Actes de la 6e conférence conjointe Journées d'Études sur la Parole (JEP, 33e édition), Traitement Automatique des Langues Naturelles (TALN, 27e édition), Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RÉCITAL, 22e édition). Atelier DÉfi Fouille de Textes

Rémi Cardon, Natalia Grabar, Cyril Grouin, Thierry Hamon (Editors)


Anthology ID:
2020.jeptalnrecital-deft
Month:
6
Year:
2020
Address:
Nancy, France
Venue:
JEP/TALN/RECITAL
SIG:
Publisher:
ATALA et AFCP
URL:
https://aclanthology.org/2020.jeptalnrecital-deft/
DOI:
Bib Export formats:
BibTeX MODS XML EndNote

pdf bib
Actes de la 6e conférence conjointe Journées d'Études sur la Parole (JEP, 33e édition), Traitement Automatique des Langues Naturelles (TALN, 27e édition), Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RÉCITAL, 22e édition). Atelier DÉfi Fouille de Textes
Rémi Cardon | Natalia Grabar | Cyril Grouin | Thierry Hamon

pdf bib
Présentation de la campagne d’évaluation DEFT 2020 : similarité textuelle en domaine ouvert et extraction d’information précise dans des cas cliniques (Presentation of the DEFT 2020 Challenge : open domain textual similarity and precise information extraction from clinical cases )
Rémi Cardon | Natalia Grabar | Cyril Grouin | Thierry Hamon

L’édition 2020 du défi fouille de texte (DEFT) a proposé deux tâches autour de la similarité textuelle et une tâche d’extraction d’information. La première tâche vise à identifier le degré de similarité entre paires de phrases sur une échelle de 0 (le moins similaire) à 5 (le plus similaire). Les résultats varient de 0,65 à 0,82 d’EDRM. La deuxième tâche consiste à déterminer la phrase la plus proche d’une phrase source parmi trois phrases cibles fournies, avec des résultats très élevés, variant de 0,94 à 0,99 de précision. Ces deux tâches reposent sur un corpus du domaine général et de santé. La troisième tâche propose d’extraire dix catégories d’informations du domaine médical depuis le corpus de cas cliniques de DEFT 2019. Les résultats varient de 0,07 à 0,66 de F-mesure globale pour la sous-tâche des pathologies et signes ou symptômes, et de 0,14 à 0,76 pour la sous-tâche sur huit catégories médicales. Les méthodes utilisées reposent sur des CRF et des réseaux de neurones.

pdf bib
Calcul de similarité entre phrases : quelles mesures et quels descripteurs ? (Sentence Similarity : a study on similarity metrics with words and character strings )
Davide Buscaldi | Ghazi Felhi | Dhaou Ghoul | Joseph Le Roux | Gaël Lejeune | Xudong Zhang

Cet article présente notre participation à l’édition 2020 du Défi Fouille de Textes DEFT 2020 et plus précisément aux deux tâches ayant trait à la similarité entre phrases. Dans notre travail nous nous sommes intéressé à deux questions : celle du choix de la mesure du similarité d’une part et celle du choix des opérandes sur lesquelles se porte la mesure de similarité. Nous avons notamment étudié la question de savoir s’il fallait utiliser des mots ou des chaînes de caractères (mots ou non-mots). Nous montrons d’une part que la similarité de Bray-Curtis peut être plus efficace et surtout plus stable que la similarité cosinus et d’autre part que le calcul de similarité sur des chaînes de caractères est plus efficace que le même calcul sur des mots.

pdf bib
Participation d’EDF R&D à DEFT 2020 (This paper describes the participation of EDF R&D at DEFT 2020 evaluation campaign)
Danrun Cao | Alexandra Benamar | Manel Boumghar | Meryl Bothua | Lydia Ould Ouali | Philippe Suignard

