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Abstract

A variety of natural language tasks require pro-
cessing of textual data which contains a mix
of natural language and formal languages such
as mathematical expressions. In this paper,
we take unit conversions as an example and
propose a data augmentation technique which
lead to models learning both translation and
conversion tasks as well as how to adequately
switch between them for end-to-end localiza-
tion.

1 Introduction

Neural networks trained on large amounts of data
have been shown to achieve state-of-the art solu-
tions on most NLP tasks such as textual entail-
ment, question answering, translation, etc. In par-
ticular, these solutions show that one can success-
fully model the ambiguity of language by making
very few assumptions about its structure and by
avoiding any formalization of language. However,
unambiguous, formal languages such as numbers,
mathematical expressions or even programming
languages (e.g. markup) are abundant in text and
require the ability to model the symbolic, “proce-
dural” behaviour governing them. (Ravichander
et al., 2019; Dua et al., 2019).

An example of an application where such ex-
amples are frequent is the extension of machine
translation to localization. Localization is the
task of combining translation with “culture adapta-
tion”, which involves, for instance, adapting dates
(12/21/2004 to 21.12.2004), calendar conversions
(March 30, 2019 to Rajab 23, 1441 in Hijri Cal-
endar) or conversions of currencies or of units of
measure (10 kgs to 22 pounds).

Current approaches in machine translation han-
dle the processing of such sub-languages in one
of two ways: The sub-language does not receive
any special treatment but it may be learned jointly

with the main task if it is represented enough in the
data. Alternatively, the sub-language is decoupled
from the natural text through pre/post processing
techniques: e.g. a miles expression is converted
into kilometers in a separate step after translation.

Arguably the first approach can successfully deal
with some of these phenomena: e.g. a neural net-
work may learn to invoke a simple conversion rule
for dates, if enough examples are seen training.
However, at the other end of the spectrum, cor-
rectly converting distance units, which itself is a
simple algorithm, requires knowledge of numbers,
basic arithmetic and the specific conversion func-
tion to apply. It is unrealistic to assume a model
could learn such conversions from limited amounts
of parallel running text alone. Furthermore, this is
an unrealistic task even for distributional, unsuper-
vised pre-training (Turney and Pantel, 2010; Baroni
and Lenci, 2010; Peters et al., 2018), despite the
success of such methods in capturing other non-
linguistic phenomena such as world knowledge or
cultural biases (Bolukbasi et al., 2016; Vanmassen-
hove et al., 2018).1

While the second approach is currently the pre-
ferred one in translation technology, such decou-
pling methods do not bring us closer to end-to-end
solutions and they ignore the often tight interplay of
the two types of language: taking unit conversion
as an example, approximately 500 miles, should be
translated into ungefähr 800 km (approx. 800km)
and not ungefähr 804 km (approx. 804km).

In this paper we highlight several of such lan-
guage mixing phenomena related to the task of lo-
calization for translation and focus on two distance
(miles to kilometers) and temperature (Fahrenheit
to Celsius) conversion tasks. Specifically, we per-

1(Wallace et al., 2019) show that numeracy is encoded
in pre-trained embeddings. While promising, this does not
show that more complex and varied manipulation of numerical
expressions can be learned in a solely unsupervised fashion.
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form experiments using the popular MT trans-
former architecture and show that the model is
successful at learning these functions from symboli-
cally represented examples. Furthermore, we show
that data augmentation techniques together with
small changes in the input representation produce
models which can both translate and appropriately
convert units of measure in context.

2 Related work

Several theoretical and empirical works have ad-
dressed the computational capabilities end expres-
siveness of deep learning models. Theoretical stud-
ies on language modeling have mostly targeted
simple grammars from the Chomsky hierarchy. In
particular, Hahn (2019) proves that Transformer
networks suffer limitations in modeling regular
periodic languages (such as anbn) as well as hi-
erarchical (context-free) structures, unless their
depth or self-attention heads increase with the input
length. On the other hand, Merrill (2019) proves
that LSTM networks can recognize a subset of peri-
odic languages. Also experimental papers analyzed
the capability of LSTMs to recognize these two
language classes (Weiss et al., 2018; Suzgun et al.,
2019; Sennhauser and Berwick, 2018; Skachkova
et al., 2018; Bernardy, 2018), as well as natural lan-
guage hierarchical structures (Linzen et al., 2016;
Gulordava et al., 2018). It is worth noticing, how-
ever, that differently from formal language recog-
nition tasks, state of the art machine translation
systems (Barrault et al., 2019; Niehues et al., 2019)
are still based on the Transformer architecture .

