@inproceedings{hirao-etal-2020-automated,
title = "Automated Essay Scoring System for Nonnative {J}apanese Learners",
author = "Hirao, Reo and
Arai, Mio and
Shimanaka, Hiroki and
Katsumata, Satoru and
Komachi, Mamoru",
booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2020.lrec-1.157",
pages = "1250--1257",
abstract = "In this study, we created an automated essay scoring (AES) system for nonnative Japanese learners using an essay dataset with annotations for a holistic score and multiple trait scores, including content, organization, and language scores. In particular, we developed AES systems using two different approaches: a feature-based approach and a neural-network-based approach. In the former approach, we used Japanese-specific linguistic features, including character-type features such as {``}kanji{''} and {``}hiragana.{''} In the latter approach, we used two models: a long short-term memory (LSTM) model (Hochreiter and Schmidhuber, 1997) and a bidirectional encoder representations from transformers (BERT) model (Devlin et al., 2019), which achieved the highest accuracy in various natural language processing tasks in 2018. Overall, the BERT model achieved the best root mean squared error and quadratic weighted kappa scores. In addition, we analyzed the robustness of the outputs of the BERT model. We have released and shared this system to facilitate further research on AES for Japanese as a second language learners.",
language = "English",
ISBN = "979-10-95546-34-4",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hirao-etal-2020-automated">
<titleInfo>
<title>Automated Essay Scoring System for Nonnative Japanese Learners</title>
</titleInfo>
<name type="personal">
<namePart type="given">Reo</namePart>
<namePart type="family">Hirao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mio</namePart>
<namePart type="family">Arai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroki</namePart>
<namePart type="family">Shimanaka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Satoru</namePart>
<namePart type="family">Katsumata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mamoru</namePart>
<namePart type="family">Komachi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">English</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Twelfth Language Resources and Evaluation Conference</title>
</titleInfo>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-10-95546-34-4</identifier>
</relatedItem>
<abstract>In this study, we created an automated essay scoring (AES) system for nonnative Japanese learners using an essay dataset with annotations for a holistic score and multiple trait scores, including content, organization, and language scores. In particular, we developed AES systems using two different approaches: a feature-based approach and a neural-network-based approach. In the former approach, we used Japanese-specific linguistic features, including character-type features such as “kanji” and “hiragana.” In the latter approach, we used two models: a long short-term memory (LSTM) model (Hochreiter and Schmidhuber, 1997) and a bidirectional encoder representations from transformers (BERT) model (Devlin et al., 2019), which achieved the highest accuracy in various natural language processing tasks in 2018. Overall, the BERT model achieved the best root mean squared error and quadratic weighted kappa scores. In addition, we analyzed the robustness of the outputs of the BERT model. We have released and shared this system to facilitate further research on AES for Japanese as a second language learners.</abstract>
<identifier type="citekey">hirao-etal-2020-automated</identifier>
<location>
<url>https://aclanthology.org/2020.lrec-1.157</url>
</location>
<part>
<date>2020-05</date>
<extent unit="page">
<start>1250</start>
<end>1257</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Automated Essay Scoring System for Nonnative Japanese Learners
%A Hirao, Reo
%A Arai, Mio
%A Shimanaka, Hiroki
%A Katsumata, Satoru
%A Komachi, Mamoru
%S Proceedings of the Twelfth Language Resources and Evaluation Conference
%D 2020
%8 May
%I European Language Resources Association
%C Marseille, France
%@ 979-10-95546-34-4
%G English
%F hirao-etal-2020-automated
%X In this study, we created an automated essay scoring (AES) system for nonnative Japanese learners using an essay dataset with annotations for a holistic score and multiple trait scores, including content, organization, and language scores. In particular, we developed AES systems using two different approaches: a feature-based approach and a neural-network-based approach. In the former approach, we used Japanese-specific linguistic features, including character-type features such as “kanji” and “hiragana.” In the latter approach, we used two models: a long short-term memory (LSTM) model (Hochreiter and Schmidhuber, 1997) and a bidirectional encoder representations from transformers (BERT) model (Devlin et al., 2019), which achieved the highest accuracy in various natural language processing tasks in 2018. Overall, the BERT model achieved the best root mean squared error and quadratic weighted kappa scores. In addition, we analyzed the robustness of the outputs of the BERT model. We have released and shared this system to facilitate further research on AES for Japanese as a second language learners.
%U https://aclanthology.org/2020.lrec-1.157
%P 1250-1257
Markdown (Informal)
[Automated Essay Scoring System for Nonnative Japanese Learners](https://aclanthology.org/2020.lrec-1.157) (Hirao et al., LREC 2020)
ACL