Ce papier décrit la participation d’EDF R&D à la campagne d’évaluation DEFT 2020. Notre équipe a participé aux trois tâchés proposées : deux tâches sur le calcul de similarité sémantique entre phrases et une tâche sur l’extraction d’information fine autour d’une douzaine de catégories. Aucune donnée supplémentaire, autre que les données d’apprentissage, n’a été utilisée. Notre équipe obtient des scores au-dessus de la moyenne pour les tâches 1 et 2 et se classe 2e sur la tâche 1. Les méthodes proposées sont facilement transposables à d’autres cas d’application de détection de similarité qui peuvent concerner plusieurs entités du groupe EDF. Notre participation à la tâche 3 nous a permis de tester les avantages et limites de l’outil SpaCy sur l’extraction d’information.

pdf bib
Contextualized French Language Models for Biomedical Named Entity Recognition
Jenny Copara | Julien Knafou | Nona Naderi | Claudia Moro | Patrick Ruch | Douglas Teodoro

Named entity recognition (NER) is key for biomedical applications as it allows knowledge discovery in free text data. As entities are semantic phrases, their meaning is conditioned to the context to avoid ambiguity. In this work, we explore contextualized language models for NER in French biomedical text as part of the Défi Fouille de Textes challenge. Our best approach achieved an F1 -measure of 66% for symptoms and signs, and pathology categories, being top 1 for subtask 1. For anatomy, dose, exam, mode, moment, substance, treatment, and value categories, it achieved an F1 -measure of 75% (subtask 2). If considered all categories, our model achieved the best result in the challenge, with an F1 -measure of 72%. The use of an ensemble of neural language models proved to be very effective, improving a CRF baseline by up to 28% and a single specialised language model by 4%.

pdf bib
Approche supervisée de calcul de similarité sémantique entre paires de phrases (Supervised approach to compute semantic similarity between sentence pairs)
Khadim Dramé | Gorgoumack Sambe | Ibrahima Diop | Lamine Faty

Ce papier décrit les méthodes que nous avons développées pour participer aux tâches 1 et 2 de l’édition 2020 du défi fouille de textes (DEFT 2020). Pour la première tâche, qui s’intéresse au calcul de scores de similarité sémantique entre paires de phrases, sur une échelle de 0 à 5, une approche supervisée où chaque paire de phrases est représentée par un ensemble d’attributs a été proposée. Des algorithmes classiques d’apprentissage automatique sont ensuite utilisés pour entrainer les modèles. Différentes mesures de similarité textuelle sont explorées et les plus pertinentes sont combinées pour supporter nos méthodes. Différentes combinaisons ont été testées et évaluées sur les données de test du DEFT 2020. Notre meilleur système qui s’appuie sur un modèle Random Forest a obtenu les meilleures performances sur la première tâche avec une EDRM de 0,8216.

pdf bib
DEFT 2020 - Extraction d’information fine dans les données cliniques : terminologies spécialisées et graphes de connaissance (Fine-grained Information Extraction in Clinical Data : Dedicated Terminologies and Knowledge Graphs )
Thomas Lemaitre | Camille Gosset | Mathieu Lafourcade | Namrata Patel | Guilhem Mayoral

Nous présentons dans cet article notre approche à base de règles conçue pour répondre à la tâche 3 de la campagne d’évaluation DEFT 2020. Selon le type d’information à extraire, nous construisons (1) une terminologie spécialisée à partir de ressources médicales et (2) un graphe orienté basé sur les informations extraites de la base de connaissances généraliste et de grande taille - JeuxDeMots.

pdf bib
DOING@DEFT : cascade de CRF pour l’annotation d’entités cliniques imbriquées (DOING@DEFT : cascade of CRF for the annotation of nested clinical entities)
Anne-Lyse Minard | Andréane Roques | Nicolas Hiot | Mirian Halfeld Ferrari Alves | Agata Savary

Cet article présente le système développé par l’équipe DOING pour la campagne d’évaluation DEFT 2020 portant sur la similarité sémantique et l’extraction d’information fine. L’équipe a participé uniquement à la tâche 3 : “extraction d’information”. Nous avons utilisé une cascade de CRF pour annoter les différentes informations à repérer. Nous nous sommes concentrés sur la question de l’imbrication des entités et de la pertinence d’un type d’entité pour apprendre à reconnaître un autre. Nous avons également testé l’utilisation d’une ressource externe, MedDRA, pour améliorer les performances du système et d’un pipeline plus complexe mais ne gérant pas l’imbrication des entités. Nous avons soumis 3 runs et nous obtenons en moyenne sur toutes les classes des F-mesures de 0,64, 0,65 et 0,61.

