
Proceedings of LaTeCH-CLfL 2020, pages 133–137
Barcelona, Spain (Online), December 12, 2020.

133

Sonnet Combinatorics with OuPoCo

Thierry Poibeau, Mylène Maignant, Frédérique Mélanie-Becquet, Clément Plancq
LATTICE (CNRS & ENS/PSL & Univ. Sorbonne nouvelle)

1, rue Maurice Arnoux, 92120 Montrouge, France
{firstname.lastname}@ens.psl.eu

Matthieu Raffard, Mathilde Roussel
Atelier Raffard-Roussel

189 rue Ordener, Bâtiment B4, atelier 68, 75018 Paris, France
raffard.roussel@gmail.com

Abstract

In this paper, we describe OuPoCo (l’Ouvroir de Poésie Combinatoire), a system producing new
sonnets by recombining verses from existing sonnets, following an idea that Queneau described
in his book Cent Mille Milliards de poèmes, Gallimard, 1961. We propose to demonstrate differ-
ent outputs of our implementation (a Web site, a Twitter bot and a specifically developed device,
called La Boı̂te à poésie) based on a corpus of 19th century French poetry. Our goal is to make
people interested in poetry again, by giving access to automatically produced sonnets through
original and entertaining channels and devices.

1 Introduction

The starting point of the OuPoCo project is the book by Raymond Queneau Cent Mille Milliards de
poèmes (A Hundred Thousand Billion Poems, in English) (Queneau, 1961). The book is composed of
ten sonnets printed on separate strips, allowing thus a hundred thousand billion of different readings.
The combinatory poetics characteristic of this book encourages the reader to play with the meanings of
the poems, the various language registers present in the book or simply with its movable form. It is this
stimulating relationship between poetry and constraints, which constituted the central mainspring of this
project.

Queneau’s book seems an ideal candidate to be transposed on a computer since a machine can perfectly
combine verses and produce a comprehensive list of all the possible poems. But Queneau’s work is still
under copyright, which prevent us from working directly on the sonnets contained in his book. This is the
reason why, instead of working on Queneau’s poems, we decided to focus on a collection of 19th century
French poetry instead. Beyond the availability of massive databases in this field, which facilitated the
creation of our corpus, 19th century poetry also appeared as a fertile ground to reflect upon the sonnet
and to work and play with various constraints. This means that original poems have to be analyzed so as
to determine the rhyme, as well as other features (length of a verse, topics addressed, etc.).

This paper is thus about OuPoCo, l’Ouvroir de Poésie Combinatoire, a system able to generate sonnets
by recombining verses taken from a corpus of French 19th century poetry. We describe the project, the
different project outputs and the interest of this experience to reconnect people with poetry and literature
in an entertaining way.

2 The Corpus

The first part of this research consisted in gathering a corpus of French sonnets from the 19th century. We
first used available resources freely available on the Web, especially the Gutenberg project, Wikisource
and Gallica, a rich collection of digitized resources provided by the Bibliothèque nationale de France

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http:
//creativecommons.org/licenses/by/4.0/



134

(the French national libray). The BnF later gave us access to an even larger corpus of French poems1, so
that the implementation currently integrates a corpus of more than 4,000 French sonnets.

All major French authors from the 19th century are included in the database, but also some less known
ones. Each sonnet is encoded in a XML format along with related metadata; a TEI version of the database
is publicly available (see https://github.com/clement-plancq/oupoco-api) and is reg-
ularly expanding.

3 Corpus and Rhyme Analysis

The OuPoCo project has nothing to do with the recent neural approach to poetry generation (Ghazvinine-
jad et al., 2017; Van de Cruys, 2020), but it requires to get access to a formal representation of rhymes
(as proposed by (Beaudouin, 2002)). In order to do this, the first step is to get a phonetic transcription
of the last word of each verse, but this is not enough: for example, “aimé” and “aimée” have the same
phonetic transcription, but do not rhyme, according to French rhyming rules (feminine and masculine
words, for example words that end with -é, as opposed to -ée, do not rhyme); there are also cases where
the phonetic transcription is slightly different but words actually rhyme (for example with sounds like
[e] and [ε]). All these cases are not marginal and must be handled appropriately.

