18653/v1/2020.insights-1.14
%P 88-93
Markdown (Informal)
[NMF Ensembles? Not for Text Summarization!](https://aclanthology.org/2020.insights-1.14) (Khurana & Bhatnagar, insights 2020)
ACL
- Alka Khurana and Vasudha Bhatnagar. 2020. NMF Ensembles? Not for Text Summarization!. In Proceedings of the First Workshop on Insights from Negative Results in NLP, pages 88–93, Online. Association for Computational Linguistics.