@inproceedings{alexeeva-etal-2020-mathalign,
title = "{M}ath{A}lign: Linking Formula Identifiers to their Contextual Natural Language Descriptions",
author = "Alexeeva, Maria and
Sharp, Rebecca and
Valenzuela-Esc{\'a}rcega, Marco A. and
Kadowaki, Jennifer and
Pyarelal, Adarsh and
Morrison, Clayton",
booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2020.lrec-1.269",
pages = "2204--2212",
abstract = "Extending machine reading approaches to extract mathematical concepts and their descriptions is useful for a variety of tasks, ranging from mathematical information retrieval to increasing accessibility of scientific documents for the visually impaired. This entails segmenting mathematical formulae into identifiers and linking them to their natural language descriptions. We propose a rule-based approach for this task, which extracts LaTeX representations of formula identifiers and links them to their in-text descriptions, given only the original PDF and the location of the formula of interest. We also present a novel evaluation dataset for this task, as well as the tool used to create it.",
language = "English",
ISBN = "979-10-95546-34-4",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="alexeeva-etal-2020-mathalign">
<titleInfo>
<title>MathAlign: Linking Formula Identifiers to their Contextual Natural Language Descriptions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Alexeeva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Sharp</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="given">A</namePart>
<namePart type="family">Valenzuela-Escárcega</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jennifer</namePart>
<namePart type="family">Kadowaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adarsh</namePart>
<namePart type="family">Pyarelal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Clayton</namePart>
<namePart type="family">Morrison</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">English</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Twelfth Language Resources and Evaluation Conference</title>
</titleInfo>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-10-95546-34-4</identifier>
</relatedItem>
<abstract>Extending machine reading approaches to extract mathematical concepts and their descriptions is useful for a variety of tasks, ranging from mathematical information retrieval to increasing accessibility of scientific documents for the visually impaired. This entails segmenting mathematical formulae into identifiers and linking them to their natural language descriptions. We propose a rule-based approach for this task, which extracts LaTeX representations of formula identifiers and links them to their in-text descriptions, given only the original PDF and the location of the formula of interest. We also present a novel evaluation dataset for this task, as well as the tool used to create it.</abstract>
<identifier type="citekey">alexeeva-etal-2020-mathalign</identifier>
<location>
<url>https://aclanthology.org/2020.lrec-1.269</url>
</location>
<part>
<date>2020-05</date>
<extent unit="page">
<start>2204</start>
<end>2212</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MathAlign: Linking Formula Identifiers to their Contextual Natural Language Descriptions
%A Alexeeva, Maria
%A Sharp, Rebecca
%A Valenzuela-Escárcega, Marco A.
%A Kadowaki, Jennifer
%A Pyarelal, Adarsh
%A Morrison, Clayton
%S Proceedings of the Twelfth Language Resources and Evaluation Conference
%D 2020
%8 May
%I European Language Resources Association
%C Marseille, France
%@ 979-10-95546-34-4
%G English
%F alexeeva-etal-2020-mathalign
%X Extending machine reading approaches to extract mathematical concepts and their descriptions is useful for a variety of tasks, ranging from mathematical information retrieval to increasing accessibility of scientific documents for the visually impaired. This entails segmenting mathematical formulae into identifiers and linking them to their natural language descriptions. We propose a rule-based approach for this task, which extracts LaTeX representations of formula identifiers and links them to their in-text descriptions, given only the original PDF and the location of the formula of interest. We also present a novel evaluation dataset for this task, as well as the tool used to create it.
%U https://aclanthology.org/2020.lrec-1.269
%P 2204-2212
Markdown (Informal)
[MathAlign: Linking Formula Identifiers to their Contextual Natural Language Descriptions](https://aclanthology.org/2020.lrec-1.269) (Alexeeva et al., LREC 2020)
ACL