Phonetisation (the process of transforming a word into a phonetic transcription) is done with eSpeak,
a free software available on the Web (http://espeak.sourceforge.net), that provided satis-
factory results on our data. We analyse the whole verse and not only the last word of each verse, so that
a full rythmic analysis is possible. However, as we have just seen, the phonetic transcription provided by
eSpeak is not enough.

A series of rules written in Python had thus to be defined to get a proper analysis of rhyme derived
form the phonetic transcription of the last word of each verse. These rules are manually defined and
maintained, as there is no way they could be learnt directly from the data. A part of these rules can be
easily derived from a treaty of French versification, but another part is directly linked to the output of
eSpeak as we have to overwrite some phonetic distinctions produced by this software that are not relevant
to analyse poetry.

The sonnet generator uses this analysis to produce sonnets, with different possible structures, respect-
ing the rules of French versification (the code and the resources used, especially the sonnet database, are
open source and freely available for research, see: https://github.com/clement-plancq/
oupoco-api).

4 Constrainsts

In the footsteps of the OuLiPo and following the comments of Queneau who did not like the idea of pure
random poetry generation, we chose to implement constraints to enable the reader to interact with the
database, control the generation process in different ways, and discover 19th century French literature
from a different and more playful angle.

The first constraint correspond to the different existing forms of sonnets proposed in the course of his-
tory. Giacomo da Lentini, Petrach, Marot, Peletier, Shakespeare and Spencer all proposed and initiated a
slightly different rhyming scheme (for example, Marot proposed the following structure: ABBA ABBA
CCD EED, while Petrarch proposed several slightly different structures: ABBA ABBA CDE CDE /
ABBA ABBA CDC DCD / ABBA ABBA CDE DCE, etc.). All these forms of sonnets are available and
the user can choose any structure s/he prefers for generation.

The second constraint enables the reader to generate random sonnets from texts within a chosen time
framework. In other words, the reader selects a period of twenty or thirty years for example that s/he
wants to explore on the timeline, and sonnets are generated according to this time frame. This option
makes it possible to have a quick overview of the productions of French sonnets over a period. Thanks to
this option, it is for example possible to note that very few French sonnets were written at the beginning
of the 19th century while their production tends to increase 20 years or so later.

1This corpus is available for research on the Bibliothèque nationale de France website: api.bnf.fr/
sonnets-de-gallica



135

The third constraint deals with the authors themselves. The reader can select one or multiple poets as
the source corpus to generate new sonnets. It is thus possible to explore the poems written by Baudelaire
for instance, or to combine them with the ones written by Rimbaud or Verlaine.

The fourth constraint is based on a semantic analysis of the original sonnets. Six main themes were
identified (beauty, love, death, nature, spirituality), later on reduced to five, as melancholy and death
were hard to distinguished. A sample of sonnets were annotated using these categories (50 sonnets
per category) and a classifier trained on the manually annotated corpus. It is thus possible to generate
sonnets based on the part of the corpus that have been classified as pertaining to a specific theme. Note
that the annotation operates at the sonnet level, whereas generation operates at the verse level. However,
we assume that the theme gives a general flavor to the text, not every verse has to be relevant from a
thematic point of view.

The approach is quite simple from a computational point of view. However, it is difficult to control on
the fly the number of sonnets that can be generated, depending on the number of contraints chosen by
the end user. It is however important to keep track of this, otherwise the end user may frequently arrive
at a dead end, with a number of contraints that prevents the possibility to generate new sonnets (a basic
rule being that one verse cannot rhyme with itself, and even cannot be selected twice).

5 Overview of the Demonstration

The main interest of the OuPoCo project is to present French poetry through a new and original setting.
With our system, poetry is not any more just a literary genre (Derrida and Ronell, 1980), but a dynamic
object that can be manipulated and experienced. For lots of people, poetry is seen at best as something
related to school years, at worse as something boring and uninteresting from the past. Our new setting, in
itself, makes it possible to show that playing with poetry can be fun. Our setting puts in perspective the
notion of text coherence (Reinhart, 1980) since the result of the generator can be more or less satisfactory
from a semantic point of view.