Other related work addresses specialized neural
architectures capable to process and reason with nu-
merical expressions for binary addition, evaluating
arithmetic expressions or other number manipula-
tion tasks (Joulin and Mikolov, 2015; Saxton et al.,
2019; Trask et al., 2018; Chen et al., 2018). While
this line of work is very relevant, we focus on the
natural intersection of formal and everyday lan-
guage. The types of generalization that these stud-
ies address, such as testing with numbers orders of
magnitude larger than those in seen in training, are
less relevant to our task.

The task of solving verbal math problems (Mi-
tra and Baral, 2016; Wang et al., 2017; Koncel-
Kedziorski et al., 2016; Saxton et al., 2019) specifi-
cally addresses natural language mixed with formal
language. Similarly, (Ravichander et al., 2019) in-
troduces a benchmark for evaluating quantitative

reasoning in natural language inference and (Dua
et al., 2019) one for symbolic operations such as
addition or sorting in reading comprehension. How-
ever these papers show the best results with two-
step approaches, which extract the mathematical
or symbolic information from the text and further
manipulate it analytically. We are not aware of any
other work successfully addressing both machine
translation and mathematical problems, or any of
the benchmarks above, in an end-to-end fashion.

3 Unit conversion in MT localization

The goal of localization is to enhance plain content
translation so that the final result looks and feels as
being created for a specific target audience.

Parallel corpora in general include localiza-
tion of formats numeric expressions (e.g. from
1,000,000.00 (en-us) to 1.000.000,00 (de-de)). For-
mat conversions in most of the cases reduce to
operations such as reordering of elements and re-
placement of symbols, which quite naturally fit
inside the general task of machine translation. In
this paper, we are interested in evaluating the ca-
pability of neural MT models to learn less natural
operations, which are typically involved in the con-
version of time expressions (e.g. 3:30pm→ 15:30)
and units of measure, such as lengths (10ft to 3m)
and temperatures (55F to 12.8C).

We choose two measure unit conversion tasks
that are very prevalent in localization: Fahrenheit
to Celsius temperature conversion and miles to kilo-
meters. We address the following questions: 1) Can
a standard NMT architecture, the transformer, be
used to learn the functions associated with these
two conversion tasks (Section 3.1) and 2) Can the
same architecture be used to train a model that can
do both MT and unit conversion? (Section 3.2)

3.1 Unit conversion

Network architecture We use the state-of-the-
art transformer architecture (Vaswani et al., 2017)
and the Sockeye Toolkit (Hieber et al., 2017) to
train a network with 4 encoder layers and 2 de-
coder layers for a maximum of 3000 epochs (See
Appendix A for details). As the vocabulary size
is small the training is still very efficient. For the
experiments training several tasks jointly we facil-
itate the context-switching between the different
tasks with an additional token-level parallel stream
(source factors) (Sennrich and Haddow, 2016). We
use two values for the digits in numerical expres-
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Figure 1: Conversion accuracy with ±10−4 tolerance on
relative error, as a function of the number of the target conver-
sion examples in the train data. Functions are learned both in
isolation and in a joint setting (MtoKm + FtoC) which adds to
training an equal amount of data for the other function.

sions (distance/temperature) and a third value for
all other tokens. These are concatenated to each
token as 8-dimensional embeddings.

