@inproceedings{amin-burghardt-2020-survey,
title = "A Survey on Approaches to Computational Humor Generation",
author = "Amin, Miriam and
Burghardt, Manuel",
editor = "DeGaetano, Stefania and
Kazantseva, Anna and
Reiter, Nils and
Szpakowicz, Stan",
booktitle = "Proceedings of the 4th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature",
month = dec,
year = "2020",
address = "Online",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.latechclfl-1.4",
pages = "29--41",
abstract = "We provide a comprehensive overview of existing systems for the computational generation of verbal humor in the form of jokes and short humorous texts. Considering linguistic humor theories, we analyze the systematic strengths and drawbacks of the different approaches. In addition, we show how the systems have been evaluated so far and propose two evaluation criteria: humorousness and complexity. From our analysis of the field, we conclude new directions for the advancement of computational humor generation.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="amin-burghardt-2020-survey">
<titleInfo>
<title>A Survey on Approaches to Computational Humor Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Miriam</namePart>
<namePart type="family">Amin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manuel</namePart>
<namePart type="family">Burghardt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 4th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature</title>
</titleInfo>
<name type="personal">
<namePart type="given">Stefania</namePart>
<namePart type="family">DeGaetano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Kazantseva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nils</namePart>
<namePart type="family">Reiter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stan</namePart>
<namePart type="family">Szpakowicz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We provide a comprehensive overview of existing systems for the computational generation of verbal humor in the form of jokes and short humorous texts. Considering linguistic humor theories, we analyze the systematic strengths and drawbacks of the different approaches. In addition, we show how the systems have been evaluated so far and propose two evaluation criteria: humorousness and complexity. From our analysis of the field, we conclude new directions for the advancement of computational humor generation.</abstract>
<identifier type="citekey">amin-burghardt-2020-survey</identifier>
<location>
<url>https://aclanthology.org/2020.latechclfl-1.4</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>29</start>
<end>41</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Survey on Approaches to Computational Humor Generation
%A Amin, Miriam
%A Burghardt, Manuel
%Y DeGaetano, Stefania
%Y Kazantseva, Anna
%Y Reiter, Nils
%Y Szpakowicz, Stan
%S Proceedings of the 4th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature
%D 2020
%8 December
%I International Committee on Computational Linguistics
%C Online
%F amin-burghardt-2020-survey
%X We provide a comprehensive overview of existing systems for the computational generation of verbal humor in the form of jokes and short humorous texts. Considering linguistic humor theories, we analyze the systematic strengths and drawbacks of the different approaches. In addition, we show how the systems have been evaluated so far and propose two evaluation criteria: humorousness and complexity. From our analysis of the field, we conclude new directions for the advancement of computational humor generation.
%U https://aclanthology.org/2020.latechclfl-1.4
%P 29-41
Markdown (Informal)
[A Survey on Approaches to Computational Humor Generation](https://aclanthology.org/2020.latechclfl-1.4) (Amin & Burghardt, LaTeCHCLfL 2020)
ACL
- Miriam Amin and Manuel Burghardt. 2020. A Survey on Approaches to Computational Humor Generation. In Proceedings of the 4th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature, pages 29–41, Online. International Committee on Computational Linguistics.