It is possible to interact with OuPoCo through a web site (https://oupoco.org/fr, see fig-
ure 1).

Figure 1: An overview of the system on the Web. On the left, the set of possible constraints; on the right,
an example of generated sonnet

It is also possible to regularly have a look at the bot posting a quatrain every 6 hours on Twitter (see
figure 2). Finally, we also had a collaboration with a duo of artists who produced a “poetry box” (La
boı̂te à poésie, see figure 3), a portable version of the original idea that can be demonstrated in public



136

events (based on Raspberry Pi components). Through these devices our goal is to reach a wider audience
and engage people to reconnect with poetry.

Figure 2: The Oupoco bot on Twitter

6 Evaluation and Interest of the System Output

At the crossroad between surrealism and absurdism, generated sonnets are generally quite funny and
convey a dreamlike atmosphere. The themes specific to the Romantic period – such as love, whether it is
magnified or lost, death or the fleetingness of time to name but a few – contribute to creating bizarre but
intriguing poems. If most of them lack coherence in terms of punctuation or pronouns, these syntactic
confusions can actually reinforce their poetic overtones.

The OuPoCo system is intended to be presented in front of an audience, to elicit reactions. We did not
perform a formal evaluation, as we would be unable to provide meaningful evaluation criteria (Gervás,
2013) and moreover, as this is not the goal. The interest is to create reactions, to use our piece of software
as a mean to make people rediscover poetry and literature.

One should also note that, because the machine produces structurally impeccable sonnets, the experi-
encer is unconsciously encouraged to find coherence in them, simply because we are used to coherence in
our everyday life and because incoherence is bewildering (Reinhart, 1980). The second consequence is a
frequent need for the experiencer to go back to the original poem, to see where from a given verse orig-
inates (tooltips always allows the experiencer to go back to the original sonnet). The project is thus not
just a sacrilege game over venerated texts, but a way to make people experience and rediscover poetry.

7 Conclusion

We have described OuPoCo, a system inspired by Queneau and implemented through different devices.
It aims at reconciling people with literature, especially poetry, a genre that is not very popular outside
the educational system. The project was also the opportunity of a collaboration with a couple of artists
who produced La Boı̂te à poésie, an interesting spin-off of the project mixing art and technology. In the
future, we plan to study the potential impact of our system in different (real world) contexts, especially
in educational settings.



137

Figure 3: La Boı̂te à poésie, integrating the OuPoCo sonnet generator. This device has been developed by
Atelier Raffard-Roussel, a couple of artists based in Paris. See http://www.raffard-roussel.
com/fr/projets-boite-a-poesie/ for details.

Acknowledgements

This work has received support of Translitteræ (Ecole universitaire de recherche, program “Investisse-
ments d’avenir” ANR-10-IDEX-0001-02 PSL* and ANR-17-EURE-0025). This work was also sup-
ported in part by the French government under management of Agence Nationale de la Recherche as
part of the “Investissements d’avenir” program, reference ANR19-P3IA-0001 (PRAIRIE 3IA Institute).

References
Valérie Beaudouin. 2002. Mètre et rythmes du vers classique. Corneille et Racine. Honoré Champion (Lettres

numériques), Paris.

Jacques Derrida and Avital Ronell. 1980. On narrative: The law of genre. Critical Inquiry, 7(1):55–81.

Pablo Gervás. 2013. Computational modelling of poetry generation. In Artificial Intelligence and Poetry Sympo-
sium, AISB Convention, University of Exeter.

Marjan Ghazvininejad, Xing Shi, Jay Priyadarshi, and Kevin Knight. 2017. Hafez: an interactive poetry generation
system. In Proceedings of ACL 2017, System Demonstrations, pages 43–48, Vancouver, Canada.

Raymond Queneau. 1961. Cent mille milliards de poèmes. Gallimard, Paris.

Tanya Reinhart. 1980. Conditions for text coherence. Poetics Today (Narratology II: The Fictional Text and the
Reader), 1(4):161–180.

Tim Van de Cruys. 2020. Automatic poetry generation from prosaic text. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, Held online.


