@inproceedings{van-erp-groth-2020-towards,
title = "Towards Entity Spaces",
author = "van Erp, Marieke and
Groth, Paul",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2020.lrec-1.261",
pages = "2129--2137",
abstract = "Entities are a central element of knowledge bases and are important input to many knowledge-centric tasks including text analysis. For example, they allow us to find documents relevant to a specific entity irrespective of the underlying syntactic expression within a document. However, the entities that are commonly represented in knowledge bases are often a simplification of what is truly being referred to in text. For example, in a knowledge base, we may have an entity for Germany as a country but not for the more fuzzy concept of Germany that covers notions of German Population, German Drivers, and the German Government. Inspired by recent advances in contextual word embeddings, we introduce the concept of entity spaces - specific representations of a set of associated entities with near-identity. Thus, these entity spaces provide a handle to an amorphous grouping of entities. We developed a proof-of-concept for English showing how, through the introduction of entity spaces in the form of disambiguation pages, the recall of entity linking can be improved.",
language = "English",
ISBN = "979-10-95546-34-4",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="van-erp-groth-2020-towards">
<titleInfo>
<title>Towards Entity Spaces</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marieke</namePart>
<namePart type="family">van Erp</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Groth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">English</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Twelfth Language Resources and Evaluation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Blache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Cieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Isahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hélène</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-10-95546-34-4</identifier>
</relatedItem>
<abstract>Entities are a central element of knowledge bases and are important input to many knowledge-centric tasks including text analysis. For example, they allow us to find documents relevant to a specific entity irrespective of the underlying syntactic expression within a document. However, the entities that are commonly represented in knowledge bases are often a simplification of what is truly being referred to in text. For example, in a knowledge base, we may have an entity for Germany as a country but not for the more fuzzy concept of Germany that covers notions of German Population, German Drivers, and the German Government. Inspired by recent advances in contextual word embeddings, we introduce the concept of entity spaces - specific representations of a set of associated entities with near-identity. Thus, these entity spaces provide a handle to an amorphous grouping of entities. We developed a proof-of-concept for English showing how, through the introduction of entity spaces in the form of disambiguation pages, the recall of entity linking can be improved.</abstract>
<identifier type="citekey">van-erp-groth-2020-towards</identifier>
<location>
<url>https://aclanthology.org/2020.lrec-1.261</url>
</location>
<part>
<date>2020-05</date>
<extent unit="page">
<start>2129</start>
<end>2137</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards Entity Spaces
%A van Erp, Marieke
%A Groth, Paul
%Y Calzolari, Nicoletta
%Y Béchet, Frédéric
%Y Blache, Philippe
%Y Choukri, Khalid
%Y Cieri, Christopher
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Isahara, Hitoshi
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Hélène
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Twelfth Language Resources and Evaluation Conference
%D 2020
%8 May
%I European Language Resources Association
%C Marseille, France
%@ 979-10-95546-34-4
%G English
%F van-erp-groth-2020-towards
%X Entities are a central element of knowledge bases and are important input to many knowledge-centric tasks including text analysis. For example, they allow us to find documents relevant to a specific entity irrespective of the underlying syntactic expression within a document. However, the entities that are commonly represented in knowledge bases are often a simplification of what is truly being referred to in text. For example, in a knowledge base, we may have an entity for Germany as a country but not for the more fuzzy concept of Germany that covers notions of German Population, German Drivers, and the German Government. Inspired by recent advances in contextual word embeddings, we introduce the concept of entity spaces - specific representations of a set of associated entities with near-identity. Thus, these entity spaces provide a handle to an amorphous grouping of entities. We developed a proof-of-concept for English showing how, through the introduction of entity spaces in the form of disambiguation pages, the recall of entity linking can be improved.
%U https://aclanthology.org/2020.lrec-1.261
%P 2129-2137
Markdown (Informal)
[Towards Entity Spaces](https://aclanthology.org/2020.lrec-1.261) (van Erp & Groth, LREC 2020)
ACL
- Marieke van Erp and Paul Groth. 2020. Towards Entity Spaces. In Proceedings of the Twelfth Language Resources and Evaluation Conference, pages 2129–2137, Marseille, France. European Language Resources Association.