pdf bib
Extraction d’information de spécialité avec un système commercial générique (Extracting Medical Information with an Off-the-shelf Software Product)
Clothilde Royan | Jean-Marc Langé | Zied Abidi

Nous avons participé à la tâche 3 du Défi Fouille de texte 2020, dédiée à l’extraction d’information de spécialité, dans le but de tester notre produit commercial d’extraction d’information, Watson Knowledge Studio (WKS), face à des équipes académiques et industrielles. Outre la quantité réduite de données d’apprentissage, la nature des annotations des corpus de référence posait des problèmes d’adaptation à notre produit. Aussi avons-nous dû modifier le schéma d’annotation du corpus d’apprentissage, exécuter l’apprentissage, puis appliquer des règles aux résultats obtenus afin d’obtenir des annotations conformes au schéma initial. Nous avons également appliqué des dictionnaires de spécialité (anatomie, pathologie, etc.) pour injecter de la connaissance du domaine et renforcer les modèles d’apprentissage automatique. Au final, nos résultats lors de la phase de test se situent dans la moyenne de l’ensemble des équipes, avec des F-mesures de 0,43 pour la sous-tâche 1 et 0,63 pour la sous-tâche 2.

pdf bib
DEFT 2020 : détection de similarité entre phrases et extraction d’information (DEFT 2020 : sentence similarity detection and information retrieval )
Mike Tapi Nzali

Ce papier décrit la participation de Reezocar à la campagne d’évaluation DEFT 2020. Cette seizième édition du challenge a porté sur le calcul de similarité entre phrases et l’extraction d’information fine autour d’une douzaine de catégories dans des textes rédigés en Français. Le challenge propose trois tâches : (i) la première concerne l’identification du degré de similarité entre paires de phrases ; (ii) la deuxième concerne l’identification des phrases parallèles possibles pour une phrase source et (iii) la troisième concerne l’extraction d’information. Nous avons utilisé des méthodes d’apprentissage automatique pour effectuer ces tâches et avons obtenu des résultats satisfaisants sur l’ensemble des tâches.

pdf bib
Similarité sémantique entre phrases : apprentissage par transfert interlingue (Semantic Sentence Similarity : Multilingual Transfer Learning)
Charles Teissèdre | Thiziri Belkacem | Maxime Arens

Dans cet article, nous décrivons une approche exploratoire pour entraîner des modèles de langue et résoudre des tâches d’appariement entre phrases issues de corpus en français et relevant du domaine médical. Nous montrons que, dans un contexte où les données d’entraînement sont en nombre restreint, il peut être intéressant d’opérer un apprentissage par transfert, d’une langue dont nous disposons de plus de ressources pour l’entraînement, vers une langue cible moins dotée de données d’entraînement (le français dans notre cas). Les résultats de nos expérimentations montrent que les modèles de langue multilingues sont capables de transférer des représentations d’une langue à l’autre de façon efficace pour résoudre des tâches de similarité sémantique telles que celles proposées dans le cadre de l’édition 2020 du Défi fouille de texte (DEFT).

pdf bib
Participation de l’équipe du LIMICS à DEFT 2020 (Participation of team LIMICS in the DEFT 2020 challenge )
Perceval Wajsbürt | Yoann Taillé | Guillaume Lainé | Xavier Tannier

Nous présentons dans cet article les méthodes conçues et les résultats obtenus lors de notre participation à la tâche 3 de la campagne d’évaluation DEFT 2020, consistant en la reconnaissance d’entités nommées du domaine médical. Nous proposons deux modèles différents permettant de prendre en compte les entités imbriquées, qui représentent une des difficultés du jeu de données proposées, et présentons les résultats obtenus. Notre meilleur run obtient la meilleure performance parmi les participants, sur l’une des deux sous-tâches du défi.