@inproceedings{bhattasali-etal-2020-alice,
title = "The Alice Datasets: f{MRI} {\&} {EEG} Observations of Natural Language Comprehension",
author = "Bhattasali, Shohini and
Brennan, Jonathan and
Luh, Wen-Ming and
Franzluebbers, Berta and
Hale, John",
booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2020.lrec-1.15",
pages = "120--125",
abstract = "The Alice Datasets are a set of datasets based on magnetic resonance data and electrophysiological data, collected while participants heard a story in English. Along with the datasets and the text of the story, we provide a variety of different linguistic and computational measures ranging from prosodic predictors to predictors capturing hierarchical syntactic information. These ecologically valid datasets can be easily reused to replicate prior work and to test new hypotheses about natural language comprehension in the brain.",
language = "English",
ISBN = "979-10-95546-34-4",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bhattasali-etal-2020-alice">
<titleInfo>
<title>The Alice Datasets: fMRI & EEG Observations of Natural Language Comprehension</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shohini</namePart>
<namePart type="family">Bhattasali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Brennan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wen-Ming</namePart>
<namePart type="family">Luh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Berta</namePart>
<namePart type="family">Franzluebbers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="family">Hale</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">English</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Twelfth Language Resources and Evaluation Conference</title>
</titleInfo>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-10-95546-34-4</identifier>
</relatedItem>
<abstract>The Alice Datasets are a set of datasets based on magnetic resonance data and electrophysiological data, collected while participants heard a story in English. Along with the datasets and the text of the story, we provide a variety of different linguistic and computational measures ranging from prosodic predictors to predictors capturing hierarchical syntactic information. These ecologically valid datasets can be easily reused to replicate prior work and to test new hypotheses about natural language comprehension in the brain.</abstract>
<identifier type="citekey">bhattasali-etal-2020-alice</identifier>
<location>
<url>https://aclanthology.org/2020.lrec-1.15</url>
</location>
<part>
<date>2020-05</date>
<extent unit="page">
<start>120</start>
<end>125</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The Alice Datasets: fMRI & EEG Observations of Natural Language Comprehension
%A Bhattasali, Shohini
%A Brennan, Jonathan
%A Luh, Wen-Ming
%A Franzluebbers, Berta
%A Hale, John
%S Proceedings of the Twelfth Language Resources and Evaluation Conference
%D 2020
%8 May
%I European Language Resources Association
%C Marseille, France
%@ 979-10-95546-34-4
%G English
%F bhattasali-etal-2020-alice
%X The Alice Datasets are a set of datasets based on magnetic resonance data and electrophysiological data, collected while participants heard a story in English. Along with the datasets and the text of the story, we provide a variety of different linguistic and computational measures ranging from prosodic predictors to predictors capturing hierarchical syntactic information. These ecologically valid datasets can be easily reused to replicate prior work and to test new hypotheses about natural language comprehension in the brain.
%U https://aclanthology.org/2020.lrec-1.15
%P 120-125
Markdown (Informal)
[The Alice Datasets: fMRI & EEG Observations of Natural Language Comprehension](https://aclanthology.org/2020.lrec-1.15) (Bhattasali et al., LREC 2020)
ACL