@inproceedings{sanguinetti-etal-2020-annotating,
title = "Annotating Errors and Emotions in Human-Chatbot Interactions in {I}talian",
author = "Sanguinetti, Manuela and
Mazzei, Alessandro and
Patti, Viviana and
Scalerandi, Marco and
Mana, Dario and
Simeoni, Rossana",
editor = "Dipper, Stefanie and
Zeldes, Amir",
booktitle = "Proceedings of the 14th Linguistic Annotation Workshop",
month = dec,
year = "2020",
address = "Barcelona, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.law-1.14",
pages = "148--159",
abstract = "This paper describes a novel annotation scheme specifically designed for a customer-service context where written interactions take place between a given user and the chatbot of an Italian telecommunication company. More specifically, the scheme aims to detect and highlight two aspects: the presence of errors in the conversation on both sides (i.e. customer and chatbot) and the {``}emotional load{''} of the conversation. This can be inferred from the presence of emotions of some kind (especially negative ones) in the customer messages, and from the possible empathic responses provided by the agent. The dataset annotated according to this scheme is currently used to develop the prototype of a rule-based Natural Language Generation system aimed at improving the chatbot responses and the customer experience overall.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sanguinetti-etal-2020-annotating">
<titleInfo>
<title>Annotating Errors and Emotions in Human-Chatbot Interactions in Italian</title>
</titleInfo>
<name type="personal">
<namePart type="given">Manuela</namePart>
<namePart type="family">Sanguinetti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Mazzei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Viviana</namePart>
<namePart type="family">Patti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Scalerandi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dario</namePart>
<namePart type="family">Mana</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rossana</namePart>
<namePart type="family">Simeoni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 14th Linguistic Annotation Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Stefanie</namePart>
<namePart type="family">Dipper</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amir</namePart>
<namePart type="family">Zeldes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes a novel annotation scheme specifically designed for a customer-service context where written interactions take place between a given user and the chatbot of an Italian telecommunication company. More specifically, the scheme aims to detect and highlight two aspects: the presence of errors in the conversation on both sides (i.e. customer and chatbot) and the “emotional load” of the conversation. This can be inferred from the presence of emotions of some kind (especially negative ones) in the customer messages, and from the possible empathic responses provided by the agent. The dataset annotated according to this scheme is currently used to develop the prototype of a rule-based Natural Language Generation system aimed at improving the chatbot responses and the customer experience overall.</abstract>
<identifier type="citekey">sanguinetti-etal-2020-annotating</identifier>
<location>
<url>https://aclanthology.org/2020.law-1.14</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>148</start>
<end>159</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Annotating Errors and Emotions in Human-Chatbot Interactions in Italian
%A Sanguinetti, Manuela
%A Mazzei, Alessandro
%A Patti, Viviana
%A Scalerandi, Marco
%A Mana, Dario
%A Simeoni, Rossana
%Y Dipper, Stefanie
%Y Zeldes, Amir
%S Proceedings of the 14th Linguistic Annotation Workshop
%D 2020
%8 December
%I Association for Computational Linguistics
%C Barcelona, Spain
%F sanguinetti-etal-2020-annotating
%X This paper describes a novel annotation scheme specifically designed for a customer-service context where written interactions take place between a given user and the chatbot of an Italian telecommunication company. More specifically, the scheme aims to detect and highlight two aspects: the presence of errors in the conversation on both sides (i.e. customer and chatbot) and the “emotional load” of the conversation. This can be inferred from the presence of emotions of some kind (especially negative ones) in the customer messages, and from the possible empathic responses provided by the agent. The dataset annotated according to this scheme is currently used to develop the prototype of a rule-based Natural Language Generation system aimed at improving the chatbot responses and the customer experience overall.
%U https://aclanthology.org/2020.law-1.14
%P 148-159
Markdown (Informal)
[Annotating Errors and Emotions in Human-Chatbot Interactions in Italian](https://aclanthology.org/2020.law-1.14) (Sanguinetti et al., LAW 2020)
ACL