Data The models are trained with parallel
examples of the two functions, one affine:
°F→ °C(x) = (x − 32) × 5

9 and one linear:
mi→ km(x) = x × 1.60934. For each task, we
generate training data of various input lengths rang-
ing from 1 to 6 digits in the input. The input is
distributed uniformly w.r.t 1) integer versus single
digit precision (with the output truncated to same
precision as the input) and 2) the length of the in-
put in digits. We over-sample when there are not
enough distinct data points, such as in the case of
double- or single-digit numbers. The numerical
input is tokenized into digits (e.g. 5 2 1 miles) and
we train individual models for the two functions,
as well as joint models, using held-out data for val-
idation and testing. Note that unlike previous work,
we are interested only in interpolation generaliza-
tion: test numbers are unseen, but the range of test
numbers does not increase.

Results Results as a function of the amount of
training data are given in Figure 1. Test sets are syn-
thetic and contain numbers in [103 − 106] range.

The results show that the transformer architec-
ture can learn the two functions perfectly, however,
interestingly enough, the two functions are learned
differently. While the degree conversion is learned
with a high accuracy with as little as several thou-
sand examples, the distance conversion is learned
gradually, with more data leading to better and
better numerical approximations: in this case the
model reaches high precision in conversion only
with data two orders of magnitude larger. Both
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Figure 2: Accuracy of localization conversion (tolerance
0.01%) on regular and challenge sets. All models use source
factors and are trained using: 2.2M MT data + 15k Loc data +
varying amounts of Conv data.

functions are learned with less data when training
is done jointly and source factors are used - this
suggests that, despite the fact that the functions
are very different, joint training may facilitate the
learning of numbers as a general concept and helps
learn additional functions more efficiently.

3.2 Joint MT and unit conversion

In a second set of experiments we investigate if the
transformer model is able to perform both the trans-
lation and the unit conversion tasks and learns to
adequately switch from one to the other in context.
We use the same architecture as in the previous
section, with minor modifications: we use subword
embeddings with a shared vocabulary of size 32000
and a maximum number of epochs of 30.

Data As standard MT parallel data we use a
collection containing Europarl (Koehn, 2005) and
news commentary data from WMT En→De shared
task 2019 totalling 2.2 million sentences.2 Stan-
dard translation test sets do not have, however,
enough examples of unit conversions and in fact
corpora such as CommonCrawl show inconsistent
treatment of units. For this reason, we create a
unit conversion (Localization) data set. We ex-
tract sentences containing Fahrenheit/Celsius and
miles/km from a mix of open source data sets
namely, ParaCrawl, DGT (Translation Memories),
Wikipedia and OpenSubtitles, TED talks from
OPUS (Tiedemann, 2012). Regular expressions
are used to extract the sentences containing the
units and modify the source or the reference by

2We opt for a smaller experiment in order to speed up
computations and to prioritize efficiency in our experiments
(Strubell et al., 2019). We have no reason to assume any
dependency on the data size.
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Example
Conv 5 2 1 miles 8 3 9 km
MT We do not know what is happening. Wir wissen nicht, was passiert.
Loc. The venue is within 3 . 8 miles from the city center Die Unterkunft ist 6 km vom Stadtzentrum entfernt

Table 1: The three types of data used in training the joint model: unit conversion data, standard MT data and localization (Loc)
data containing unit conversions in context.

news17 Loc-dist Loc-temp
S.f. #Loc Bleu Bleu Acc. Bleu Acc.

- 0 22.7 20.6 0% 16.1 0%
- 5k 22.7 56.7 52.3% 44.1 48.3%
- 15k 23.0 61.7 76.2% 48.5 80.3%
- 30k 23.0 65.0 90.3% 48.9 81.3%
X 0 22.9 19.5 1% 16.6 3.4%
X 5k 22.9 58.7 69.4% 46.8 64.8%
X 15k 23.2 63.0 88.0% 48.6 77.8%
X 30k 22.6 64.0 88.3% 48.8 79.4%

Table 2: Bleu scores and accuracy on conversion of degrees
(temp) and miles (dist) expressions in Loc test sets. Conver-
sion accuracy is computed with a tolerance of 0.01%. All
models are trained using: 2.2M MT+ 100k Conv + #Loc data
(col 2) for each function, with and without Source factors
(column 1).

converting the matched units. For example, if 5 km
is matched in the reference, we modify the source
expression to 3.1 miles.3 We are able to extract a
total of 7k examples for each of the two conversion
tasks and use 5k for training and 2k for testing,
making sure the train/test numerical expressions
are distinct.

