@inproceedings{jin-schuler-2020-memory,
title = "Memory-bounded Neural Incremental Parsing for Psycholinguistic Prediction",
author = "Jin, Lifeng and
Schuler, William",
editor = "Bouma, Gosse and
Matsumoto, Yuji and
Oepen, Stephan and
Sagae, Kenji and
Seddah, Djam{\'e} and
Sun, Weiwei and
S{\o}gaard, Anders and
Tsarfaty, Reut and
Zeman, Dan",
booktitle = "Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task on Parsing into Enhanced Universal Dependencies",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.iwpt-1.6",
doi = "10.18653/v1/2020.iwpt-1.6",
pages = "48--61",
abstract = "Syntactic surprisal has been shown to have an effect on human sentence processing, and can be predicted from prefix probabilities of generative incremental parsers. Recent state-of-the-art incremental generative neural parsers are able to produce accurate parses and surprisal values but have unbounded stack memory, which may be used by the neural parser to maintain explicit in-order representations of all previously parsed words, inconsistent with results of human memory experiments. In contrast, humans seem to have a bounded working memory, demonstrated by inhibited performance on word recall in multi-clause sentences (Bransford and Franks, 1971), and on center-embedded sentences (Miller and Isard,1964). Bounded statistical parsers exist, but are less accurate than neural parsers in predict-ing reading times. This paper describes a neural incremental generative parser that is able to provide accurate surprisal estimates and can be constrained to use a bounded stack. Results show that the accuracy gains of neural parsers can be reliably extended to psycholinguistic modeling without risk of distortion due to un-bounded working memory.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jin-schuler-2020-memory">
<titleInfo>
<title>Memory-bounded Neural Incremental Parsing for Psycholinguistic Prediction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lifeng</namePart>
<namePart type="family">Jin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">William</namePart>
<namePart type="family">Schuler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task on Parsing into Enhanced Universal Dependencies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gosse</namePart>
<namePart type="family">Bouma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuji</namePart>
<namePart type="family">Matsumoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stephan</namePart>
<namePart type="family">Oepen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kenji</namePart>
<namePart type="family">Sagae</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Djamé</namePart>
<namePart type="family">Seddah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weiwei</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anders</namePart>
<namePart type="family">Søgaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Reut</namePart>
<namePart type="family">Tsarfaty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Zeman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Syntactic surprisal has been shown to have an effect on human sentence processing, and can be predicted from prefix probabilities of generative incremental parsers. Recent state-of-the-art incremental generative neural parsers are able to produce accurate parses and surprisal values but have unbounded stack memory, which may be used by the neural parser to maintain explicit in-order representations of all previously parsed words, inconsistent with results of human memory experiments. In contrast, humans seem to have a bounded working memory, demonstrated by inhibited performance on word recall in multi-clause sentences (Bransford and Franks, 1971), and on center-embedded sentences (Miller and Isard,1964). Bounded statistical parsers exist, but are less accurate than neural parsers in predict-ing reading times. This paper describes a neural incremental generative parser that is able to provide accurate surprisal estimates and can be constrained to use a bounded stack. Results show that the accuracy gains of neural parsers can be reliably extended to psycholinguistic modeling without risk of distortion due to un-bounded working memory.</abstract>
<identifier type="citekey">jin-schuler-2020-memory</identifier>
<identifier type="doi">10.18653/v1/2020.iwpt-1.6</identifier>
<location>
<url>https://aclanthology.org/2020.iwpt-1.6</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>48</start>
<end>61</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Memory-bounded Neural Incremental Parsing for Psycholinguistic Prediction
%A Jin, Lifeng
%A Schuler, William
%Y Bouma, Gosse
%Y Matsumoto, Yuji
%Y Oepen, Stephan
%Y Sagae, Kenji
%Y Seddah, Djamé
%Y Sun, Weiwei
%Y Søgaard, Anders
%Y Tsarfaty, Reut
%Y Zeman, Dan
%S Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task on Parsing into Enhanced Universal Dependencies
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F jin-schuler-2020-memory
%X Syntactic surprisal has been shown to have an effect on human sentence processing, and can be predicted from prefix probabilities of generative incremental parsers. Recent state-of-the-art incremental generative neural parsers are able to produce accurate parses and surprisal values but have unbounded stack memory, which may be used by the neural parser to maintain explicit in-order representations of all previously parsed words, inconsistent with results of human memory experiments. In contrast, humans seem to have a bounded working memory, demonstrated by inhibited performance on word recall in multi-clause sentences (Bransford and Franks, 1971), and on center-embedded sentences (Miller and Isard,1964). Bounded statistical parsers exist, but are less accurate than neural parsers in predict-ing reading times. This paper describes a neural incremental generative parser that is able to provide accurate surprisal estimates and can be constrained to use a bounded stack. Results show that the accuracy gains of neural parsers can be reliably extended to psycholinguistic modeling without risk of distortion due to un-bounded working memory.
%R 10.18653/v1/2020.iwpt-1.6
%U https://aclanthology.org/2020.iwpt-1.6
%U https://doi.org/10.18653/v1/2020.iwpt-1.6
%P 48-61
Markdown (Informal)
[Memory-bounded Neural Incremental Parsing for Psycholinguistic Prediction](https://aclanthology.org/2020.iwpt-1.6) (Jin & Schuler, IWPT 2020)
ACL