@inproceedings{terragni-etal-2020-matters,
title = "Which Matters Most? Comparing the Impact of Concept and Document Relationships in Topic Models",
author = "Terragni, Silvia and
Nozza, Debora and
Fersini, Elisabetta and
Enza, Messina",
editor = "Rogers, Anna and
Sedoc, Jo{\~a}o and
Rumshisky, Anna",
booktitle = "Proceedings of the First Workshop on Insights from Negative Results in NLP",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.insights-1.5",
doi = "10.18653/v1/2020.insights-1.5",
pages = "32--40",
abstract = "Topic models have been widely used to discover hidden topics in a collection of documents. In this paper, we propose to investigate the role of two different types of relational information, i.e. document relationships and concept relationships. While exploiting the document network significantly improves topic coherence, the introduction of concepts and their relationships does not influence the results both quantitatively and qualitatively.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="terragni-etal-2020-matters">
<titleInfo>
<title>Which Matters Most? Comparing the Impact of Concept and Document Relationships in Topic Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Silvia</namePart>
<namePart type="family">Terragni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debora</namePart>
<namePart type="family">Nozza</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elisabetta</namePart>
<namePart type="family">Fersini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Messina</namePart>
<namePart type="family">Enza</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Insights from Negative Results in NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">João</namePart>
<namePart type="family">Sedoc</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rumshisky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Topic models have been widely used to discover hidden topics in a collection of documents. In this paper, we propose to investigate the role of two different types of relational information, i.e. document relationships and concept relationships. While exploiting the document network significantly improves topic coherence, the introduction of concepts and their relationships does not influence the results both quantitatively and qualitatively.</abstract>
<identifier type="citekey">terragni-etal-2020-matters</identifier>
<identifier type="doi">10.18653/v1/2020.insights-1.5</identifier>
<location>
<url>https://aclanthology.org/2020.insights-1.5</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>32</start>
<end>40</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Which Matters Most? Comparing the Impact of Concept and Document Relationships in Topic Models
%A Terragni, Silvia
%A Nozza, Debora
%A Fersini, Elisabetta
%A Enza, Messina
%Y Rogers, Anna
%Y Sedoc, João
%Y Rumshisky, Anna
%S Proceedings of the First Workshop on Insights from Negative Results in NLP
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F terragni-etal-2020-matters
%X Topic models have been widely used to discover hidden topics in a collection of documents. In this paper, we propose to investigate the role of two different types of relational information, i.e. document relationships and concept relationships. While exploiting the document network significantly improves topic coherence, the introduction of concepts and their relationships does not influence the results both quantitatively and qualitatively.
%R 10.18653/v1/2020.insights-1.5
%U https://aclanthology.org/2020.insights-1.5
%U https://doi.org/10.18653/v1/2020.insights-1.5
%P 32-40
Markdown (Informal)
[Which Matters Most? Comparing the Impact of Concept and Document Relationships in Topic Models](https://aclanthology.org/2020.insights-1.5) (Terragni et al., insights 2020)
ACL