Results In the experimental setting, we distin-
guish the following three types of data: transla-
tion (MT), conversion (Conv) and localization data
(conversion in context) (Loc), and measure perfor-
mance when varying amounts of Conv and Loc
are used in training. Examples of these data types
are given in Table 1. The first set of experiments
(Table 2) uses MT and Conv data and tests the mod-
els’ performance with varying amounts of Loc data.
We observe that for localization performance, Loc
data in training is crucial: accuracy jumps from 2%
when no Loc data is used to 66% for 5k Loc and to
82%, on average, with 15k localization examples
for each function (w. source factors). However,
the 15k data points are obtained by up-sampling
the linguistic context and replacing the unit con-
versions with new unit conversions, and therefore
no “real” new data is added. We observe no further
improvements when more Loc data is added. Re-
garding the use of source factors, they help when
the localization data is non-existent or very limited,

3Scripts to create this data will be released, however the
data used itself does not grant us re-distribution rights.

however their benefits are smaller otherwise.
The Bleu scores measured on a news data set as

well as on the localization data sets show no degra-
dation from a baseline setting, indicating that the
additional data does not affect translation quality.
The exception is the #Loc-0 setting, in which the
model wrongly learns to end all localization sen-
tences with km and C tokens respectively, as seen
in the Conv data. Similarly to the previous results,
temp conversions are learned either correctly or not
at all while the distance ones show numerical ap-
proximation errors: When measuring exact match
in conversion (0.0 tolerance), the temperature ac-
curacy remains largely the same while the distance
accuracy drops by up to 30%.

Given the observation that Loc data is crucial, we
perform another set of experiments to investigate if
the Conv data is needed at all. Results are shown in
Figure 2. In light of the limited amount of real dis-
tinct conversions that we see in testing, we create
two additional challenge sets which use the same
linguistic data and replace the original conversions
with additional ones uniformly distributed w.r.t the
length in digits from 1 to 6. The results indicate
that conversion data is equally critical, and that the
conversion cannot be learned from the localization
data provided alone. The localization data rather
acts as a “bridge” allowing the network to combine
the two tasks it has learned independently.

4 Conclusions

We have outlined natural/formal language mixing
phenomena in the context of end-to-end localiza-
tion for MT and have proposed a data augmentation
method for learning unit conversions in context.
Surprisingly, the results show not only that a single
architecture can learn both translation and unit con-
versions, but can also appropriately switch between
them when a small amount of localization data is
used in training. For future work we plan to cre-
ate a diverse localization test suite and investigate
if implicit learning of low-level concepts such as
natural numbers takes place and if unsupervised
pre-training facilitates such learning.
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A Appendix

encoder-config:
act_type: relu
attention_heads: 8
conv_config: null
dropout_act: 0.1
dropout_attention: 0.1
dropout_prepost: 0.1
dtype: float32
feed_forward_num_hidden: 2048
lhuc: false
max_seq_len_source: 101
max_seq_len_target: 101
model_size: 512
num_layers: 4
positional_embedding_type:

fixed
postprocess_sequence: dr
preprocess_sequence: n
use_lhuc: false

decoder config:
act_type: relu
attention_heads: 8
conv_config: null
dropout_act: 0.1
dropout_attention: 0.1
dropout_prepost: 0.1
dtype: float32
feed_forward_num_hidden: 2048
max_seq_len_source: 101
max_seq_len_target: 101
model_size: 512
num_layers: 2
positional_embedding_type:

fixed
postprocess_sequence: dr
preprocess_sequence: n

config_loss: !LossConfig
label_smoothing: 0.1
name: cross-entropy
normalization_type: valid
vocab_size: 32302

config_embed_source: !
EmbeddingConfig

dropout: 0.0
dtype: float32
factor_configs: null
num_embed: 512

num_factors: 1
vocab_size: 32302

config_embed_target: !
EmbeddingConfig

dropout: 0.0
dtype: float32
factor_configs: null
num_embed: 512
num_factors: 1
vocab_size: 32302


